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Best upper and lower bounds, as functions of n, are obtained for the quantities í3 2(G)+ 13 2(G)
and a2(G)+a2(G), where 0 2 (G) denotes the total matching number and a 2 (G) the total
covering number of any graph G with n vertices and with complementary graph G .
The best upper bound is obtained also for a2(G) + p2(G), when G is a connected graph .

1 .

Let G be a graph with edge set E and vertex set V. A vertex u is said to cover
itself, all edges incident with u and all vertices joined to u . An edge (u, v) covers
itself, the vertices u and v and all edges incident with u or v . Two elements of
E U V are independent if neither covers the other .

A Subset ~', of elements of E U V is called a total cover if the elements of W
cover G and W is minimal ; a subset J of elements of E U V is called a total
matching if the elements of J are pairwise independent and T is maximal. We
shall be interested in the quantities

a2(G) = min 1 16 , t32(G) = max 13- 1

where the nlin is taken over all total covers of G and the max over all total
matchings in G. These concepts were introduced in [2] (see also [3]), where various
bounds for a 2(G) and /3 2(G) were obtained and exact values for particular graphs
were determined .

In [1] Chartrand and Schuster have obtained lower and upper bounds for
P(G)+/3(G) and f3,(G)+/3,(G), where (3(G) denotes the vertex independence
number and (3,(G) denotes the edge independence number of a graph G having
complement G. Here we shall obtain bounds for the quantities J3 2(G)+0 2(G),
a 2(G) + a2(G) and a2(G)+ 0,(G) .

2 .

We shall use the notation /3 2 = (3 2(G), 02- 13 2(G), a2 - a2(G), &2 - a2(6). For
complementary graphs we have the following results .
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Theorem 2 .1 . If G is a graph on n vertices, then

2{2}_(32+j32<{ 3
n}

.

The upper bound is best possible for all n, the lower bound is best possible for all
n,' 2 (mod 4) .

Proof . Let µ (resp . µ) denote the size of a smallest maximal set of independent
edges in G (resp. G). Then the following relations are immediate :

0 2 =n-µ,

	

g-[n/2],

	

µ+µá(n-1)/2 .

These imply the bounds of Theorem 1 .
In order to show that the upper bound is best possible, we let G = K„ . Then

#2 = n and, as proved in [2], 13 2 = {n/2] . For the lower bound, we set G = K2.„,2,„ if
n = 4m and G = K,,,+,, if n = 21 + l . In these cases /32 + #2 = 2{n./2] .

Remark 2.2. If n is odd then for every t such that n + 1 < t , (3n + 1)/2, there
exists a graph G on n vertices satisfying /32 + 02 = t. It n = 0 (mod 4) then for every
t such that n , t 2 n and tX n + I there exists a graph G on n vertices satisfying
j62 + 02 = t. If n = 2 (mod 4) then for every t such that n + 1 < t z n there exists a
graph G on n vertices so that 0, + #2 = t.

Proof . If n is odd we let G = Kx,„ x with 0 < x < n,/2 . If n is even, we let
G = Kx,„_ x with even values of x, 0 < x < n/2 ; further we let G be the graphs
obtained from Kx ,„ x with odd values of x, 3 < x < n/2, when joining two vertices
among the x vertices by an edge . Easy calculation shows that these examples
yield the result .

Remark 2 .3 . We can show that if n = 2 (mod 4), the lower bound in Theorem 1 is
in fact n + 1 . Also, a result of Galvin implies that if n = 0 (mod 4), then
02(G) + `32(G) X n + 1 .

Theorem 2 .4 . If G is a graph on n

{2}+1<a2+d,--{2n} .

vertices then

The upper bound is best possible for all n, the lower bound is best possible for odd n .

Proof . Let W be a total cover of G consisting of x edges and y vertices such that
a2 = x + y. We may assume that the x edges are pairwise disjoint and that none of
the y vertices is joined to any of the x edges . If n = 2x + y +- z, then there are z
vertices each of which must be joined in G to some of the y vertices in K It is easy
to see that no two of these z vertices can be joined in G and therefore G contains



Kz as a subgraph . It follows then by [2], that á z > {z/21 . Thus, we have a,+ IXz
x + y + z z = '(n + y) . This proves our statement if y -- 2 . If y = 1, let vertex v o C W .

