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INTRODUCTION

Let f (z) _ Ik o akzk be an entire function . Denote M(r) = maxl,l=, If (z)I ;

then the order p is defined thus :

log log M(r)
lim sup	

log r

	

= p

	

(0 < p < oo) .

	

(I )
ra

If 0 < p < oc, then the type T and the lower type w are defined as

lim sup log rM(r) _

	

(0 < w < T < oc) .

	

(2)

Let arm denote the class of all real polynomials of degree at most m, and 7r,Y,n
similarly denote the collection of all rational functions

r,,, n(x)

	

q (x) >

	

p c- 7rm , q c 7T,, .

For convenience we use rn for rn,n , then let

inf
rm .tt E~m,n

1
f(x) - rm,n L~[0, c)

(3)

Throughout our work we use cl , c 2 , el , . . . to denote some positive constants
(which may be different on different occasions) . T,(x) denotes the Chebyshev
polynomial of degree n. S, (x) denotes the nth partial sum off(x).

Recently it has been shown [14] that

lim(Ap n(e x))'/n = 3-1 .

In [7], it has been established that for all n > 2

An,n(e -x ) i (1280)-n-1,
135
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which clearly shows that the order of magnitude of the error obtained by
rational functions of degree n in approximating ex on the positive real axis is
not better than the order of magnitude of the error obtained to ex by reciprocals
of polynomials of degree n on the positive real axis . In [5], we have shown that
e- 1x1 can be approximated by general rational functions of degree n with an error
cl exp(-c 2 n1 / 2 ) on (-oo, +oo), but by reciprocals of polynomials of degree n
one cannot approximate e- 1 11 1 on (-oo, +oo) with an error better than ca n -1 ,
thereby showing that the rational functions of degree n are much better than the
reciprocals of polynomials of degree n in approximating e- 1 x1 on (-00, +00)

under the uniform norm . In [8] we have discussed I x I e- ~ xl . For related problems,
cf. [5, 8-12] .

In this paper we show for certain class functions the error obtained by rational
functions of degree n in approximating on [0, oo) under the uniform norm is
much smaller than the error obtained by reciprocals of polynomials of degree n.
Most of the methods developed in this paper are new and may be applied suc-
cessfully to many of the related problems .

LEMMAS

LEMMA 1 . [l, p . 10] . Let f (z) _ ~ k o a,,zk, be an entire function of order p
(0 < p < oo) and type T (0 < T < oo). Then

,r = lim sup n(pe) -1 I an Pin .

	

(4)
n-

LEMMA 2 [15, p. �8] . Let P(x) be any polynomial of degree at most n and
satisfies I P(x) I < M on the segment [a, b], then at any point outside the segment
we have

then

IP(x)I <MI Tn ( 2x-a-b
)Ib-a

LEMMA 3 [�, pp. 450-451] . If 0 < k < 1, and

max I rn(t)I < M,
te[-1,k]

LEMMA 4 [3, pp . �5-��] . Let f (z) = e ez = Z,,., akzk. Then

ak ti [exp ( log k )]
(27rk log k) -1 i 2 (log k)-k .

(5)

2

te
min 1 I rn(t) I < M exp ( log 1/k )

	

(�)

(7)



Proof. Choose n even and

Q(x)
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LEMMA 5 . There exists a sequence {P, (x)} o of polynomials of degree n for
which for all n > 2,

1
x -

pn(x)

( -1)n-I(cos(7r/2n) - cos(7r/n)) 7.(x -
x + cos(7r/2n) - cos(7r/n)

	

n(

This is a polynomial, since Tn(-cos(7r/2n)) = 0. It is easy to see that Q(0) = 1,
so that

P(x) _

L~[0,11

1- Q(x)
x

is a polynomial .
Set 8 = cos(7r/2n) - cos(7r/n), then on [0, 1]

8 f x- 1

	

8- (8 { x) Q(x)

Hence the lemma is completely established .

LEMMA � . Let P(x) be a polynomial of degree at most n and I P(x)j < e 2 x for
0 < x < L; then

Proof. Observe that for 0 < x < L,

(1 - x/L)2L < e-2x

c4n-2 .

where t e [-1, 1], s c- [0, 1] and so Mis bounded by 2 . Hence

0 - 8 + x P(x) < 28,

7r 2
8 <	 2n2 .

I P( - 1)I < e(n+2L)2L -1/2

cos(-77-/n» .

