P. Erdös
Hungarian Academy of Sciences Budapest, Hungary

B. Richmond
University of Waterloo
Waterloo, Ontario

§1. Asymptotic estimates for the number of partitions of the integer n into summands chosen from an arithmetic progression have been derived by several authors, see for example Meinardus [3]. In this note we investigate a natural extension which has not previosusly appeared in the literature. We shall study the asymptotic behaviour of the numbers $p_{\alpha}(n)$ and $q_{\alpha}(n)$, the number of partitions of n into summands and distinct summands, respectively, chosen from the sequence $[\mathrm{m} \alpha], \mathrm{m}=1,2, \ldots$ where $\alpha>1$ is an irrational number and [x] denotes the largest integer $\leq x$. If $\gamma=\alpha-[\alpha]$ then for almost all $\gamma \in(0,1)$ in the Lebesgue sense we shall obtain asymptotic formulae (given in Theorem 2 below) for $p_{\alpha}(n)$ and $q_{\alpha}(n)$. However, when γ is of finite class, that is, there does not exist a number γ such that as $\ell \rightarrow \infty$

$$
\begin{equation*}
\ell^{1+\lambda+\epsilon}|\sin \ell \gamma \pi| \rightarrow \infty \tag{1.1}
\end{equation*}
$$

for every positive ϵ, we can only deduce

$$
\begin{aligned}
& \log p_{\alpha}(n)=\pi \frac{\sqrt{2 n}}{3 \alpha}+0\left(n^{\delta}\right) \\
& \log q_{\alpha}(n)=\pi \frac{\sqrt{2 n}}{3 \alpha}+0\left(n^{\delta}\right)
\end{aligned}
$$

for every positive δ. This is closely connected with the well known fact the larger the class of γ, defined to be the largest γ satisfying equation (1.1), the less evenly distributed is $m \alpha-[m \alpha]$. It is worth noting that if $\alpha=[\alpha]+\mathrm{p} / \mathrm{q}+\epsilon_{\mathrm{q}}$ with ϵ_{q} very small, then for a long stretch the sequence [$\mathrm{m} \alpha$] is the union of arithmetic progressions whose difference is small compared to their length.

Finally we point out that no significant difference arises if we consider partitions into the sequence $[m \alpha+\beta]$.
§2. In this section we first apply the results of Roth and Szekeres [4]. Their results hold subject to the conditions:
(I) $\mathrm{S}=\lim _{\mathrm{m} \rightarrow \infty} \frac{\log [\mathrm{m} \alpha]}{\log \mathrm{m}}$ exists;
(II) $\quad \inf \left\{(\log k)^{-1} \sum_{m=1}^{k}\|[m a]\|^{2}\right\} \rightarrow \infty$ with $k \rightarrow \infty$ where $\|\theta\|$ is
the distance of θ to the nearest integer and $\frac{1}{2} u_{k}<a \leq \frac{1}{2}$. It is clear in our case that (I) holds. Roth and Szekeres [4,p.254] show that (II) is satisfied when the S in (I) is $<\frac{3}{2}$ and there exist constants k_{0} and c such that, for all integers k, q satisfying $k>k_{0}$ and $1<q \leq 18[k \alpha] / k$, at least $\mathrm{cq}^{2} \log ^{2} \mathrm{k}$ of the numbers $[\alpha],[2 \alpha], \ldots,[k \alpha]$ are not divisible by q. In our case, $\mathrm{q} \leq 18 \alpha$ and since it is well known [2, p.307] that the sequence $[\mathrm{m} \alpha]$ is uniformly distributed in the integers this last condition holds. Thus condition (II) also holds and from the Roth-Szekeres results we have the following theorem.

THEOREM 1.

$$
\begin{aligned}
q_{\alpha}(n)= & {[2 \pi} \\
& \left.\sum_{m=1}^{\infty}[m \alpha]^{2} e^{x[m \alpha]}\left(1+e^{x[m \alpha]}\right)^{-2}\right]^{-\frac{1}{2}} \\
& \exp \left[\sum_{m=1}^{\infty}\left\{\frac{x[m \alpha]}{e^{x[m \alpha]}+1}+\log \left(1+e^{-x[m \alpha]}\right)\right\}\right] \\
& {\left[1+0\left(n^{-\frac{1}{2}+\delta}\right)\right] }
\end{aligned}
$$

where δ is any constant >0 and x determined from

$$
\mathrm{n}=\sum_{\mathrm{m}=1}^{\infty}[\mathrm{m} \alpha]\left(1+\mathrm{e}^{\mathrm{x}[\mathrm{~m} \alpha]}\right)^{-1}
$$

