S. A. BURR, P. ERDÖS, R. J. FAUDREE, O. C. ROUSSEAU AND R. H. SGHELP

Ramsey-minimal graphs for multiple copies
Dedicated to N. G. de Bruijn on the occasion of his 60th birthday

Communicated at the meeting of December 17, 1977

\author{

1. A.T. \& T. Long Lines, 2. Hungarian Academy of Sciences, 3. Memphis State University
}

INTRODUOTION

Let F, G and H be finite, undirected graphs without loops or multiple edges. Write $F \rightarrow(G, H)$ to mean that if the edges of F are colored with two colors, say red and blue, then either the red subgraph of F contains a copy of G or the blue subgraph contains a copy of H. The class of all graphs F such that $F \rightarrow(G, H)$ will be denoted by $\mathscr{R}(G, H)$. A classical theorem of F. P. Ramsey guarantees that $\mathscr{R}(G, H)$ is non-empty.

The class $\mathscr{R}(G, H)$ has been studied extensively, particularly various minimal elements of the class. The generalized Ramsey number $r(G, H)$, which is the minimum number of vertices of a graph in $\mathscr{R}(G, H)$, has received the most attention. Surveys of recent results can be found in [1] and [7]. The size Ramsey number $\hat{r}(G, H)$, which is the minimum number of edges of a graph in $\mathscr{R}(G, H)$, was introduced in [4]. In the first section of this paper the size Ramsey number $\mathcal{f}\left(m K_{1, k}, n K_{1, l}\right)$ will be calculated, where $s K_{1, t}$ denotes s disjoint copies of the star $K_{1, t}$. Moreover all graphs F with $\hat{r}\left(m K_{1, k}, n K_{1, l}\right)$ edges for which $F \rightarrow\left(m K_{1, k}, n K_{1, l}\right)$ will be determined. In the second section the following question will be considered. If $F \rightarrow(m G, n H)$, how many disjoint copies of G (or H) must F contain? In general, upper and lower bounds on the number of copies of G will be given, and in some special cases, exact results will be obtained.

Notation not specifically mentioned will follow that of Harary [6]. For a graph $G, V(G)$ is the vertex set and $E(G)$ is the edge set. The degree
of a vertex v of G will be written $d_{G}(v)$. The maximum degree of a vertex of G will be denoted by $\Delta(G)$ and the minimum degree by $\delta(G)$. The notation for the independence number and the line independence number will be $\beta_{0}(G)$ and $\beta_{1}(G)$ respectively. The graph consisting of n disjoint copies of G will be written $n G$. The graph $G-v$ is the graph obtained from G by deleting a vertex v of G. Also as usual, [] is the greatest integer function and $|S|$ is the cardinality of the set S.

SIZE RAMSEY NUMBRRS FOR STARS

For positive integers k and l, it is easily seen that $K_{1, k+l-1} \rightarrow\left(K_{1, k}, K_{1, l}\right)$ and $K_{3} \rightarrow\left(K_{1,2}, K_{1,2}\right)$. It follows immediately that

$$
(m+n-1) K_{1, k+l-1} \rightarrow\left(m K_{1, k}, n K_{1, l}\right)
$$

and

$$
t K_{3} \cup(m+n-t-1) K_{1,3} \rightarrow\left(m K_{1,2}, n K_{1,2}\right)
$$

for positive integers m and n and for $1<t<m+n-1$. This implies

$$
\hat{f}\left(m K_{1, k}, n K_{1, l}\right)<(m+n-1)(k+l-1),
$$

which is one of two inequalities needed to prove the following theorem.
theorem 1: For positive integers k, l, m and n,

$$
f\left(m K_{1, k}, n K_{1, l}\right)=(m+n-1)(k+l-1) .
$$

Moreover if $G \rightarrow\left(m K_{1, k}, n K_{1, l}\right)$ and has $(n+m-1)(k+l-1)$ edges, then $G=(m+n-1) K_{1, k+l-1}$ or $k=l=2$ and $G=t K_{3} \cup(m+n-t-1) K_{1,3}$ for some $1<t \leqslant m+n-1$.

If the theorem is not true, then for some k and l there exists a counterexample, and hence a minimal counterexample (no proper subgraph is a counterexample). Let $C_{k, l}$ denote the class of all such minimal counterexamples. If G is in $C_{k, t}$ then there exist positive integers m and n such that

1) $G \rightarrow\left(m K_{1, k}, n K_{1, l}\right)$
2) $|E(G)| \leqslant(m+n-1)(k+l-1)$
3) $G \neq(m+n-1) K_{1, k+l-1}$ and $G \neq t K_{3} \cup(m+n-t-1) K_{1,3}$ for $k=l=2$ and any $t, 1<t \leqslant m+n-1$.