P(x)

	

1- Q(x)

1+(-1)n Tn(x - cos(-7r/n»8	
1 + ((-1)n/(1 + x/8)) Tn(x - cos(7r/n))

1+t

	

8M
1 + st

137

(8)

(9)
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Hence, we have on [0, L],

1(1 - x/L)"P(x)I < 1 .
Hence by Lemma 2

1 sc

	

2
I P(-1)1 < ( 1 + L

) P(-1)

	

Tn+2c (1 i L ) < e(n+2L)2L- 11 2

THEOREMS

THEOREM 1 . Let f (z) _ Zk , akzk, ao > 0, ak > 0 (k > 1) be an entire
function of order p (0 < p < oo) type T and lower type w (0 < w < T < oo) . Then
for all large n

AO,n(x/f(x)) < C40og n) 1 / Pn2 .

	

( 11)

Proof. Let S,(x) denote the nth partial sum of f (x) . Then

x

	

1
f (x)

	

Q*(x) S.(x)
1

	

_

	

1

	

1

	

1

	

1
f(x)

x

	

o*(x) + 1 Q*(4 f(x)

	

S-(x)

where Q*(x) _ (3w-1 log n)-11PP(x(3w -i log n)-'/ P), P(x) is defined as in
Lemma 5. Let 0 < x G (log n)1 P(3w 1) 1 ° ; then by Lemma 5, we have

f (x)

1

	

1 _

	

1
1 Q*(x)1

	

f(x)

	

Sn(x)

x -

	

1

	

G c,(3w 1 log n)li°

Q*(x) I ,

	

a,n2

1 _

	

1
1 Q*(x)I f(x) + 1 Q*(x)I S.(x)
2x

	

2x

\ f (x) + Sn(x)

1< ns .

(12)

(13)1

On the other hand, for sufficiently large n, we get for x > ( 3o)- l log n)l1P, along
with the definition of lower type and the fact that Q*(x) > ( 2x) -1 ,

f( ) x

	

Q 1( ) + e
xpwa - )3x - c,(log n)i/Pn-2 .

	

( 14)W

	

*x

Similarly, we can show for 0 < x < (log n)l1P(3w -1)i1P, along with Lemmas 1
and 5, that

1

	

1

	

1	~kn+iakxk
< c,,(log n)1I P n-3 . ( 15)

Q*(x) f (x)

	

Sn(x)

	

I Q* ( x)I SnW f (x)

On the other hand, for all large n we get for x > (3w-i log n)'I", along with the
fact that Q*(x) > ( 2x) -1 ,



Hence, result (11),

follows from (13)-(1�) .

THEOREM 2 . There is an entire function of order p (0 < p < oo) and type
T = oo for which, for all large n,

A ,n < c 9 (log n)I/pn2(log log n)-lip .

Proof. Letf (z) = 1 + 11L 2 ((log k)/k)k/°Zk/p (0 < p < oo) . Clearly f (z) is an
entire function of order p and type r = oo . We consider here for simplicity
p = 1 only. As earlier, we write

where

x _

	

1
.f (x)

	

Sn(x ) q * (x)

p(x) defined as in Lemma 5 .
Now for 0 < x < c, (log n)(log log n) -I ,

On the other hand, for x > c,I((log n)/log log n), we get by using the relation
that

f (x)

1
q*(x)

1
f (x)

q* (x) = cu

x-
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x

	

1

	

c4
(log n)IIP

f(x)

	

qn(x) L. IO .~)

	

n2

1
x - q*(x)

1
x - q*(x)

q
	 (x)

I 1
f(x)

< 4xe(xlogx)12 < n-3 .

Similarly, we can show as in the case of Theorem 1 for x c- [0, oo) that

1

	

1
.f(x)

	

Sn(x)

f (x) ," exlogx

Hence, result (17) follows from (18)-(21) .

1 _ 1
.f (x)

	

&(x)

(log log n)

	

x log log n
log n

	

p ( c11 log n )'

C",(log n)(log log n)-In 2 .

	

(19)

(20)
1

< c,f log n)(log log n) -In-2 .

	

(21)
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THEOREM 3 . Let f (z) _ E,.-, akZk, ao > 0, ak i 0 (k > 1) be an entire
function of order p (0 < p < oc) type T (0 < r < oo) . Then for all large n

Ao , n > (log n)1/P(IOn2(2T)1/P)-1
(.f [( 12Tn

)1/P
n-2])-l .