Furthermore

$$
\begin{aligned}
p_{\alpha}(n)= & {\left[2 \pi \sum_{m^{=1}}^{\infty}[m \alpha]^{2} e^{y[m \alpha]}\left(e^{y[m \alpha]}-1\right)^{-2}\right]^{-\frac{1}{2}} } \\
& \exp \left[\sum_{m=1}^{\infty}\left\{\frac{y[m \alpha]}{e^{y[m \alpha]}-1}-\log \left(1-e^{-y[m \alpha]}\right)\right\}\right] \\
& {\left[1+0\left(n^{-\frac{1}{2}+\delta}\right)\right] }
\end{aligned}
$$

where δ is any constant >0 and y is determined from

$$
\mathrm{n}=\sum_{\mathrm{m}=1}^{\infty}[\mathrm{m} \alpha]\left(\mathrm{e}^{\mathrm{y}[\mathrm{~m} \alpha]}-1\right)^{-1} .
$$

It will be convenient for the proof of our final results to have the following lemma.
LEMMA. Let $\zeta_{\alpha}(s)=\sum_{m=1}^{\infty} \frac{1}{[m \alpha]^{s}}$. Let λ denote the class of $\alpha-[\alpha]$, $\zeta_{\alpha}(s)$ the Riemann zeta function and $\{x\}=x-[x]-\frac{1}{2}$ if $x \neq[x]$ and $\{\mathrm{m}\}=0$ for integral m . Then

$$
\zeta_{\alpha}(s)=\frac{1}{\alpha^{s}} \zeta(s)+\frac{s}{\alpha^{s+1}} \sum_{m=1}^{\infty} \frac{\{\alpha m\}}{m^{s}}+\frac{s}{2 \alpha^{s+1}} \zeta(s+1)+\operatorname{sh}(s)
$$

where $h(s)$ is analytic in $R(s)>-1+\epsilon$. Furthermore the only singularity of $\zeta_{\alpha}(s)$ in the region $R(s) \geq-\frac{1}{\lambda+1}+\epsilon$ is a simple pole at $s=1$ and $\left|\zeta_{\alpha}(s)\right|=0\left(|s|^{4}\right)$ uniformly in this region as $|s| \rightarrow \infty$. Finally $\zeta_{\alpha}(0)=\left(\alpha^{-1}-1\right) / 2$ if λ is finite.

Proof. Let S be any positive real number. Let $\mathrm{s}=\sigma+i t$. Suppose $|s| \leq S$ and $m \geq M=S^{2}$.

Then

$$
\begin{aligned}
\frac{1}{[m \alpha]} & =\frac{e^{-s \log \left(1-\frac{\{m \alpha\}+\frac{1}{2}}{m \alpha}\right.}}{m^{s} \alpha} \\
& =\frac{1}{m^{s} \alpha s}+s \frac{\{m \alpha\}+\frac{1}{2}}{(m \alpha)^{s+1}}+\frac{s^{2}}{s(m \alpha)^{s+2}}\left(\{m \alpha\}+\frac{1}{2}\right)^{2} \\
& +0\left(\frac{s^{3}}{m^{3+\sigma}}\right)+0\left(\frac{s}{m^{\sigma+2}}\right)
\end{aligned}
$$

where for fixed S the θ-terms are independent of s and $m \geq M$. Hence

$$
\sum_{m>M} \frac{1}{[m \alpha]^{s}}=\frac{1}{\alpha^{s}} \sum_{m>M} \frac{1}{m^{s}}+\frac{s}{\alpha^{s+1}} \sum_{m>M} \frac{\frac{1 / 2+\{m \alpha\}}{m^{s+1}}+s h_{1}(s)}{m^{2}}
$$

where $h_{1}(s)$ is analytic, being the sum of a uniformly convergent series of analytic functions, for $\mathrm{Rs} \geq-1+\epsilon$ and, moreover, $\left|h_{1}(s)\right|=0\left(|s|^{3}\right)$ uniformly in Rs $\geq-1+\epsilon,|s| \leq S$. Now

$$
\left|\sum_{m \leq M} \frac{1}{[m \alpha]^{s}}\right| \leq M(M \alpha)=0\left(|s|^{4}\right)
$$

uniformly in $R s \geq-1,|s| \leq S$. Since S was arbitrary we have the first part of the lemma and moreover, $|\mathrm{h}(\mathrm{s})|=0\left(|s|^{3}\right)$ uniformly in Rs $\geq-1+\epsilon$.

