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Set Theoretic, Measure Theoretic, Combinatorial,

and Number Theoretic Problems Concerning

Point Sets in Euclidean Space

P . Erdős

In this paper I will discuss a few problems which

are on the • borderline of geometry, number theory, and

set theory and which have occupied me for a long time .

Perhaps they are more difficult than important, but I

find them fascinating .

It is a common paradox that problems on infinite

sets are often very much simpler than problems on finite

sets . This prompted Ulam and myself to state the

following somewhat impudent and unfortunately somewhat

inaccurate motto :

"The infinite we do right away, the finite takes

some more time ."

(By the way, we "stole" this motto from the U .S . Navy -

during World War II one of their mottos was "The diffi-

cult we do right away, the impossible takes some more

time" .) To our motto (Ulam's and mine) I just want to

add that the finite takes iri fact very much more time -

perhaps more than ttie lifetime of the universe .

In what follows I will give proofs only if the pub-

lished proofs are hard to find, are excessively complicated,

or are not quite accurate . In any case, I will give as



complete references as possible . The first part of'this

survey will give an overview of several problems without

going into too much detail . In the second part I will

discuss one or two of the problems in some detail and

also will use somewhat more set theory .

§I .

The first problem I want to consider is a clear-cut

case of a problem in which the finite case is very much

more difficult than the infinite one .

THEOREM 1 . Let Ek be k-dimensional Euclidean space,

S a subset _oj Ek with ISI - m > K0 . Then S' has a subset

S I with IS I I - m such that all the distances between

points of S, are distinct .

Although I first proved Theorem 1 about 30 years ago,

I will give the proof here in some detail since the pub-

lished proof is obscure and not accurate . The main point

is that the continuum hypothesis is not assumed and in

fact the theorem is almost trivial if m is a regular

cardinal (i .e . if m is not the sum of fewer smaller

cardinals) . It will be clear from our proof where the

simplifications occur if m is assumed to be regular . Let

cf(m) - n(n<m) be the smallest cardinal for which m is

the union of n smaller cardinals . Assume that our theorem

holds if ISI < p < m and also assume that it holds if



ISI = m and S is situated in a space of dimension less

than k . By a subspace of Ek in this proof we wí11 mean

a hyperplane or hypersphere of E k . Assume now that r

is the smallest integer, 1 < r < k for which there are

n r-dimensional subspaces P a , 1 < a < w n such that

U Pa I - m. Let S(, = Pa nS and ISa I = pa . We can

assume without loss of generality that p a is an increasing

function of a, that each pa is regular, and that

pa > n for each a . All of these assumptions represent

standard "tricks of the trade" when dealing with singu-

lar cardinals . Further, we can assume by our induction

assumptions that all the distances in the set S a are

distinct, and this for every a .

First we prove that there is a subsequence

Pa , 1 < v < wn of the Pa 's such that no two elements of
J

the subsequence are othogonal . It was pointed out to me

by Bollobás and others that this step is missing in my

original proof. Consider the ordinals 1 < a < w n ; join

a l to a2 if the corresponding subspaces P
a1

and P
a2

are

orthogonal . Observe that there are at most k subspaces

which are pairwise orthogonal . It immediately follows

then from a theorem of Dushnik and Miller that there is

a family of power n of subspaces no two of which are

orthogonal . In the language of partition calculus the

theorem we use can be expressed as n+(n,k) 2 , k finite .

The theorem of Dushnik and Miller asserts that the theorem

remains true if k - KO .
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Thus we can assume that no two of our subspaces are

orthogonal . Clearly we can also assume that the sub-

spaces Pa are minimal in the sense that if Pö is a

proper subspace of P a , then IPü n SI < pa . To see this,

observe that if this would not hold then we would simply

replace Pa by Pá and in a finite number of steps this

replacement process would terminate .

We can now complete the proof as was done in my paper .

In fact we shall prove that for every a, 1 < a < On

there are sets Sö c Sa With ISöI = ISa I = pa such that
n

all distances in S' s U S' are distinct . The supposi-
a=1

tion that ISaI = pa would then give that IS'i = m and our

proof would be complete . What is. left then is to con-

struct our sets Sö and we do this by transfinite induction .