	

(22)

Proof. Let us assume, on the contrary, that

ao,n < (log n)1/P(IOn2(2,r)1/P)-1
[f (( 1 2Tn )1/P

-2)1 -1
'

and assume that [P,(x)] -1 deviates least from x/f (x) ; then we get on
[((2T)-l l og n)1/Pn2 = $n-2, 8n],

2
2

Pn(x)

	

f(x) - Ao.n > Bn

	

IOn2Bn

	

100,'
	 8n	9

8nn '

max I P,(x)i < (10/9) n28n1en,

	

Bn -f(8nn 2 ) .

	

(23)
[ S nn-2,S n1

Now, by applying lemma 2 to (23), we get

I Pn(0)j < (10/9) B 'Sn1n28 < 9n 2Bn8n1.

	

(24)

On the otherhand, we have

Ao,n < I Pn(0)I .

	

(25)

Therefore, from (24) and (25) we get

Ao,n > (log n)1 /P(2T) -1 / P((9n2)-le n t ),

which contradicts our earlier assumption that

Ao,n < (10n2)-1((2T)-1 l og n)l/ P9nl .

Hence, the result is proved .

THEOREM 4. There is an entire function of order p (0 < p < oo) and type
T = 0 for which for all large n,

Ao,n > (lOn2)-l[(Iog n)(log log log n)]l/P(f(log n(log log n)n -2 )) - l.

	

(2�)

Proof. Let

f (Z) = 1 -i- zk(k log k)-k/' (0 < p < oo))
k=2



This is an entire function of order p and type r = 0 . We consider here only the
case p = 1, and all the other values of p can be treated in the same way. As
earlier, let us assume, on the contrary, that (2�) is false ; then

A,,n < (lOn 2 )-1(log n)(log log n)(f[(log n)(log log n)n2])- i,

	

(27)

for a sequence of values of n .
Let us suppose that [Py,(x)] -1 deviates least from x/f (x) on [0, co) ; then by

definition

RATIONAL APPROXIMATION, II

x

	

1

f(x)

	

Pn(x)

From (28), we get over the interval

[(log n)(log log n)n-2 =

along with (27), by using the fact that

f (x) - exp (log x )'

	

and

	

Yn = f((log n)(log log n)n-2),

P (x) >

f(x)

	

(ctinn 2 - an(10n2)-1) , n 1

9an ~n 2, n
1

10

maX I Pn(x)I

	

(10/9) n2an 1 y n .

	

(29)
[~ nn -2 .~n]

n

141

(28)

Now by applying lemma 2 over the interval [0, an], we get

P,,(0) I < 9n2an% .

	

(30)

4n the otherhand, it is known that

Ao,n

	

I Pn(0)I

	

(31 )

Equations (30) and (31) flatly contradict (27) ; hence (2�) is established .

THEOREM 5 . Let f (z) _ Y_ko a kzk, a o > 0, ak > 0 (k > 1) be an entire
function of infinite order . Then for infinitely many n,

2

~o .n ( f(x,) ) C cis (
Jog n

) 1 an
-1/n ,

	

(32)
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Let t o = anlln Then to

	

co. Now it is easy to note from the convergence of

fj (1 + {k log k(log log k) 2 }-1)

	

( 34)
k-4

that there exist arbitrarily large values of n for which for each l > 0,

a
t,n+l > to H (1 + [A(n + s)]-1 ),

	

(35)
s-1

where
A(n) = n log n(log log n) 2 •

From (35) it follows, with Z = n - 1, that

t2'1-1> t,(1 + 2(log n)-'(log log n) -2 ) .

	

(3�)
Let

Proof. By assumption, f (z) is entire; hence

m I an I1/n = 0 •

	

(33)li

2n-1

P,(x) - y akx k ,
k=0

P2(X)
= a0T2n-1(l+ 8 - xB) >

T2n-1\l + 8)

4
tog

n 2
8 = (	)

	

B = (2 + 8) a n
Ill',

(1 + (log n)-1-E)-1
n

XP(X) = P1(x) - P 2(x) •

Now we consider the values of x c- [0, 8B -1] . It is easy to see that

P(x) i [PAX) - P2(x)]x 1

	

C14 I an 1/n -1

Hence, over [0, 88-1], x1f(x) and 1/I P(x) I are less than

C15( log n ) 2n 2 I
an I-1/1'

	

(37)
Now let

8B-1 < x G (2 + 8)B-1 .

For these values of x, it is easy to verify that

I P2(x)I < a 0 I Tn(1 + 8)I -1 G 2aoe-(n/2)81/2 = 2x012_2 •
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On the otherhand, we get from (34) and (35) for all k > 2n - 1,

a k < tn k(1 + [2 log n(log log n)2]-1)-k.