Hardy and Littlewood [1] show that $\Sigma\{\alpha \mathrm{m}\}^{-s}$ converges for Rs $\geq \lambda(\lambda+1)^{-1}+\epsilon$. It is well known that if $\Sigma a_{n} n^{-s}$ converges for $s=\sigma, \sigma$ real, then $\left|\Sigma a_{n} n^{-s}\right|=O(|s|)$ uniformly in Rs $\geq \alpha+\epsilon$. Hence $\Sigma\{\mathrm{m} \alpha\} \mathrm{m}^{-s-1}$ is $0\{|\mathrm{~s}|\}$ uniformly in $\mathrm{Rs} \geq-(1+\lambda)^{-1}+\epsilon$. This, with our estimates for $h(s)$, gives the second part of the lemma. Finally, since $\zeta(0)=-\frac{1}{2}$ and $\zeta(s+1)=s^{-1}+\gamma+\ldots$ we have the third part.

THEOREM 2.

$$
\begin{aligned}
& \text { Let } \alpha-[\alpha] \text { be of class } \lambda<\infty \text {. Then } \\
& \mathrm{q}_{\alpha}(\mathrm{n})=\frac{2^{\frac{1-3 \alpha}{2 \alpha}}}{4 \sqrt{3 \alpha}} \mathrm{n}^{\frac{3}{4}} e^{\pi \sqrt{\frac{n}{3 \alpha}}}\left[1+0\left(\mathrm{n}^{\frac{1}{2(1+\lambda)}+\epsilon}\right)\right] . \\
& \mathrm{p}_{\alpha}(\mathrm{n})=\frac{1}{2 n^{4} \sqrt{6 \alpha}} \mathrm{e}^{\pi \sqrt{\frac{2 \mathrm{n}}{3}}-\left(\frac{\alpha^{-1}-1}{2}\right) \log (\pi \sqrt{6 \alpha})+\zeta_{\alpha}^{\prime}(0)} \\
& \text { If } \alpha-\left[1+0\left(\mathrm{n}^{-\frac{1}{2(1+\lambda)}+\epsilon}\right)\right] \text { is of infinite class then }
\end{aligned}
$$

$$
\begin{aligned}
& \log q_{\alpha}(n)=\sqrt{\frac{n}{3 \alpha}}+0\left(n^{\epsilon}\right) \\
& \log p_{\alpha}(n)=\sqrt{\frac{2 n}{3 \alpha}}+0\left(n^{\epsilon}\right) .
\end{aligned}
$$

(For almost all $\alpha-[\alpha] \in(0 ; 1)$ in the Lebesgue sense $\lambda=0$.)
Proof. Let us consider $q_{\alpha}(n)$ and suppose $\alpha-[\alpha]$ is of class λ. If we let $s=\sigma+$ it we may rewrite the sums in Theorem 1 as follows.

$$
\begin{aligned}
\Sigma_{1} & =\sum_{m=1}^{\infty} \log \left(1+e^{-x[m \alpha]}\right)=\sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1}}{\ell} \sum_{m=1}^{\infty} e^{-x \ell[m \alpha]} \\
& =\sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1}}{\ell} \frac{1}{2 \pi i} \sum_{m=1}^{\infty} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma(s)(x \ell[m \alpha])^{-s} d s \\
& =\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma(s) x^{-s}\left(1-2^{1-s}\right) \zeta(s+1) \zeta_{\alpha}(s) d s . \quad(\sigma>1) \\
\Sigma_{2} & =\frac{-d \Sigma_{1}}{d \alpha}=\frac{1}{2 i} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma(s) x^{-s}\left(1-2^{1-s}\right) \zeta^{\infty}(s) \zeta_{\alpha}(s-1) d s . \quad(\sigma>2) \\
\Sigma_{3} & =\frac{-d^{2} \Sigma_{1}}{d x^{2}}=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma(s+1) x^{-s-1}\left(1-2^{1-s}\right) \zeta(s) \zeta_{\alpha}(s-1) d s . \quad(\sigma>2)
\end{aligned}
$$