The minimality of G implies that no proper subgraph H of G satisfies 1), 2) and 3) for any m and n. Of course any graph G in $C_{k, l}$ has parameters m and n associated with it. If such graphs are denoted by $C_{k, l}(m, n)$, then $C_{k, l}$ is the union of the classes $C_{k, l}(m, n)$.

To prove Theorem 1, it is sufficient to prove that $C_{k, l}=\phi$ for all k and l. The purpose of the next two lemmas is to describe properties of $C_{k, l}$ which will lead to showing it is empty. For convenience it will be assumed throughout the remainder of this section that $k>l$.
lemara 2: If $G \in C_{k, l}$, then
i) $|E(G)|>k+l-1$ and
ii) $\Delta(G) \leqslant k+l-2$.
proor: i) Assume $|E(G)| \leqslant k+l-1$. Then certainly $G \rightarrow\left(K_{1, k}, K_{1, l}\right)$, $G \neq K_{1, k+l-1}$, and $G \neq K_{3}$ if $k=l=2$. If $|E(G)| \leqslant k+l-2$, the edges of G can be colored such that there exist no more than $k-1$ red edges and $l-1$ blue edges. If $E(G)=k+l-1$, then the coloring of any $l-1$ edges of G blue must leave the remaining edges forming a $K_{1, k}$. This cannot occur if G has two edges which are not incident. All pairs of edges of G being incident implies that $G=K_{1, k+l-1}$ or $G=K_{3}$. This contradiction completes the proof.
ii) Let G be a graph in $C_{k, l}(m, n)$ and assume v is a vertex of G of degree at least $k+l-1$. It will be shown that this leads to a contradiction. Either $m>2$ or $n>2$ by the first part of this lemma. The case $m>2$ will be considered. A symmetric argument for $n>2$ can be given.

If $G-v \nrightarrow\left((m-1) K_{1, k}, n K_{1, t}\right)$, then the edges of $G-v$ can be colored such that there exists no red $(m-1) K_{1, k}$ and no blue $n K_{1, t}$. This coloring can be extended to G by coloring red the edges incident to v. In this coloring Q contains no red $m K_{1, k}$ or blue $n K_{1, l}$, a contradiction. Therefore $G-v \rightarrow\left((m-1) K_{1, k}, n K_{1, l}\right)$.

The minimality of G implies that $G-v=(m+n-2) K_{1, k+l-1}$ or that $k=l=2$ and $G-v=t K_{3} \cup(m+n-t-2) K_{1,3}$. Since

$$
|E(G)|<(m+n-1)(k+l-1)
$$

the vertex v has degree precisely $k+l-1$. This is of course true not for just a fixed vertex but for each vertex v of G of degree at least $k+l-1$. Using the fact that v is an arbitrary vertex of degree at least $k+l-1$, it is easily checked that this implies that $G=K_{2, k+l-1}$ or $k=l=2$ and $G=K_{4}$. Since $K_{2, k+l-1} \nrightarrow\left(2 K_{1, k}, K_{1, t}\right)$ and $K_{4} \nrightarrow\left(2 K_{1,2}, K_{1,2}\right)$, this gives a contradiction.

The following lemma will be needed to describe some colorings of graphs used in the proof of Theorem 1.

Lemma 3: If G is an element of $C_{k, l}(m, n)$, then there exists a sequence of vertices $v_{1}, v_{2}, \ldots, v_{n+m-1}$ of G such that $d_{G i-1}\left(v_{i}\right)>k$ where $G_{0}=G$ and $G_{i}=G-v_{1}-v_{2} \ldots-v_{i}$.

PROOF: Select v_{1} to be a vertex of maximal degree in G and inductively select v_{i} to be a vertex of maximal degree in $G-v_{1}-v_{2} \ldots-v_{i-1}=G_{i-1}$. If the vertices $v_{1}, v_{2}, \ldots, v_{n+m-1}$ do not satisfy the conclusion of the lemma, then $\Delta\left(G_{r}\right)<k$ for some $r \leqslant n+m-2$. Assume such an r exists. Color the edges of G incident to v_{i} blue for each $i \leqslant n-1$. Color the remaining edges of G red. Clearly G contains no blue $n K_{1, l}$. Also G contains no red $m K_{1, k}$ since $\Delta\left(G_{r}\right)<k$ and every red $K_{1, k}$ must contain a vertex of the set
$\left\{v_{m}, \ldots, v_{r}\right\}$ (which might be empty). This contradiction completes the proof.