Suppose then that we have already constructed sets

Sö for each a < g < On , We use these sets Sö and points

zY defined below to define SS c S S . Suppose we have

already found points z Y , 1 < Y < ö < w s which have the

following properties . First of all, the distances in the

set ( U S ) U ( U zY ) are all distinct . Further, none of
a<® a

	

Y<ö
the perpendicular bisectors of two points in this set

contains a subspace P a , and no subspace Pa is on a sphere

whose center is one of our points . In other words, no

Pa is equidistant from one of our points, and not all

points of Pa can be equidistant from two of our points .

Finally, if z is a point of our set and Pa one of our

subspaces, then if Q a (z) is the locus of our points y
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such that Pa is equidistant from z and y (i .e . the

perpendicular bisector_ of z and y contains P n ) then none

of our P's is contained in Q, (z) . These conditions, of

course, exactly mean that we can find a z ó C 5s such that

( U S ) U (

	

U z ) have all of their distances distinct .
a<a a

	

1<y<6 Y
To complete őur transfinite induction then, we have to

show that we can choose our z d so that our three con-

ditions are satisfied . Since no two of our P .' area

orthogonal, we know that our z d is excluded from fewer

than p s subspaces none of which can contain P s . Using

the minimality of P S we know that the intersection of P S

with this subspace meets S in a set of power less than

p s and by the regularity of p S we see that z ő can be

chosen to satisfy all threb of our conditions .

In Hílbert space the situation is completely

different . Several of us, Oxtoby, Kakutani, L . M . Kelly,

Nordhaus, and I observed that one can find a subset of

Hilbert space of power c such that every distance is

rational . Trivially, one can find a countable set in

Hilbert space which determines only one distance, but

every uncountable set determines infinitely many distances .

Now let us investigate the finite case . Let fk(n)

denote the largest integer so that if x l , . . .,xn are any

n distinct points in Ek , then there are always f k(n) of

them such that all the distances between these fk (n) points

are distinct . The exact determination of fk (n) seems

hopeless, and I cannot even get an asymptotic formula
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for fk(n) . However, it is not hard to show

are constants ek and ek so that

k
(1)

	

cknEk < fk(n) < ckn
e

where Fk and ek tend to 0 as k tends to infinity . Perhaps

(2)

	

lim log fk(n)/log n = 1/(k+l) .

But (2) is known only for k=l and there is no real evi-

dence for its truth .

Let us discuss the case where k=1 . A plausible

conjecture is

(3)

	

fl (n) _ (1+o(1))n~

The upper bound for fl (n) follows from the following

result of Turan and myself : Let 1 < al < . . . < ak < n

be a sequence of integers so that the differences

(i .e . distances) a j -a I are all distinct . Then

g l (n) - max k = (llo(1))n~

and in fact we conjecture that

(4)

	

gl (n) = nk+0(1) .

1 1 8

that there

I offer 500 dollars for a proof or disproof of (4) .

It is reasonable to conjecture that g l (n) - fl (n) or in

other words if (x

	

.,xn ) is any set of real numbers,



one can always find gl (n) of them so that all distances

between them are distinct . No proof of this plausible

conjecture is in sight . A very beautiful and general

result of Komlos, Sulyok, and Szemerédi only gives

f l (n) > cnk for a certain c > 0 . Thus, to summarize,

we know that

(5)

	

cnh < fl (n) < (I+o(1))n~

and we conjecture that

(6)

	

fI(n) = gl(n) = nk+O(1) .

I'll give 500 dollars for cleaning up (6) - I am, however,

being deliberately vague . A counterexample for a parti-

cular value of n . (to f,(n) = g,(n)) would not be so

interesting, but I would certainly pay the 500 dollars

if someone shows that fl (n) ¢ gl (n) holds for infinitely

many n . And if at the same time he also proves that

fl (n)/g l (n) a 1 (I am really sure that this conjecture

holds), I will probably pay an additional 500 dollars

(that is, if I live long enough and have the money) .

Very little is known about f k (n) for k > 2 ; one

could guess that the extremal configuration is highly

regular, but no proof of this is in sight . There is a

paper of Richard Guy and myself, however, which contains

some preliminary results .

Denote by n k the smallest integer for which

fk (nk ) = 3 . That n I = 4 is trivial . I've observed that
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n2 = 7, and Croft proved that n 3 = 9 . It seems likely

that n k < ck2 , but as far as I know it is not even known

whether nk/k

	

1 .