It is well known that

$$
\Gamma(\sigma+i t)=\left(e^{-\frac{\pi}{2}|t|}|t|^{\sigma-\frac{1}{2}}\right) \text { as }|t| \rightarrow \infty \quad \text { hence in view of Lemma }
$$

1 we may shift the contour of integration in equation (2.1) to the line Rs $=-(1+\lambda)^{-1}+\epsilon$ and upon calculating the residue (note $\left(1-2^{-s}\right) \zeta(s+1)$ is analytic everywhere) we obtain

$$
\begin{align*}
& \Sigma_{1}=\mathrm{x}^{-1} \frac{\pi^{2}}{12 \alpha}+\zeta_{\alpha}(0) \log 2+0\left(\mathrm{x}^{\frac{1}{1+\lambda}+\epsilon}\right) \tag{2.4}\\
& \mathrm{n}=\Sigma_{2}=\mathrm{x}^{-2} \frac{\pi^{2}}{12 \alpha}+0\left(\mathrm{x}^{\left.-1+\frac{1}{1+\lambda}+\epsilon\right)}\right. \tag{2.5}\\
& \Sigma_{3}=\mathrm{x}^{-3} \frac{\pi^{2}}{12 \alpha}+0\left(\mathrm{x}^{-2+\frac{1}{1+\lambda}+\epsilon}\right) .
\end{align*}
$$

From 2.5 we obtain

$$
x=\frac{\pi}{\sqrt{12 \alpha n}}\left(1+0\left(n^{-\frac{1}{2}}-\frac{1}{2(1+\lambda)}+\epsilon\right)\right.
$$

If we now insert this expression for x into equations (2.4), (2.5) and (2.6), we obtain the first result stated for $q_{\alpha}(n)$ in Theorem 2. The case $\alpha-[\alpha]$ of infinite class may be treated in the same way. Since it is well known [2,p.130] that $\lambda=0$ for almost all numbers between zero and one we have all our results for $q_{\alpha}(n)$.

The results for $p_{\alpha}(n)$ follow in basically the same way. One slight difference arises since

$$
-\Sigma \log \left(1-e^{-y[m \alpha]}\right)=\frac{1}{2 \pi i} \int_{\sigma+i \infty}^{\sigma+i \infty} \Gamma(s) y^{-s} \zeta(s+1) \zeta_{\alpha}(s) d s . \quad \sigma>1
$$

and since $\Gamma(s)=s^{-1}-\gamma+\ldots, \zeta(s+1)=\frac{1}{s}+\gamma+\ldots$ the residue at $s=0$ is

$$
\left.\frac{\mathrm{dy}^{-s} \zeta_{\alpha}(0)}{\mathrm{ds}}\right|_{\mathrm{s}=0}=\zeta_{\alpha}(0) \log \frac{1}{\mathrm{y}}+\zeta_{\alpha}^{\prime}(0)
$$

We close with the following remarks. Hardy and Littlewood [1] show that if $\lambda>0$, then the line $R s=\lambda /(\lambda+1)$ is a natural boundary of $\Sigma\{m \alpha\}^{-s}$. They also conjecture, and it still seems open, that $R s=0$ is a natural boundard if $\lambda=0$, unless α is a quadratic irrational (in this ease the series may be continued to the entire plane). The presence of a natural boundary limits the accuracy of our estimates of the transcendental sums in Theorem 1 in a way that cannot be overcome by the calculus of residues. If one considers the number $\quad p_{A}(n)$ of partitions of an integer n into summands chosen from A, our method leads us to consider the Dirichlet series $f_{A}(s)=\sum_{a \in A} a^{-s}$. Likely the line $R s=1$ is a natural boundary of $f_{A}(s)$ for almost all A. That is, if $\gamma_{A}=\sum_{a \in A} 2^{-a}$ then the set of γ_{A} for which $\mathrm{Rs}=1$ is not a natural boundary is of Lebesgue measure zero.

REFERENCES

[1] G.H. Hardy and J.E. Littlewood, Some Problems of Diophantine approximation: The analytic properties of certain Dirichlet series associated with the distribution of numbers to modulus unity, Trans. Camb. Phil. Soc. 22, 519-33 (1923).
[2] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, J. Wiley and Sons, 1974.
[3] G. Meinardus, Asymptotische Aussagen uber Partitionen, Math. 2. 59, 388-398 (1954).
[4] K.F. Roth and G. Szekeres, Some Asymptotic Formulae in the theory of Partitions, Quart. J. Math., Oxford Ser. (2) 5, 241-259 (1954).