Let G be an element of $C_{k, l}(m, n)$. Two colorings of the edges of G will be described. Both colorings will be used to give lower bounds on the number of edges in G.

α-coLoring

Select arbitrary vertices $v_{1}, v_{2}, \ldots, v_{n-1}$ of G, and let r_{i} be the degree of v_{i} in $G-v_{1}-\ldots-v_{i-1}$. Denote $G-v_{1}-v_{2}-\ldots-v_{n-1}$ by H. Color the edges incident to any v_{i} blue. Let $e_{1}<\varepsilon_{2}<\ldots$ be an arbitrary ordering of the edges of H and color them sequentially using the following rule. An edge e_{l} is colored blue unless it is incident to a vertex that has $l-1$ edges of H incident to it that have already been colored blue. Then it is colored red.

In the α-coloring of G, every blue $K_{1, l}$ must contain one of the vertices $v_{1}, v_{2}, \ldots, v_{n-1}$. Thus G contains no blue $n K_{1, l}$. Therefore G, and hence H, must contain a red $m K_{1, k}$. Each edge of a red $K_{1, k}$ was colored red because one of its endvertices was incident to $l-1$ blue edges. Since $\Delta(H)<k+l-2$, the center of a red $K_{1, k}$ can be incident to no more than $l-2$ blue edges. Thus every vertex of a red $K_{1, k}$ except the center is incident to $l-1$ blue edges in H. Therefore the sum of the degrees in H of vertices of a red $K_{1, k}$ is at least $k+k l$. This implies that G has at least

$$
\sum_{i=1}^{n-1} r_{i}+m(k+k l) / 2 \text { edges. }
$$

β-coLoring

This coloring is the same as the α-coloring except the roles of red and blue, k and l, and m and n are interchanged. The β-coloring implies that G has at least

$$
\sum_{i=1}^{m-1} r_{i}+n(l+l k) / 2 \text { edges. }
$$

PBOOF OF THEOREM 1: To prove the theorem it is sufficient to show that $C_{k, l}=\phi$ for all positive integers $k>l$. This will be done by an analysis of various cases of k and l. Let G be an element of $C_{k, l}(m, n)$ for some m and n.
$l=1$
Lemma 2 implies $\Delta(G)>k$. This contradiction proves that $C_{k, 1}=\phi$.
$l>4$, or $l=3$ and $k>5$
Since G is in $C_{k, l}(m, n),|E(G)|<(m+n-1)(k+l-1)$. The α-coloring in conjunction with Lemma 3 gives the following inequality
(a) $(n-1) k+m(k+k l) / 2 \leqslant(m+n-1)(k+l-1)$.

Likewise the β-coloring and Lemma 3 imply
(b) $(m-1) k+n(l+l k) / 2<(m+n-1)(k+l-1)$.

These two inequalities can be rewritten in the following useful forms
(a') $\quad m(k-2)<2(n-1)$
(b') $n(l-2)(k-1)<2(m-1)(l-1)$
It is straightforward to check that both inequalities (a^{\prime}) and (b^{\prime}) are never satisfied when $k>l \geqslant 4$ or when $l=3$ and $k>5$. In fact (a^{\prime}) implies $m<n$ while (b^{\prime}) implies $m>n$. This contradiction completes the proof of this case.
$l=3, k=4$
Select vertices $v_{1}, v_{2}, \ldots, v_{m+n-1}$ as in Lemma 3. Lemma 3 guarantees that $d_{G_{t-1}}\left(v_{i}\right)>4$ for all i, but in this case it can be assumed that $d_{G_{i-1}}\left(v_{i}\right)>5$ for all i. To see this is true, assume $\Delta\left(G_{r}\right)<4$ for some $r<n+m-2$. Color the edges red which are incident to $v_{1}, v_{2}, \ldots, v_{t}$ where $t=\max \{m-1, r\}$, and if $m<r$ color the remaining edges incident to v_{m}, \ldots, v_{r} blue. The graph G_{r} can be embedded in a 4-regular graph H. By Petersen's Theorem [8], the graph H is 2 -factorable with say factors H_{1} and H_{2}. Color the edges of $H_{1} \cap G_{r}$ red and the edges of $H_{2} \cap G_{r}$ blue. The coloring just described implies $G \nrightarrow\left(m K_{1,4}, n K_{1,3}\right)$; this contradiction implies that $\Delta\left(G_{r}\right)>5$.