A related question has recently been nearly completely

solved by Larman, Rogers, and Seidel . Let Skr) be a

set in k-dimensional space which determines at most r

distances . Trivially, max Isk l) I = k+1 and they proved

that

max ISk2)I a k2/2 + O(k) .

Their method, no doubt, will give that for fixed r

c 2kr < max ISkr)I < clkr

The vertices of the k-dimensional cube determine k dis-

tinct distances ; perhaps max ISkr) I is not much larger

than 2 k . For further problems and results of this kind

see my paper in Annals di Mat, and my forthcoming book

with Purdy .

I hope I've convinced the reader that problems on

infinite sets can be much simpler than problems concerning

finite sets . Often the reason is that for infinite

cardinals, m2 = m holds .

Now we return to infinite problems . Kakutani and

I proved that c = RI is equivalent to the statement

that the real line is the union of countably many Hamel

bases . First I'll show that if c = RI then the real
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line is the union of countably many Hamel bases . Let

{ad, 1 < a < w l be a Hamel base and let S a be the set

of real numbers Fc 6 a 6 where the c 6 are rational and

max 6 = a . Since c - H1, ISa1 - I'D- Enumerate the

elements of SCE in an w sequence (xn), n = 1,2, . . . .

Define Hn = (xc} where a runs through the ordinals less

than w 1 . Clearly, the Hn give our required decomposi-

tion of the Teals into KO Hamel bases . This proof

(which is a bit simpler than the one given in our paper)

is similar to our old (1938) unpublished result with

Tuhey : The complete graph of power kl is the countable

union of trees .

Of course, our result with Kakutani implies that

if c

	

RI then the real line is the union of sets

Sn , n

	

1,2, . ., such that all the Sn have all their

distances distinct (i .e, any four points of S n determine

six distinct distances) . I conjectured that if

c - kl then Ek is the union of K D sets Sn so that each

of the S have all their distances distinct . This con-n

jecture was proved by R . 0 . Davies for k - 2, but as

far as i know, k > 2 is still open* Ceder proved that

Ek is the countable union of sets S n none of which con-

tains an equilateral triangle .

Added in proof : I just (May 1979) received a letter
from K. Kunen and he has proved the
conjecture for all k .

1 2 1



I will now move on to some curious geometrical

and measure theoretical problems . It is not difficult

to see that if S is a plane set of infinite planar

measure, then for every positive real number a, S con-

tains three points x l ,x2 ,x 3 such that the area of the

triangle fx l ,x2 ,x3 } is a . The proof is an easy conse-

quence of the Lebesgue density theorem and is left as

an exercise to the reader . In fact I published this as

a problem in the Matematikai Lapok and one of the

readers proved a slightly stronger theorem : It suffices

to assume that at least one line intersects S in a set

of positive linear-measure and that there are points

arbitrarily far from this line . In fact it is easy to

see that our triangle of area a can be taken to be

isosceles or right angled . More generally and slightly

vaguely, besides specifying the area of the triangle,

one additional condition can be imposed on the triangle

and still obtain the result . On the other hand it is

very easy to see that there is a set S in the plane of

infinite planar measure which contains no equilateral

triangle of unit area .

The following question seems interesting and per-

haps difficult : Is it true that there is an absolute

constant C so that if S has planar measure greater than

C then S contains the vertices of a triangle area 1Z

If S is the set JCJ < 2 .3
-3/4

then S does not contain

a triangle of area 1 (we use the well known result in
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elementary geometry that the triangle of largest area

inscribed in the circle is equilateral) . The area of

S is '4,r 3-3/2 and perhaps this is the correct value of

C . I have no real evidence for this conjecture . These

problems can clearly be stated for higher dimensions

as well .

Here is another curious problem on measurable sets .

Let S be a set of positive measure on the line and A

any finite subset of the line . Then it easily follows

from the Lebesgue density theorem that S contains a

set similar to A (i .e . contains a set A' which can be

transformed into A by a fractional linear transformation) .

This result is substantially due to Steinhaus and has

often been rediscovered . I have conjectured for a long

time that if A is any infinite set on the line then

there always is a subset S of the line of positive

measure which does not contain a set similar to A . By

the way, we can assume without loss of generality that

A is a sequence of positive numbers tending to 0 .

