Problems and Results in Combinatorial Analysis

by P. Erdős

Kneser made the following pretty conjecture: Let $|S|=2 n+k$ and define a graph $G_{n, k}$ as follows: It's vertices are the $\binom{2 n+k}{n} n$-tuples of S. Two vertices are joined iff the corresponding n-sets are disjoint. Denote by $K(G)$ the chromatic number of G. Kneser conjectured $K\left(G_{n, k}\right)=k+2 .{ }^{1} K\left(G_{n, k}\right) \leq$ $k+2$ is immediate but the opposite inequality seems to present great and unexpected difficulties. Szemerédi proved (unpublished) that $K\left(G_{n, k}\right)$ tends to infinity uniformly in k. Hajnal and I and no doubt many others tried to attack this problem by the following extension of our theorem with Ko and Rado. Let $|S|=n=2 k+1, A_{i} \subset S, B_{j} \subset S, 1 \leq i \leq t_{1}, 1 \leq j \leq t_{2}$, the sets $A_{1}, \ldots ; B_{1}, \ldots$ are all distinct, $A_{i_{1}} \cap A_{i_{2}}, 1 \leq i_{1}<i_{2} \leq t_{1}$ and $B_{j_{1}} \cap B_{j_{2}}, 1 \leq j_{1}<j_{2} \leq t_{2}$, are all non-empty. Is it true that

[^0]\[

$$
\begin{equation*}
t_{1}+t_{2} \leq\binom{ n-1}{k-1}+\binom{n-2}{k-1} \quad ? \tag{6}
\end{equation*}
$$

\]

Equality in (6) if all the A 's contain 1 and all the B 's contain 2 elements.

Kneser's conjecture can be extended to r-graphs. Let $|S|=r n+k$. The vertices of our r-graph are the n-tuples of S. The edges are the sets

$$
A_{i_{1}}, \ldots, A_{i_{r}} ;\left|A_{i_{j}}\right|=k, 1 \leq j \leq r,
$$

and any two of the $r k$-sets are disjoint. - Then the chromatic number of this $r r$-graph should be $k+2$.
B. Grunbaum asked the following geometric question:

Let there be given n points in the plane, join any two of them by a line. What are the possible number of lines one gets? The number of lines is clearly at most $\binom{n}{2}$ and it can never be $\binom{n}{2}-1$ and $\binom{n}{2}-3$. I showed that there is an absolute constant c so that every $c n^{\frac{3}{?}}<t<\binom{n}{2}-3$ can occur as the number of lines determined by an n-set. It follows from a result of Kelly and Moser that the order of magnitude $c n^{\frac{3}{?}}$ is best possible but the exact value of c is not known.

In this connection the following combinatorial problem in of interest:
Let $|S|=n$ and define I_{r} as a set of integers with the following property: $t \in I_{r}$ iff there in a family of subsets $A_{k} \subset S, 1 \leq k \leq t$ so that every r-tuple of S is contained in one and only one of the A 's. Let us first in-
vestigate the $r=2$. Clearly all integers in I_{2} are $\leq\binom{ r}{2}, 1 \in I_{2},\binom{n}{2}-1$ and $\binom{n}{2}-3$ not in I_{2}. A theorem of de Bruijn and myself states that no integer $1<t<n$ is in I_{2}. Trivially $n \in I_{2}$ and also $\binom{n}{2}-2 \in I_{2}$. I showed without much difficulty that there are absolute constants c_{1} and c_{2} so that every integer $n+c_{1} n^{c_{2}}<t<\binom{n}{2}-3$ is in I_{2}. It seems likely that $c_{2}=? ? ?$. If $n=p^{2}+p=1$ (i.e. if there is a finite geometry) it is easy to see that every $p^{2}+2 p+c \sqrt{p}=n+2 \sqrt{n}+c<t<\binom{n}{2}-3$ belongs to I_{2}.

On the other hand A. Bruen recently proved that if $n=k$ then $t \in I_{2}$ if $k^{2}<t<k^{2}+k$.

It seems that the results of A. Bruen and Bridges will involve that there is an absolute constant $c>o$ so that for every n there is a t not in I_{2} which is $>n+c \sqrt{n}$.

