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§1 . Asymptotic estimates for the number of partitions of the integer n into

summands chosen from an arithmetic progression have been derived by several

authors, see for example Meinardus [3] . In this note we investigate a natural

extension which has not previosusly appeared in the literature . We shall

study the asymptotic behaviour of the numbers p a

	

a
(n) and q (n), the number

of partitions of n into summands and distinct summands, respectively, chosen

from the sequence [ma], m = 1,2, . . . where a > 1 is an irrational number and

[x] denotes the largest integer 5 x . If y = a - [a] then for almost all

y c (0,1) in the Lebesgue sense we shall obtain asymptotic formulae (given in

Theorem 2 below) for pa (n) and q a (n) . However, when y is of finite class,

that is, there does not exist a number y such that as i 3 -

(1 .1)

	

f1+a+'Isin tyul } -

for every positive e, we can only deduce

log pa (n) _ 7T 3 + 0(n ő )

log q a (n) = r 3a + 0(n ő )

for every positive 6 . This is closely connected with the well known fact

the larger the class of y, defined to be the largest y satisfying equation

(1 .1), the less evenly distributed is ma - [me] . It is worth noting that if

a = [a] + p/q + e
4

with E
q
very small, then for a long stretch the sequence

[ma] is the union of arithmetic progressions whose difference is small

compared to their length .

Finally we point out that no significant difference arises if we consider

partitions into the sequence [ma+S] .

§2 .

	

In this section we first apply the results of Roth and Szekeres [4] .

Their results hold subject to the conditions :
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where d is any constant > 0 and x determined from

n =

	

[ma](l+ex[ma])-1
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with k -> - where II 811 is

the distance of 8 to the nearest integer and zuk < a < 2 . It is clear

in our case that (I) holds . Roth and Szekeres [4,p .254] show that (II) is

satisfied when the S in (I) is < 3 and there exist constants k0 and c

such that, for all integers k, q satisfying k > k 0 and 1 < q <_ 18[ka]/k,

at least cq 2 log2k of the numbers [a],[2a], . . .,[ka] are not divisible by

q . In our case, q <_ 18a and since it is well known [2,p .307] that the

sequence [ma] is uniformly distributed in the integers this last condition

holds . Thus condition (II) also holds and from the Roth-Szekeres results

we have the following theorem .

THEOREM 1 .



where S is any constant > 0 and y is determined from

It will be convenient for the proof of our final results to have the

following lemma .

LEMMA .

	

Let C (s) _
a m=1 [ma]s

n =

	

[ma]( ey[ma]1
m=1

~a (s) the Riemann zeta function and {x} = x - [x] - i2 if x 0 [x] and

{m} = 0 for integral m .

	

Then

ca (s) s «s) + s+1

	

{as}
+ s+1 G(s+l) + sh(s)

a

	

a

	

m=1 m

	

2a

where h(s) is analytic in R(s) > -1 + e . Furthermore the only

singularity of C, (s) in the region R(s) > - -- l + c is a simple pole at

s=1 and l~a (s)l = 0(lsl 4)

Finally ~a (0) _ (a-1- 1)/2 if a is finite .

Proof .

	

Let S be any positive real number . Let s = o + it . Suppose

sl < S and m > M = S 2 .

Then

[ma]

	 1

uniformly in this region as

-s log (1- {ma}+1z
mae

s sm a

	 1 	+ s {ma } +'2 +	s2	 ({ma }+12) 2
m sa s

	

(ma) s+1

	

s(ma) s+2

3
+ 0(S 3+(Y ) + 0(	a+2)

Let A denote the class of a - [a],



where for fixed S the 8-terms are independent of s and m ? M . Hence

	1 	= 1

	

1+ s

	

G 1z+{ma} + sh (s)
m>M [ma] s

	

as m>M ms C4
s+1 m>M ms+1

	

1

where h 1 (s) is analytic, being the sum of a uniformly convergent series
of analytic functions, for Rs ? -1 + E and, moreover, Ih 1 (s)I = O(IsI 3

)

uniformly in Rs ? -1 + E, Is l <_ S . Now

l

	

~	 1s I < M(Ma) = 0(Is1 4 )
m<_M [ma]

uniformly in Rs ? -1, IsI <_ S . Since S was arbitrary we have the first

part of the lemma and moreover, Ih(s)I = O(Isl 3 j uniformly in Rs ? -1 + e .

Hardy and Littlewood [1] show that E{am} -s converges for

Rs ? a(a+1) -1 + e . It is well known that if Eann s converges for

s = a, a real, then IEa nn s I = O(Isl) uniformly in Rs ? a + E . Hence

Etma}ms-1 is 0{IsI} uniformly in Rs ? -(l+a) -1 + e . This, with our

estimates for h(s), gives the second part of the lemma . Finally, since

~(0) _ -2 and 8(s+l) = s-1 + y + . ., we have the third part .

THEOREM 2 .

	

Let a - [a] be of class a <
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(a-l- 1 )log (n 6a )+~a (0)

If a - [a] is of infinite class then



log ga~ti) = 3a + 0(nE )

log pa (n) =
3na

+ 0(n E ) •

(For almost all a - [a] e (0;1) in the Lebesgue sense a = 0 .)

Proof . Let us consider qa (n) and suppose a-[a] is of class a . If we

let s = o + it we may rewrite the sums in Theorem 1 as follows .
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It is well known that

t
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r(a+it) _ (e 2l lltlo-11) as Itl

	

hence in view of Lemma

1 we may shift the contour of integration in equation (2 .1) to the line

Rs = -(l+a) -1 + e

	

and upon calculating the residue (note (1-2-s)C(s+l) is

analytic everywhere) we obtain

o+i-

(2 .3)
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From 2 .5 we obtain

x = (1 + 0(n
iZ

	

2(l+a) + E )

J12an

If we now insert this expression for x into equations (2 .4), (2 .5) and

(2 .6), we obtain the first result stated for q (n) in Theorem 2 . The casea
a - [a] of infinite class may be treated in the same way . Since it is well

known [2,p .130] that a = 0 for almost all numbers between zero and one we

have all our results for q a (n) .

The results for p a (n) follow in basically the same way . One slight

difference arises since

-y[ma]	 1

	

q+h P(s)y-s-E log (1 - e

	

) = 2~i ~

	

~(s+1)~a(s)ds .

	

a > 1
o+i-

and since F(s) = s-1 - y+ . . ., ~(s+l) = 1 + y+ . . . the residue at s = 0 iss

dy-s ~a (0)

ds
s=0

_ Ca(0) log y + Cá(0) .

(2 .4)

(2 .5)



We close with the following remarks . Hardy and Littlewood [1] show that

if a > 0, then the line Rs = a/(a+l) is a natural boundary of E{ma]-s

They also conjecture, and it still seems open, that Rs = 0 is a natural

boundard if a = 0, unless a is a quadratic irrational (in this ease the

series may be continued to the entire plane) . The presence of a natural

boundary limits the accuracy of our estimates of the transcendental sums in

Theorem 1 in a way that cannot be overcome by the calculus of residues . If

one considers the number

	

PA(n) of partitions of an integer n into

summands chosen from A, our method leads us to consider the Dirichlet series

fA (s) = L
a-s

aEA
fA(s) for almost

for which Rs = 1
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