	

(38)

Therefore, we get over [8B -1, (2 + 8)B-1], along with (38),

1 f (x) - P,(x)I <Y. akik < Y
k=2n

	

k=2n

A simple calculation gives us

I f (x) - P,(x) I < exp(-n(log n)-2 ) .
Hence

Finally we consider

On this interval

x

	

1
f (x)

	

P(x)

(2 + 8)B -1 < x < oo .

1 + (log n) -1-
I + [2 log n(log log n) 2 ] -1 ) '

< clsn-2 1 a n j -1 in .

	

(39)

P1 (x) > anxn > (1 + (log n)-1-1)n

exp ( (log n)1+E ) > n4 .

P2 (x) < 0, since 2n - 1 is odd . Therefore x/f (x) and 1/I P(x) I are bounded by

c18n-2 I an I-1/n .

	

( 40)

Result (32) follows from (37) . (39), and (40) .

Remark . For f (z) _ J7ko akzk = exp(ez),

Ao .n ( fix) ) < c,y (log log n)n-2 .

	

(41)

The proof of (41) is somewhat similar to the proof of Theorem 1 (except for the
fact that here we use Lemma 4), that

an - [ eXp ( log n )] (27n log n) -1 i2(log n)-n .

The rest of the details are left to the reader .

THEOREM � . Let f (z) = Eko a kzk, a p > 0, ak > 0 (k > 1) be an entire
function of order p (0 < p < co) type T (0 < r < oo) . Then for all large n and
every a (0 < a < ),

Ao.n(xaf-1 (x)) > c,o(log n)an-2a. (42)



144

	

ERDŐS, NEWMAN, AND REDDY

The proof of this theorem is very similar to the proof of Theorem 2 ; hence the
details are omitted .

THEOREM 7 . Let f (z) _ Jk-o akzk, ao > 0, a k > 0 (h > 1) be an entire
function of order p (2 < p < oc) type -r and lower type w (0 < w < r < oo) . Then
for all large n,

and

Hence

On [(2 +

	

oo)

x

	

1
f (x)

	

P.(x)

x

	

1
f (x)

	

P(x)

L~[l . -)

Proof. Set P,(x) _ Ek=o akxk

P (x) =
a,Tn(1 + 8 - A)

	

dd2

	

T"(1 + 8)

	

n o'

	

,

4 T 1/p
8 = 4 (4P2	 ) ,

	

xP(x) = Pi(x) - P2(x) .

For x c- [1, (2 + 8)8 -1 ],

1 P2 (x)I < ao 1 T,,(1 + 8)I-1 < 2ap e-(n/2)st/2

< 2a o exp(-(nl-i/4 p)(4pT) 1 / 2 p) >

1 f(x) - PI(x)I < y- kx/c
k=n+1

	

7.=n- 1

< eXP(-c21n1/2)

	

(43)

( peT(1TE) k-1(2 + 8)pn1/2 )k/p
4p(4pr)

Y (314)k < c(3/4)n .
k=n+1

< eXh(-e22n1-1/4p ) .

and P2(x) < 0 .
Similarly, we can show that on [8-1(2 + 8), oo)

< exp(-c23n1 /2 ) .
f(x)

required result (43) follows from (44), (44'), and (45) .

(44)

P,(x) > Pl(8-1(2 + 8)) > 4-1.f( 28-1 )
(

4-1 exp	- E)

)
p	

4p(4pT)

	

(44')

(45)



THEOREM 8 . Let f (z) akzk, a o > 0, a k >, 0 (k >, 1) be an entire
function of order p (0 < p < 2) type T and lower type w (0 < w < T < oo). Then
for all large n,

x

	

1
f (x)

	

P.(x)

Proof. Let 8 = n-1 log n, n odd,

n
P1 (x) =

	

a kxk ,
k-o

As usual, on [1, (2 +

On the other hand,

1 f ( x ) - Pl(x)1

	

Y akik
k=n}1
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L~[1, ~)

1 P2(x)1 - a o 1 T,,(1 + 8)1 -1

exp (-�27
( log n ) P)

The required result (4�) follows from (47) and (48) .

exp (-c24 ( log n ) P )'

P2 (x) r ao Tn(1 + 8 - x8)
Tn(1 + 8)

2aoe-1-,3 112

2aoe (nlogn)172 .

{peT(1 + E) k-lnpe(log n)- P}k 1P
7c=n rl

''25(log n) -n, .