In this case the α-coloring and the β-coloring give the following inequalities.

$$
\begin{aligned}
& 5(n-1)+8 m<6(m+n-1) \\
& 5(m-1)+15 n / 2<6(m+n-1) .
\end{aligned}
$$

Just as in the previous case, both inequalities cannot be satisfied simultaneously. This contradiction completes the proof of this case.
$l=k=3$
Lemma 2 implies that $\Delta(G) \leqslant 4$. By Petersen's Theorem [8] the graph G is the edge-disjoint union of two subgraphs each with no vertex of degree more than 2. Thus the edges of G can be colored such that no vertex is incident to more than two red edges or two blue edges. This implies $C_{3,3}=\phi$.
$l=2$
Lemma 2 implies $\Delta(G)<k$. It can be shown that $\delta(G)>2$. To show this, suppose the contrary. Then there exists a vertex v of degree 1 . Let w be the vertex of G adjacent to v in G. Thus w has degree at most $k-1$ in $G-v$. The minimality of G implies that the edges of $G-v$ can be colored such that there exists no red $m K_{1, k}$ and no blue $n K_{1,2}$. This coloring can be extended to G by coloring the edge $v w$. Since w has degree at most $k-1$ in $G-v$, the edge $v w$ can be colored such that it is not in
a red $K_{1, k}$ or a blue $K_{1,2}$. This implies $G \nrightarrow\left(m K_{1, k}, n K_{1,2}\right)$, a contradietion. Hence $\delta(G)>2$.

Select vertices $v_{1}, v_{2}, \ldots, v_{m+n-1}$ as in the proof of Lemma 3. Each v_{6} is of degree at least k in G_{k}. Since $\Delta(G)<k$, the set $I=\left\{v_{1}, \ldots, v_{m+n-1}\right\}$ is an independent set of vertices each of degree k in G. Consider the bipartite graph B with parts I and $V(G) \backslash I$, where the edges of B are the edges of G between I and $V(G) \backslash I$. Each vertex of I has degree k in B. Since $\Delta(G)<k, k$ is also an upper bound on the degree in B of vertices in $V(G) \backslash I$. Therefore a theorem of Philip Hall [5] implies that there exists a matching M of B using all of the vertices of I. For each $i, 1 \leqslant i \leqslant m+n-1$, let w_{i} be the vertex matched with v_{i}. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{m+n-1}\right\}$.

Select vertices $u_{1}, u_{2}, \ldots, u_{t}$ in $V(G) \backslash(I \cup W)$ such that the sum of their degrees is as large as possible and t is as large as possible but still no more than $n-1$. Color blue the edges of the matching M and all edges incident to any u_{t}. Color the remaining edges of G red. Since $t \leqslant n-1$, G does not contain a blue $n K_{1,2}$. Thus G contains a red $m K_{1, k}$. Let $u_{n}, u_{n+1}, \ldots, u_{m+n-1}$ be the centers of the m red graphs $K_{1, k}$. This set of centers is disjoint from I, W and $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$, and each center has degree k in G. Hence $t=n-1$ and $d_{G}\left(u_{i}\right)=k$ for all $i, 1<i<m+n-1$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m+n-1}\right\}$.

By assumption, $|E(G)|<(k+1)(m+n-1)$. Since $\delta(G)>2$,

$$
|E(G)|>(k(|I|+|U|)+2|W|) / 2=(k+1)(m+n-1) .
$$

Therefore there must be equality: $V(G)=I \cup W \cup U, d_{G}(w)=2$ for all w in W, and $d_{G}(z)=k$ for all z in $U \cup I$.