In order to cover v o in G, we must have 62 > { z /2} + 1, since vo is not joined in G to
any of the z vertices of K- Thus in this case az + IXz % z n + z which is stronger than
needed . Finally, if y = 0 then z = 0, so that az = x = n/2 . Since cf z % 1 in any case,
we get the desired lower bound in this case as well . The upper bound in Theorem 3
is a consequence of the inequalities a z < (3z, áz < az and Theorem 1 . The upper
bound is best possible if G = K- To show that the lower bound is best possible if
n = 21 + 1, we let G be the star graph on n vertices . We have az = 1, áz = l + 1 .

Remark 2.5. If n is odd then for every t such that z(n + 1)+ 1 t z(3n + 1) and
tX '(3n - 1) there exists a graph on n vertices satisfying a,+ IXz = t. If n is even
then for every t such that z n + 2 t z n there exists a graph on n vertices
satisfying a z + áz = t.

Proof. If n is even, we let G be the graph consisting of Kx , 1 < x <_ n, and of n - x
vertices joined to all vertices of K., . If n is odd, we first let G be graphs as described
above, allowing odd values of x, I < x < n ; further we let G be the same graphs
with one edge of Kx omitted. Simple calculations show that Remark 2 .5 is valid .

Remark 2.6. By a bit more complicated argument we can prove that if n is even,
then the lower bound in Theorem 3 .1 is in fact n/2+2 and if n is odd, then
az + iiz / (3 n - 1)/2 .

3 .

It was proved in [3] that if G is a connected graph on n vertices without triangles
then a z + /3z < 5n/4, but that for infinitely many connected graphs az + (3z > 5n/4
holds. In the following result the restriction concerning triangles is absent .

Theorem 3.1 . If G is a connected graph on n vertices (n > 2), then
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az + az -~: n+2
{nl

.

Proof . It was proved in [2] that a z -- { n/2} for a connected G. Clearly we also have
a z -- 2µ in this case. Combining these with (3 z = n - µ, we obtain the result .

The examples given in [3] (subsequent to the proof of (1)) show that the bound
given in Theorem 3 .1 is best possible if n = 0 or 3 (mod 4) . It is easy to construct
examples showing that it is also best possible if n = 1 or 2 (mod 4) .
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Theorem 3 .2 . Every connected graph on n vertices contains a total matching of size
at most n - 2V n+ 2 . This bound is best possible .

Proof . Let Y( be a largest independent set of edges in G. We denote by
(v,, vz), (v3, v 4), . . , (vzx _,, v zx ) the edges in ée, and by vzx+,, . . . , v„ the rest of the
vertices of G. Then :

(i) because of the maximal ity of áe, no two of vzx+,, . . . , v„ are joined ;
(ü) because of the connectedness of G, each of vzx+,, . . . , vn is joined to at least

one of the vertices v,, . . . , v zx ;
(iii) since 0 is the largest independent set of edges, it is not possible that one of

vzx+,, . . . , v„ be joined to one end vertex and another to another end vertex of the
same edge .

Therefore, we may assume that each of the vertices vzx ,,, . . ., v„ is joined to at
least one of the vertices v z , v 4 , . . . , vzx . Thus there exists a vertex, say v 2 , with at
least k = {(n - 2x)/x1 vertices, say vzx+,, . . . , vex+k joined to it. Let now J consist of
the edges (v 3 , v 4 ), . . . , (vzx _,, v zx ) and of the vertices vzx+k+,, . . . , v„. and v z. Then
1=(x-1)+(n-2x-k)+1=n-x-k-n-x-n/x+2 and J is clearly

maximal independent .
Now, x + n 1x --2\/n for all x, so J J < n - 2Vn+ 2 as required. In order to

show that this estimate is best possible, we consider (see [3], proof of (3)) the graph
G of order n = m z consisting of K,n with m - 1 end vertices joined to each vertex
of K,,, . As shown in [3], for every maximal independent set J, I J > 1 + (m -1)~ _
M2 - 2m + 2 . This proves our claim .

4 .

The bounds given by Theorem 2.1 yield estimates for the product 02- 'G, For
example : If n = 0 (mod 4) then n 2/4 <_ (3 z • 0 2 < �n2/16. Both bounds are best
possible .
For the product of the covering numbers Theorem 2 .4 does not yield best

possible estimates. Indeed we have the following result : If G is a graph on n
vertices, then az • 62 < n • {n/21 . This estimate is best possible.

Proof . For every graph G, either G or G is connected . Hence, by [2], either
az , {n/21 or az -- {n/21 . The choice G = K„ shows that the estimate is best
possible .
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