Therefore on [1, 8 -1(2 + 5)], we get

x

	

1
(x)

	

Pn(x)
< exp(-�2�(n log n)1i2)

On [(2 + 8)8-1 , oo)

P,(x) % Pi((2 + 8)8-1 ) >, P,(28-1 ) > f(2n(log n) -1 )
4

P

eXp (20 ( lo
	 n

g n ) co(1 - E)),

(4�)

(47)

P2(x) < 0, and hence on [(2 + 8)8 -1 , oo), 1IP(x) and x1f(x) are bounded by

(48)
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THEOREM 9 . Let f (z) = eez . Then for all large n,

x

	

1

.f (x)

	

P.(x)

Proof. f (x) = ee' _ J]7,-, aki k

n
P1(x) _ y a, xk

k=0

ERD�S, NEWMAN, AND REDDY

n odd .

1
XP(X) = P1(x) - P2(x),

	

8 = (2 + 8) [log (	(log n)2 )~

Then for x c- [1, (2 + 8)8 -1]

P2(x)l < e Tn(1 } 8)1-1 < 2ee (n 2)s 1 2 = c28 CXP
[log(n/(logln) 2)] 1i2

and by using Lemma 4, we get

Hence
x

	

1
f (x)

	

P(x)

On the otherhand, for

P2(x) < 0 and

P2(x)

'k
ee' - P,(x)l < ji

~e11109k log (	
(lo

	 n
g n)2

	 ) (log n) 1f

k=n+1

[(1 + 2(log n) -1) (1 - 2 log log n ),k

k=n+1

	

log

	

Jn

4 log log n
)k(log n) 2

C29 exp(-n(log n)-2 ) .

exp(-n(log n)-2 ) .

	

(49)

eT,z(1 + 8 - x8)
T.(1 +

8)

L~[1,(2+8)s 11

	

c30
exp (

(log n)2 ) .

	

(50)

x E [(2 + 8)8-1 , oo),

P,(x) > Pl((2 + 8)8-1 ) > 4-1 exp(ec 2 + s)s-1 )

n
> e3, eXp ( ( 10g n)2 '

xff(x)

	

c32 exp(n(log n)-2 ) .

	

(52)

Hence the required result follows from (50), (51), and (52) .
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THEOREM 10 . Let f (z) _ Y_h o a Z k' a 0 > 0, ak , 0 (k , 1), andf (-1)
c > 0 be an entire function of order p (1 < p < oc) type -r (0 < T < oo). Then
for every polynomial P.(x) of degree n and all large n, there exist positive constants
c33 and c34 for which

x+1

	

1
.f (x)

	

Pn(x)

Proof. Let us assume that

x+1

	

1
.f (x)

	

P.(x)

i c33 exp(-C34n1-1/3P ) .
z~[o .~)

c 35 exp(-c3�n1-1/3P )
zo,fo .nfP i-f3u2))-~~

From (54) along with the assumption that f(z) is an entire function of order p
(1 < p < oc) and type T (0 < T < co), we get

n
(x + 1) Pn(x) - Y

akxk

	

_ 1- 1 _Z < C37 eXh(-C3�n1-1/3P), (55)
k=0

	

Z.ap[O .nfP

	

3 - 0 1l

Now by applying Lemma 2 to (55) over the interval [-1, n(P-'-3-1° 2)] we get
at x = - 1,

If(-1)I < C38exp(-C39n 1-1 / 3P)

which obviously is false for all large n ; hence ( 53) is proved .

THEOREM 11 . Letf (z) _ ~~ o a kz"', a o > 0, ak ~ 0 (k _>- 1), and s,(- 1) >
c > 0 be an entire function of order p (1 < p < oo). Then for every polynomial
P,,(x) ofdegree n, we have for all large n

x+1

	

1
.f (x)

	

P-M z~[0,~)
C4o exp(-c4,n1-1/3(P+E » .

(53)

(54)

The proof of this theorem is very similar to the proof of Theorem 10; hence the
details are omitted .

THEOREM 12 . Let f (z) _ j:k0 a zk, ao > 0, ak ->- 0 (k , 1) be an entire
function of order p (0 < p < 1/5) and type T (0 < -r < co). Then for all large n

Ao,,,, ( f
(x)x) i c42 exp(-c43n1/2-P/2)

	

(5�)

Proof. Let us assume (5�) is false . Then for a sequence of values of n,

AO .n < C42 eXp(-C43n1/2-P/2 ) .
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In other words, there exists a sequence of polynomials Pn(x) for which

1+x

	

1

	

<

	

P( C43n1/2-n/2 )
f(x)

	

Pn(x) L~[O,n1/U-1/2]

	

C42 eX

From (57), we get

I(1 + x) Pn(x) - f(x)IL~[o,n1/2u-1/2] < C44 eXP(-C45n1/2- o/2 ) .