If my conjecture is correct then one can further ask the

following : Given a countable set A of [0,11 determine

(or estimate) the largest possible measure of a subset

S of 00,17 which does not contain a set similar to A .

Now I'll state a problem in geometric number theory .

Denote by d(u,v) the distance from u to v. Let N(x,d)

be the maximum number of points P l , . . .,Pn which can be

chosen in the circle of radius x so that
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m~n ld(P i ,P j )-kl > 6, 1 < i < j < n and k an integer .

I conjectured that for every 0 < 6 < 1/2 that

N(x,6) = o(x),

and on the other hand I conjectured that there is a

6 > 0 such that0

lím N(x,6 0 )
xam

The analogous problems are trivial in one dimension

and perhaps interesting new complications arise if the

dimension is greater than two . The first of these

conjectures was proved by Sárkozy who showed that

N(x,6) < 4 .10 4

	

x
6 3

	

log log x

The second conjecture was proved by Graham who showed

that

N(x,l/10) > low .

Sarkozy then improved this to

N(x,l/10) > x c

where c > 0 is an absolute constant . Sarkozy further

proved that for every c > 0 there is a 6(e) such that

if 6 < 6(e) and x > x0 (e,6), then

N(x,6) > xl/2-e
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The exact magnitude of N(x,ó) is not known and

is perhaps difficult to determine .

Let f(n) be the largest integer for which there

are n distinct points P,, . . .,Pn in the plane for which

there are f(n) pairs (P i ,P j ) satisfying the condition

that d(P i ,P j ) = 1 . It is known that

nl+c/log log n

	

f(n) = o(n3/ 2 ) .

Once again I refer you to our forthcoming book with

George Purdy where these and related questions are

extensively discussed .

Before closing this section I'll state a few

problems in a new subject which my collaborators and I

call Euclidean Ramsey theory . A set S in a finite

dimensional .Euclidean space is called Ramsey if to every

k there is an n k such that if . En is colored by k colors
k

(or in other words, E n is decomposed into k disjoint
k

sets A

	

1 < i < k) then S can be monochromatically

imbedded into one of the A i 's . We proved that every

brick (i .e . every set of vertices of a rectangular

parallelopiped) is Ramsey and on the other hand we showed

that every set which is Ramsey can be inscribed in a

sphere .

The most interesting and challenging problems are :

Are the obtuse angled triangles Ramsey? Is the regular

pentagon Ramsey?

Let S I U S 2 - E2 . Is it true that if T is any
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triangle (with the possible exception of equilateral

triangles of one fixed height) then either S I or S 2

contains the vertices of a triangle congruent to T?

Many special cases of this startling conjecture have

been proved by us and Schader, but so far the general

eludes us .

Let S be a set of points in the plane such that no

two points of S are at a distance of one . We conjectured

that the complement of S contains the vertices of a unit

square . This conjecture was proved by R . Juhász . She

in fact showed that if (x 11 x 2 , x 3 , x 4 ) is any set of four

points, the complement of S contains a congruent copy

of (xl ,x 2 ,x 3 ,x4 ) . It is not clear at present if this

remains true for five points ; indeed she showed that

there is a k so that the result fails for k points .

Clearly very many more problems can be stated and

I hope more people wí11 work on this subject in the

future and our results will soon become obsolete .
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First I'll give a proof of the second part of my

theorem with Kakutani (see page 120) . In fact, the

theorem I'll prove is slightly stronger .

THEOREM 2 . Suppose c > R, and E l = U Sn .
n=1

Then there is at least one n such that the distances

determined PA Sn are not all different .
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What we shall prove is that there are four points

in Sn which determine at most four different distances,

and to do this we use the'following lemma due to Hajnal

and myself .

Suppose JAI = M 2 , JBI = K l , and A n B = 0 . Let

K(A,B) denote the complete bipartite graph spanned by

A U B (i .e . the vertices of the graph K(A,B) are the

elements of A U B and every x e A is joined by an edge

to every y e B) . Now, if the edges of K(A,B) are

colored with MD colors, there is a monochromatic C 4

(i .e . a circuit of length four all of whose edges have

the same color) .

I'll prove this lemma of Hajnal and myself in full

detail since I cannot give an exact reference to it .