It was observed by Hanani that the smallest nontrivial value of I_{3} is $c n^{\frac{3}{2}}$ and it follows from the existence of Möbius (or inversive) planes that I_{3} contains all integers $t,\left(1+c(? ? ?) n^{\frac{3}{2}}<t \leq\binom{ n}{3}\right.$ except the integers $\binom{n}{3}-i$ where i is not of the form $\sum_{j \geq 4} a_{j}\left(\binom{j}{3}-1\right), a_{j} \geq 0$.
For $r>3$ it is much more difficult to get sharp results for I_{r}. It is easy to see that if $t>1, t \in I_{r}$, then $t>c n^{\frac{r}{2}}$. This follows from the fact that not may of the sets A_{k} can be larger than $(1+\varepsilon) r^{\frac{1}{2}} n^{\frac{1}{2}}$, for otherwise $\left|A_{i} \cap A_{j}\right|>r$ (see e.g. Hylten-Cavallus, On a combinatorial problem, Colloq. Math. 6, 1958, 59-65). But it seems hard to prove that I_{r} contains an integer $1<t<c n^{\frac{r}{2}}$.

The problem is to find $c_{1} n^{\frac{r}{2}}$ sets A_{k} of size of the order of magnitude $n^{\frac{1}{2}}$ so that every r-tuple of our set $|S|=n$ should be contained in one and only one of the A_{k} 's. Such construction is known for $r=2$ and $r=3$, but it is open for $r>3$.

Before closing this chapter I state one of the many unsolved problems in our survey paper with Kleitman:- Let $|S|=n, A_{i} \subset S, 1 \leq i \leq t$; assume that for no three distinct A 's, $A_{i} \cap A_{j}=A_{k}$ or $A_{i} \cup A_{j}=A_{k}$. We conjectured that for even $n \max t=\binom{n}{\left[\frac{n}{1}\right]}+1$. Clements observed that this conjecture, if true, is best possible.
P. Erdős, A. Goodman and L. Posa, The representation of graphs by set intersections, Canad. J. Math. 18, 1966, 106-112.
L. Lovász, On covering of graphs, Theory of graphs, Proc. Coll. Tihany, Hungary, 1966, 231-236.
P. Erdős, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quterly J. Math. Oxford (2), 12, 1961, 313-320.
A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quterly J. Math., 18, 1967, 369-384, see also Simultaneously disjoint pairs of subsets of a finite set, ibid 24, 1973, 83-95.
P. Erdős, On a problem of Grunbaum, Bull Canad. Math. Soc., 15, 1972, 83-85.
I. Kelly and W. Noser, On the number of ordinary lines determined by n points, Canad. J. Math., 10, 1958, 210-219.
N. G. de Bruijn and P. Erdős, On a combinatorial problem, Indig. Math., 10, 1948, 421-423.
A. Bruen, The number of lines determined by n^{2} points, J. Comb. Theory, Ser.A., 15, 1973, 225-241.

On Möbius planes, see P. Dembowski, Finite Geometries, Springer-Verlag, New York Inc., 1968, and H. Hanani, On some tactical configurations, Canad. J. Math., 15, 702-722.
W. G. Bridgen, Near 1-Designs, J. Combinatorial Theory, Ser.A., 13, 1972, 116-126.

The last part of the printed research in the next number of this journal. And afterwards every number of our journal "Creation in Mathematics" will contain a whole research of the regarded author.

CURRENT ADDRESS: Professor Dr. Pál Erdős, Mathematical Institute, Hungarian Academy of Sciences, Reáltanoda u. 13-15, Budapest V, Hungary.
(Generally: Higher Institutions of various countries.)
Creation in Mathematics, 11, 1978. - Printed: May 25, 1978.

[^0]: ${ }^{1}$ The solution is in (The remarks of the Editor):

 1. Juliusz Reichbach: Coloring and Kneser-Erdős Conjecture, Creation in Mathematics, 10, 1977
 2. A. Schrijver: Vertex-critical subgraphs of Kneser-graphs, (Prepublication), Amsterdam, Mathematisch Centrum, Feb. 1978.