As earlier, we get from (58), by using the assumption that f (z) is an entire
function of order p ( 0 < p < 115) and type T (0 < T < co) for 0 < x G n1/2p-1/2 ,

n
(1 + x) Pn (x) - Y akx k

k=0
< C4, exp(-cq~n1/2-P/2 ) .

Now applying Lemma 2 to (59) we get at x = -1,

I Sn(-1 )I < C48 eXP( -C4sn1/2-,,/2 )

which is false ; hence (5�) is established .

THEOREM 13 . Let f (z) _

	

alz", a 0 > 0, ak > 0 (k > 1), and Sn(-l )

c > 0 be an entire function of order p (0 < p < 1/5) . Then every E > 0, satisfying
the further assumption that p + E< 1, there exist infinitely many n for which

(57)

(58)

(59)

Áan ( f()1 ) > c50 eXP(-c51n1/2-(a+e)12) .

	

(�0)

The proof of this theorem is very similar to the proof of Theorem 12 and hence
is omitted .

THEOREM 14 . Let f (z) = e ez = ~7 o a kZk. Then for every polynomial P.(x)

of degree at most n, we have for all large n

1+ x

	

1

	

-nc53
x C52 eXP11

	

ee

	

P 11n(x) L. (o,~)

	

( ( 1og n)1/2

Proof. Let us assume

1 + x -

	

1

	

< C52 eXP (	 -nc51/2
)

	

(�2)
e

	

Pn(x)

	

L,[o,2 11ogn]

	

(1og n)'-/ 2

From (�2), we get

II( 1 + x) Pn(x) - eex JIL .[0,2 11ogn ] < C54 eXP ( ( 1-nn) 1 / 2 ~ .

	

(�3)
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A simple manipulation based on (�3) gives us, along with Lemma 4, for 0 < x <
2--1 log n,

n
(I + x)P(x) - L : akx k

k=0
C5� eXP ( (,-nC17 /2 ~'

	

(�4)og n)'

Now by applying Lemma 2 to (�4) over the interval [-1, log n/2], we get

Sn(-1)I < C58 exp
( (log n)li2 ),

	

(�5)

(�5) is obviously false, hence the result is proved .

Remark . The method adopted in proving Theorem 2 of [2] may also be used
to prove (�1) .

THEOREM 15 . Let f (z) = eel

	

akzk. Then for all large n,

�07129/2-2

1 -}- x
~n .n (

f(x)
)

	

exp(-12n(log log n)-i) .

	

(��)

Proof. Let us assume (��) is false . Then there must exist an infinite sequence
of natural numbers n for which

~n .n < exp(-12n(log log n) -1) .

	

(�7)

In other words, there is a sequence of rational functions {r n(x)} for which

1+x - rn(x)
f (x)

Let g(x) _ (1 + x) -1 exp(ex) .

x = (I + t) log n,

	

-1 < t < 1,

	

0 < x < 21og n .

Now set t = -k, k = (log log log n)(log n) -1 . Then at

x=x1 =(1-k) log n,

en 1-h
g(xl) = 1 + (1 - k) log n <

en'-7' = exp ( log log n ~ .

	

(�9)

It is easy to verify that

max
L0,x,l

1

rn(x)

< exp(-12n(log log n)-1) .

	

(�8)

< exp
(lo n

	

+ log n) .

	

(70)
g g n
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If (70) were not true, then

max I1 I > exp(n(log log n) -1 + log n) .

	

(71)
[o,x1]

	

rn(x)

Let us assume that the maximum is attained in (71) at x = x 2i then from (�9)
and (71), we get at x = x 2 , by noting the fact that g(x2 ) < g(xl ),

12n

	

n

	

-nexp ( log
-

log n )
< exp ( log-log n ) -

exp
( log log n

-log n)

Equation (72) clearly contradicts (�8); hence (70) is valid. Now set t = k ; then
x 3 =(I + k) log n and

g(xs) > exp(2-lnl+k) > eXp ( n to
2

g glogn )

	

( 73)

But according to Lemma 3, we have

[x3,21Ogn]
1

rn(x)

Let us suppose for x4 E [x 3 , 2 log n], that [rn(x)]-1 attains minimum value . If
[rn(x)]-1 assumes minimum value at more than one point (which is very unlikely),
then we pick the one which is closest to 2 log n. Now we get from (73) and (74)

1

	

-n

	

7r2n
r n (x4

)
-

g(x4) >
exp ( log log n - log n - log((log n)/log log n) )

(
- ex

	

-n log log n )p	
2

> exp(-12(log log n) -1 ) .