Denote the edges of the i-th color by G i , i - 1,2, . . .

and observe that every vertex x e A has valency (or

degree) Ml in at least one of the graphs G i . Since

JAI - M 2 there clearly is an i such that there are

M2 vertices x c A which have valency M I in Gt . For

this i, and for each such x e A there are M I vertices

in B which are joined to x and we denote this set of

vertices by S(x) . Note that S(x) c B and JS(x)J = it t .

Now consider all the pairs of S(x) for all of the M 2

vertices x e A mentioned above . There are only M t

pairs of B and thus the same pair must be joined to

N 2 elements of A which gives us our C 4 and indeed gives
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a monochromatic KOt 2 ,2) . In fact, Hajnal and I proved

the following result : Let m > N o (i.e . m is not the

union of
HO

smaller cardinals) . Decompose K(m,M l ) as

the union of countably many graphs G i , i - 1 .2, . . . .

Then for at least one i and for every a < w, G i con-

tains a K(m,a) . The proof is very similar to the one

given here and can be left to the reader (the reader

must of course be familiar with the standard arguments

in combinatorial set theory, also known as infinitary

combinatorias) .

From our result with Hajnal it now follows

immediately that if c > kl and E, - U Sn then for at
n'1

least one n, Sn contains four points which determine

exactly four different distances . To see this, let H

be a Hamel basis (The fact that IHI >-tt l follows

immediately from the assumption that c > K l ), Ac: H,

B c H, A n B - 0, JAI a R 2 , and JBI s R l . Consider

the set Z of distinct real numbers x+y, x e A and

y E B . This set can be represented by the edges of

the bipartite graph K(A,B) . The sets Z n Sn define

the graphs G n and give a decomposition of K(A,B) into

countably many graphs . By the lemma, there is an n such

that Gn contains a rectangle - in other words, there

are four real numbers x l E A, x 2 E A, y l E B, Y2 E B

so that all four of the numbers

(1) x 1 4-y l , xl+y2 , x 2+yl , x 2+Y 2
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are in S and determine at most four distances - asn

stated .

Next we show that if c = x2 there is a decomposi-

tion of E l into RD sets S n , n = 1,2, . ., such that the

distances between the points of S n are all distinct

except for relations of the form (1) . I realize that

this informal formulation is not as clear as it per-

haps should be, but it will be clear to the reader

from the construction of our sets S .n

Again, let H - (aa ), 1 < a < w 2 be a Hamel basis .

Thus if y is a real number there is a finite set of

rational numbers (ca) such that the unique representa-

tion of y with respect to H is

(2)

	

y

	

caaa •
a

Let h(y) = R be the largest a so that as appears in the

representation of y .

	

Then h(y) < w 2 . Denote by R R

the set of real numbers y with h(y) = R . Clearly,

JR R 1 < 9 1 and thus R R can be decomposed into countably

many sets Sn R) such that all the distances between

points of Sn R) are distinct (e .g . use the method of

Kakutani and myself described earlier) . Finally put

Sn

	

U=

	

SnR) .

R

The reader can easily convince himself that this

decomposition satisfies our requirements . This method
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was used several times by HajnaL and myself (but very

well might have been used earlier) .

A special case of an unpublished theorem of Elekes,

Hajnal, and myself states that if JA i l - k i , 1 < i < r

are r disjoint sets and if we split the r-tuples

(xl, .o .,xr), x i c A i into N o classes, then there are 2r

elements xi l) , xi 2) e Ai , i = 1, . . .,r such that all the

2r r-tuples (yl '' ' ' , Yr ) ' yi
- xi l) or xi 2) are in the

same class . This is, of course, a generalization of our

theorem with Hajnal for r - 2 . our theorem implies,

just as in the case r - 2, that if c > kr and we

decompose E 1 into countably many sets Sn, n - 1,2, . . .,

then for at least one n there are 2r real numbers

xil) , xi2) , i - 1, . . .,r such' that each of the 2 r sums

r
(3)

	

1 E ly i , where yi - xi l) or xi2)

is in Sn . Thus, one of the S n contains 2 r points which

determine (3r -1)/2 distances . Using the method of

Hajnal and myself it is not hard to see that if c a kl
then E, can be written as the union of N o sets

Sn, n - 1,2, . . . such that for every n, the set of

distances for Sn satisfy (3) and no other relations .