If $k>3$, then a vertex v of I is adjacent to a vertex u of U. The vertex u could have been chosen in the matching M. This would imply that $d_{G}(u)=2$, which contradicts the fact that $d_{G}(u)=3$. Therefore $k=2$ and G is a 2 -regular graph with $3(m+n-1)$ vertices. If the edges of a cycle are colored red and blue alternately, the cycle will contain at most one monochromatic $K_{1,2}$. Since $G \rightarrow\left(m K_{1,2}, n K_{1,2}\right), G$ must contain at least $m+n-1$ eycles. Hence $G=(m+n-1) K_{3}$, a contradiction to $G \in C_{2,2}$. This contradiction completes the proof of this case and of the theorem.

multiple copies

If $F \rightarrow(m G, n H)$, how many disjoint copies of G (or H) must F contain? Clearly F must contain at least m disjoint copies of G. If F is a complete graph then F contains $[|V(F)| /|V(G)|]>[r(m G, n H) / \mid V(G)]]$ disjoint copies of G. It is plausible that every F such that $F \rightarrow(m G, n H)$ contains at least $[r(m G, n H) \||V(G)|]$ disjoint copies of G. In some specific cases this will be shown to be true. A smaller general lower bound will be proved.

The magnitude of $r(m G, n H)$ is given by the following result which can be found in [2].

тнеоrem 4: (Burr-Erdös-Spencer). If $|V(G)|=k,|V(H)|=l, \beta_{0}(G)=i$ and $\beta_{0}(H)=j$, then for some constant c,
$k m+l n-\min (m i, n j)-1 \leqslant r(m G, n H) \leqslant k m+l n-\min (m i, n j)+c$, where c depends only on G and H.

It will be established that if $F \rightarrow(m G, n H)$ and t is the left hand side of the inequality in Theorem 4, then either F contains at least t / k disjoint copies of G or at least t / l disjoint copies of H. In fact the following stronger statement will be proved.

THEOREM 5: If $F \rightarrow(m G, H)$, then $t G \subseteq F$ where

$$
t=\left[\left(m|V(G)|+|\nabla(H)|-\beta_{0}(H)-1\right) /|V(G)|\right]
$$

PROOF: Assume to the contrary that $F \rightarrow(m G, H)$ but $t G \nsubseteq F$. Without loss of generality one can assume $(t-1) G \subseteq F$. Let $G_{1}, G_{2}, \ldots, G_{t-1}$ be a set of disjoint copies of G in F. Let S be the set of vertices contained in $G_{m}, \ldots, G_{\ell-1}$. It is possible that S is empty.

Color all of the edges of F incident with vertices of S blue and color all of the other edges red. In this coloring there exists no red $m G$ and no blue H. There is no red $m G$, since this would be disjoint from the blue $(t-m) G$ and would imply $t G \subseteq F$. On the other hand, assume that there is a blue H. Such an H must have at least $V(H)-\beta_{0}(H)$ vertices in S since any collection of its vertices outside of S must be independent. Hence $|V(G)|(t-m)=|S|>|V(H)|-\beta_{0}(H)$. This inequality yields

$$
t>\left(|V(H)|-\beta_{0}(H)+m|V(G)|\right) /|V(G)| .
$$

Since t is an integer,

$$
t>\left[\left(m|V(G)|+|V(H)|-\beta_{0}(H)+|V(G)|-1\right) /|V(G)|\right]=t+\mathrm{I}
$$

a contradiction. This completes the proof.
There are several corollaries that follow immediately from this theorem.
corollary 6: Let $|V(G)|=k, \quad V(H)=l, \beta_{0}(G)=i$ and $\beta_{0}(H)=j$. If $F \rightarrow(m G, n H)$, then
(a) $s G \subseteq F$ where $s=[(m k+n l-n j-1) / k]$ and
(b) $t H \subseteq F$ where $t=[(m k+n l-m i-1) / l]$.

Corollary 7: If $|V(G)|=k, \beta_{0}\left(G^{\prime}\right)=i$ and if $m>n$, then $F \rightarrow(m G, n G)$ implies that F contains at least $[(m k+n k-n i-1) / k]$ copies of G.

Note that in the notation of Corollary 6, if

$$
r(m G, n H)=k m+l n-\min (m i, n j)-1
$$

and $F \rightarrow(m G, n H)$, then either F contains a $[r(m G, n H) / k] G$ or a $[r(m G, n H) / l] H$ In [3] it was proved that $r\left(m K_{2}, n K_{2}\right)=2 m+n-1$. These two facts give the following.

COROLLARY 8: If $F \rightarrow\left(m K_{2}, n K_{2}\right)$ and $m>n$, then the line independence number $\beta_{1}(F)>r\left(m K_{2}, n K_{2}\right) / 2$ and this bound is the best possible.

The following is very similar to Corollary 8 but does require an additional argument in one case.