This contradicts (�8) ; hence the theorem is proved .

THEOREM 1� . Let f (z) _ Y_k o ak2'`, ao > 0, ak > 0 (k > 1) be an entire
function of order p (0 < p < co) type T and lower type w (0 < w < r < oo). Then
for all large n, there is an a (0 < a < 1), such that

\ g(x2)

	

(72)

n

	

7r2nG exp ( log log n + log n } log 1/k)'

	

(74}

Al .n(x/f ( x )) < an . (75)



Proof. For 0 < x < (nl(pe-r + pw))'-IP, along with Lemma 1, we have for all
large n,

xO<

RATIONAL APPROXIMATION, II

	 < 2x
k=0 a k'xk

	

f (x) \
0

Ic=n}1

On the otherhand, for x > (n(pTe + pw)-1-)1-1P, along with (2), we get for all
large n

<

	

x

	

x

	

x

	

(n(pTe + pw)-1) 1 /P

~k=0 akxk

	

J (x) < ~k 0
akxk

	

~k 0 ak(n(tlTe -{- pw) -1 ) k / P

\ 4
l

(n(p-re + pco) -1 ) 1 /P )

f((n(pTe + poi)-1 )' 10)

< a2n

	

(0 < % < 1) .

	

(77)

Equation (75) follows from (7�) and (77) .

THEOREM 17 . Let f (z) _ oh o akzk, ao > 0, ak > 0 (k > 1) be an entire
function of order p (0 < p < oo) type r and lower type w (0 < w < T < oo) .
Then for all large n, there is a g (0 < R < 1) such that

\
a02x

~ ~ ~~~(~+~) ~ )k/P

k=n}1

< aIn

	

(0 < al < 1) .

	

(7�)

~l,n (

	

x.F()
) ~ Rn
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(78)

The proof of (78) is very similar to the proof of Theorem 1� ; hence the details
are omitted .

THEOREM 18 . Let f (z) _ E,--, al,,z k ao > 0, ak > 0 (k > 1) be an entire
function of order p (0 < p < oo) type r and lower type w (0 < w < -r < oo) . Then
for all large n, there is a c so > 1, such that

An,n(xl .f(x)) > csó .

	

(79)

If f (z) satisfies the assumptions of Theorem 18, then with the help of Lemma 3, we
have established in [12], for a e > 1,

4,n(ll,f(x)) > ~-n .
(79 ')

The proof of (79) is very similar to (79') ; hence we omit the details here .
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THEOREM 19 . Let f (z) = el . Then

lim(A, n(1 + x)e-x)1I(2n)2/3 = 1'e .

	

(80)

Proof. First we get a lower bound . Now suppose for an E > 0,

Set

1

	

1+x
P(x) - ex L~[o, -)

Hence it must be obviously true even for [0, (2n) 2/3] . Thus on this interval

P (x) > 1 e	x - exp(-(1 + E)(2n)2/3) > (x + 1/2)e--x >2e
,

. (82)

Hence

II
ex - (1 + x) P(x)Ii < 2 exp(2x - (1 + E)(2n)2/3) .

	

(83)

n xk
S,,(x) _ y k( ;

< exp(-(1 + E)(2n)2/3) .

	

(81)

then we obtain on [0, (2n) 2 / 3]

II S,,,(x) - (1 + x) P(x)II <
3e2x exp(-(1 + E)(2n)2/3) .

	

(84 )

Now by using Lemma � to (84), we get

á < I Sn(-1)I < 3 exp((2n)2/3 + 412n11/3 - ( 1 + E)( 2n)2/3 )

	

(85)

which is false for each E > 0 and all large n . Hence for all large n,

Ao,n(( l + x)e-x) > eXp(-(1 + E)(2n)2/3) .

	

(8�)

Now we get an upper bound . Let us assume n odd and set

2x
t(x)

	

Tn ( ( 2n)2/á - 1),

P(x) = Sn(x) + Ct(x) .

(1 + x)

We choose c such that P(x) is a polynomial,

_	Sn(-1 )		2/3C

	

Tn(1 +
2/(2n)2/3)

ti exp(-1 - (2n) ) .