In light of this, perhaps the study of the following

question is of some interest : Denote by f(k,r,t) the

smallest integer t such that if we assume that c - k r

and decompose E k into countably many sets S n , n - 1,2, . . .
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then there always are t points x l , . . .,x t in one of the

Sn such that (xl, . . .,xt} determines at most f distinct

distances . Using (3), f(l,r,t) can easily be deter-

mined, though the explicit formula for f(l,r,t) seems

complicated . At present, nothing can be done in the

case that k > 1 . This is true even if we assume

c - tt l (r=l) since we do not even know if E 3 can be

decomposed into R0 sets none of which contains an

isosceles triangle . In other words we don't know if

f(3,1,á) is 2 or 3, though by a result of Ceder w ,~ know

it is greater than 1* Perhaps using the method of

Davies one can determine f(2,r,t) for every r and t .

Throughout this discussion we have assumed that r < w

(i .e, c <.K W ) . It seems certain that if we drop this

assumption so that c > N w , then

(4)

	

f(k,c,t) - min f(k,r,t)
row

but (4) remains unproved .

Interesting and probably difficult finite problems

remain . Let me state a few . Suppose there are n points

in the plane : What is the maximum number of equilateral

or isosceles triples? What is the maximum number of

quadruples which determine exactly five distinct dis-

tances? Purdy and I have some preliminary results on

Added in proof : The new result of Kunen yields that
f(k,l,t) _ (~) .
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these questions and hope to write some more about them

in our forthcoming book .

Now assume that c > RI and let S n be a set of

real numbers such that all sums x+y, x e Sn, Y
E Sn

are distinct (or in other words the distances between

points of Sn are distinct) . Then it is not difficult

to show that

	

U Sn (i .e . the complement of the union
n=1

of countably many Sn) contains a translate of an N l

dimensional linear subspace of the reals . That is,

there is a set of tt l rationally independent numbers

(bo ), 1 < a < w l such that for some t all numbers of

the form

t + F rs b s , r s is rational and the sum is finite,
á

are all contained in U SnS
n=1

To prove this, first observe that from our proof

with Hajnal given at the beginning of this section we

easily obtain that there is a set A with JAI = H2

such that for every rational r and as a A, raa is not

in U Sri. Let B be any set of rationally independent
n=1

reals whose power is K 1 . A real number a s e A is

called bad if there are h.1 reals of the form

raaa + f c Sbs , r Q and c s rational and b S e B
a

in U S n . First note that there are at most kl bad
n=1

a 's . To see this notice that there are at mosta
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countably many choices for r,, , n . and the c,'s and

thus we can assume that there are K2 an 's for which

they are the same . For each of these HZ aa 's choose

two numbers

raaa + f c sb s and raga + F c,b s ,,(r ~ 0)
s

	

a

which are both in the same S n . Now finally, there are

only it l choices for (ba ) and (b,,), and thus since

the number of the a a 's was K2 there are two of them

(in fact K2 of them) a s and aa , which get the same set

(b o ) and (b o ,} . Hence, the four numbers

raga +
9

csb s , raga +
S

c s b s „ raáa , + F csbs , raaa ,+f c obs „

all belong to the same S n . But this is clearly

impossible since the sum of -the first and the fourth

equals the sum of the second and the third . Therefore

there are only M l bad aa 's and so H2 of the aa 's are not

bad . But if as is not bad, then there are at most R 0

b a 's for which there are rational numbers fr a , ca } such

that r aa a +

	

cob s is in (J Sn . Omit these b,'s . Thus,
a

	

n=1
finally, we have a set of b s 's of power R, and an as

such that for every non-zero rational r a and arbitrarily

rational (c s ),

raaa +

	

cab s
a

is not in ~ Sn (observe that if every c S is zero, then
n=1
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r n aa is not in U Sn ) . Thus our assertion is proved .
n=1

Perhaps this result can be strengthened in two

ways . First of all, U Sn perhaps contains all numbers
n=1

of the form

	

rsbs where the r a are rational and (b S )
a

are chosen from a set of NI rationally independent

numbers . (In other words, the additive constant t may

be superfluous .) Secondly, perhaps NI can be replaced

by N 2 . I do not think the latter is likely, but have

not yet found a counterexample .

A few years ago I asked : Let S be a set of real

numbers for which all sums x+y, x e S, y c S are

distinct . Is it true that $ contains an infinite

arithmetic progression? Baumgartner proved this, and

my proof given above borrows from Baumgartner's

unpublished proof .