COROLLARY 9: If $F \rightarrow\left(m K_{3}, n K_{3}\right)$, then the number of independent triangles in F^{\prime} is at least $\left[r\left(m K_{3}, n K_{3}\right) / 3\right]$ and this bound is the best possible.

PROOF: The complete graph on $r\left(m K_{3}, n K_{3}\right)$ vertices implies that the bound given is the best possible. One can show directly that if $F \rightarrow\left(K_{3}, K_{3}\right)$, then F must have at least two independent triangles. So assume $m>n$ and $m>2$. In [2] it is shown that $r\left(m K_{3}, n K_{2}\right)=3 m+2 n$. Hence the corollary follows from Corollary 7 if $[(3 m+2 n-1) / 3]=[(3 m+2 n) / 3]$. Thus only the case when $[(3 m+2 n-1) / 3]<[(3 m+2 n) / 3]$, or equivalently, when n is a multiple of 3 remains to be considered,

Let $n=3 l$ and assume F has at most $[(3 m+2 n) / 3]-1=m+2 l-1$ independent triangles. It will be shown that this leads to a contradiction. Let $\left\{G_{1}, G_{2}, \ldots, G_{2 l}\right\}$ be $2 l$ disjoint triangles in F. Color the edges of each G_{i} blue as well as those edges with precisely one endvertex in a G_{i}, $1<i<2 l$. Also color blue the edges between a G_{i} and a G_{j} if $1<i, j<2 l-1$. Color the remaining edges red. In this coloring of F any blue triangle must contain at least two vertices from the vertices of the $G_{i}, 1<i<2 l$. Also the vertices of $G_{2 l}$ are contained in only one blue triangle, namely $G_{2 l}$. Therefore there exists at most $[(6 l-1) / 2]=3 l-1$ independent blue triangles. Any red triangle cannot use a vertex of any $G_{i}, 1 \leqslant i \leqslant 2 l$. Hence if F contains a red $m K_{3}$, there would exist $m+2 l$ independent triangles in F. This implies $F \nrightarrow\left(m K_{3}, n K_{3}\right)$, a contradiction.

quEstions

There are two questions left unanswered in this paper. The first involves Theorem 1 and whether this result can be extended to arbitrary star forests. This leads to the following conjecture:

If

$$
F_{1}=\bigcup_{i-1}^{U} K_{1, n_{i}} \text { with } n_{1}>n_{2} \ldots>n_{s}
$$

and

$$
F_{2}=\bigcup_{i=1}^{t} K_{1, m_{i}} \text { with } m_{1}>m_{2} \ldots>m_{t}
$$

then $f\left(F_{1}, F_{2}\right)=\sum_{k-2}^{n+t} l_{k}$ where $l_{k}=\max \left\{n_{i}+m_{s}-1: i+j=k\right\}$.
If $n_{i}=n$ for all i and $m_{j}=m$ for all j, then the conjectured value $\sum_{k-2}^{s+t} l_{k}$ agrees with the number $\hat{f}\left(s K_{1, n}, t K_{1, m}\right)$ proved in section 1 . The major question left open in section 2 of this paper is the following:

If $F \rightarrow(n G, n G)$, must F contain $[r(n G, n G) /|V(G)|]$ copies of G ?

REFERENCES

1. Burr, S. A. - Generalized Ramsey Theory for Graphs - A Survey, Graphs and Combinatorics, 1973 (R. Bari and F. Harary, eds.), Springer-Verlag, Berlin.
2. Burr, S. A., P. Erdös and J. Spencer - Ramsey Theorems for Multiple Copies of Graphs, Trans. A. M. S. 209, 87-99 (1975).
3. Cockayne, E. J. and P. J. Lorimer - The Ramsey Graph Number for Stripes, J. Aust. Math. Soc., 19, (Series A), 252-256 (1975).
4. Erdös, P., R. J. Faudree, C. C. Rousseau and R. H. Schelp - The Size Ramsey Number, Period. Math. Hungar., to appear.
5. Hall, P. -On Representatives of Subsets, J. Lond. Math. Soc., 10, 26-30 (1935).
6. Harary, F., Graph Theory, Addison-Wesley, Reading Mass., 1969.
7. Harary, F. - Recent Results on Generalized Ramsey Theory for Graphs, Graph Theory and Applications (Y. Alavi, D. P. Liek and A. J. White, eds.), Springer-Verlag, Berlin 1974, 10-17.
8. Petersen, J. - Die Theorie Der Regulären Graphs, Acta Mathematica 15, 193-220 (1891).