Therefore, we have

1

	

_ (1 -{- x)
P(x)

	

ex

For 0 < x < (2n) 2 /á,

For x > (2n) 2 / 3

Hence the result

1 _ x+1
P(x)

	

ex

1 _ x+1
P(x)

	

ex

1 _ 1+x
P(x)

	

ex

x

	

1
f (x)

	

Q-(x)

Proof. As earlier, for 0 < x < oo,

	1	1
f (x)

	

S.(x) P.(x)

	 1	1
f (x)

	

f (x) P.(x)
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(x + 1)
e x - S,,,(x )

	

ct(x)
ex(S,(x) + ct(x))

	

ex(S,,,(x) + ct(x))

(87)

(x ~- 1)
eex- S,,(x)

+ 1 c c < 2c .

	

(88)

(x + 1) (
exexs (x)x)

+ e x)

(S 1) -<- �c(2n) 2 / 3.

< � exp(-1 - (2n)2i3)(2n)2i3

	

(90)
L~[o . .)

follows from (88) and (89) . Our result (80) follows from (8�) and (90) .

THEOREM 20 . Let f (z) _ ~k o ak Zk, ao > 0, ak - 0 (k >, 1) be an entire
function of zero order satisfying the further assumptions that

1

	

log log M(r) _< lim sup		1log log r -

	

< o0r-

and

0 < lim sup
log M(r) = Ti < cc .

	

(91)
r~~ inf (log r)-"+i

	

co,

Then there exists a sequence of polynomials {Q n(x)}n jor which for all large n,

L~[0. -)
exp(csl (log n)1IA+1 - 2 log n) .

	

(92)

5,,,(x)

(89)

1 1
P.(x)

	

(93)
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Let 0 < x < exp(4w-1 log n)i/-+1 ; then by Lemma 5, we have

x- 1
P.(x )

<
ao1eXp(cs2log	n )li -" +i

n 2
(94)

For all sufficiently large n and x > exp(4w -1 log n) 1 1,1+1 we get by using (9í)
and the fact that {P,,(x)} -1 < 2x,

Similarly we can show very easily by using the known fact [13, p. 499] that

n11+1

	

(A + 1)A+i
nlim sup	

[log I Ila n JA - T2

	

AA->~

1

	

I

	

1

	

1
Pn(x) f (x)

	

Sn(x)

Hence the result (92) follows from (94), (95) and (9�).

THEOREM 21 . Let f (z) _ Ik o akzk, ao > 0, ak >- 0 (k 1) be an entire
function satisfying the assumptions of Theorem 20 . Then for every polynomial
Q,(x) of degree n, and all large n,

x	1
f (x)

	

Qn(x)

Proof. Let us assume, on the contrary, that

Then for

lo n 11A+1

	

n
(1�)_ 1 exp (( 2-r )

	

- 3 log n) = 1�n)

(97)

X

	

1
f (x)

	

Q.(x)

exp(co3(log n)11,1+ 1 - 2 log n) .
L~[0 .~)

<0(n)

	

(98)
L~[o,M)

	

1�n 3

log n 114+1

	

log n 114+1
exp ((	

2T
	 )

	

2 log n) G x G exp ((	
2T

	 )

we get from (98) for all large n,

1

	

x

	

O(n)

	

O(n)

	

O(n)

	

O(n)

Qn(x) > f (x)

	

n3 > n3

	

1�n3 > 2123

max

	

1944 < 2n3[0(n)]-1.
[n2 0(n),Mn)]

(95)

(9�)

(99)

1 1
exp(-(log x)"-"w,(1 - E))

(log

	

wl
2

n+1
f (x)

X

	

P.(x)

exp (-

	

) <n-2.



Proof. Choose
r n(x) = xl S,,(x),

where Sn(x) as usual denotes the nth partial sum of f (x) . Then by adopting the
proof used in [13, Theorem T], we get the required result (102) .

CONCLUDING REMARKS

It is interesting to note that

lim[A,, n(xe-x)] 1 / 21 o9n = e 1 - lim[ao,n((1 + x)e x)]1/(2vn)a/ 3
n--

	

J

	

n-

From a comparison of Theorems 3 and 1�, it is obvious that rational functions of
degree n approximate certain functions much better then reciprocals of poly-
nomials of degree n . Similarly, Theorems 10 and 17 give us the same information .
By comparing Theorems 9 and 15, one easily notes that for f (z) = exp(ez),
there is little difference between the errors obtained by rational functions and the
errors obtained by reciprocals of polynomials .

One canseevery easily fromTheorems 20,21, and 22 that one can approximate
certain class functions better by rational functions than by reciprocals of poly-
nomials on [0, oo) .
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