Hilbert space behaves in a completely different

way than the Euclidean spaces Ek . Hajnal and I easily

showed that one can give c points in Hilbert space such

that all triangles are isosceles and acute angled .

Also, there are c points in Hilbert space such that all

the distances are rational .

I asked two further questions : Is there a set S

of power c in Hilbert space such that every subset S I

of S with 1511 = c contáins an equilateral triangle?

Also, is there such a set S such that every subset S I

of S with ISIj - c contains an infinite dimensional

regular simplex?
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L . Pósa answered both questions affirmatively ;

for the first he used no hypothesis concerning c. ;

for the second he had to assume that c = 22 1 .

Kunen and I proved that if c > H1 then the

union of M 0 rationally independent sets always has

inner measure 0 . As the proof of this has never been

published, I shall outline the proof here . First note

that every set of positive inner measure contains a

perfect set of positive measure . We then prove that

if T is a perfect set of positive measure, then there

are perfect sets P and Q so that P+Q c T . We suppress

the details of this . Our result with Hajnal on the

decomposition of K(A,B) with JAI

	

x2 and JBI = H 1

then completes our proof .

§3 . Some final remarks .

Fajtlowicz and I observed that if c

	

21 1 then

the plane can be decomposed into K sets U S such
0

	

n=1 n
that no three points of any S n determine a right angle .

On the other hand, if c > RI then at least one of the

Sn must contain a rectangle .

Assuming c - 141, Sierpinski decomposed the real

line into two sets, A 1 and A 2 such that any translation

of A1 intersects A 2 in at most a countable set .

P . Lax and I showed that this is best possible -
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namely, if EI - AI U A 2 , IA i ) = c, and m < c, then

there is a real number t so that JA 1 +tA2
1
> m .

I conjectured, and Peter Komjath proved that if

c xI then there are sets A and B such that E I - A U B

and for every real number z the number of solutions

o£ x+y = z, x and y E A or x and y E B is countable .

R . L . Graham recently proved that if we decompose
n

E 2 into finitely many sets S i , E 2

	

U S I , then for
i-I

at least one i, the set S i contains the vertices of

triangles of any given area . Graham's proof wí11

soon appear in the Journal of Combinatorial Theory .

Graham and I tried to extend this result to countable

decompositions of E 2 . There appear to be two possi-

bilities : 1, There is a constant c, which perhaps

depends on the decomposition such that for at least

one i and for every a < c there is a triangle

(x, y,z) in S i of area a. (A weaker form of this con-

jecture would be that to every a < c there is an i such

that there is a triangle (x,y,z} of area a whose

vertices are all in S i ) . 2 . Assume that every S i

is unbounded . Then there is an i such that S i con-

tains triangles of all areas . It is quite possible,

of course that none of these conjectures holds .

In a forthcoming triple paper, Kunen, Mauldin

and I prove, among others, the following theorem :

If c - HI , there there is a set, A, of real numbers

such that JAI = c and for every set B of measure
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zero, A+B also has measure 0 (A+B is the set of all

a+b where a E A and b E B) . Now, Kakutani and Oxtoby

have obtained far reaching extensions of Lebesgue

measure (countable additivity and congruence invariance

are perserved) . Does our result remain true for these

extensions? This question should, perhaps, be inter-

preted to mean that there is a further extension in

which all the sets A+B are of measure 0 . The last two

conjectures are rather new and we have had no time to

think them over, so I must ask for the indulgence of

the reader if they turn out to be either trivial or

false .

S . Kakutani and Oxtoby, Construction of non-separable
invariant extension of the Lebesgue measúre space,
Annals of Mat . (2), 37 (1950), 550-590 .

P . Erdos, Some remarks on set theory, Annals of Math .
44, (1943), 693-696 .

P . Erdos, A . Hajnal and R. Rado, Partition relations
for cardinal numbers, Acta Math . Hung . Acad. Sci . 16,
(1965), 93-196 . (This paper contains many results and
problems and arguments related to the one used by
Hajnal and myself in this survey .)

H . Halberstam and K . F . Roth, Sequences, Oxford Univer-
sity Press 1966 . (The result of Tur

	

and myself
(on a i+ai) and many interesting questions in additive
and cómbinatoriai number theory are discussed here .)
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