Note
 Some Combinatorial Problems in the Plane

P. Erdös

Hungarian Academy of Science

AND
G. Purdy
Texas A \& M University, College Station, Texas 77843
Communicated by the Editors

Received March 26, 1977

1

Let there be given n points in the plane. Denote by t_{i} the number of lines which contain exactly i of the points $(2 \leqslant i \leqslant n)$. The properties of the set $\left\{t_{i}\right\}$ have been studied a great deal. For example, there is the classical result of Gallai and Sylvester: Assume $t_{n}=0$ (i.e., the points are not all on one line); then $t_{2}>0$. For the history of this problem see, e.g., Motzkin [6] and Erdös [3, 4]. In this note we prove that some new and perhaps unexpected properties of the family $\left\{t_{i}\right\}$ hold.

Let there be given n distinct points in the plane, not all on a line. We conjectured that for $n>n_{0}$ there always is an i such that $t_{i} \geqslant n-1$. Krier and Straus pointed out that for $n=6$ and 9 there are counterexamples. For $n=9$, take the vertices of a square and its center and the four points of infinity determined by the sides and diagonals of the square. For $n=13$ we also get a counterexample from the vertices of a regular hexagon and its center and the six points of infinity determined by the sides and diagonals of the hexagon. Nevertheless, the conjecture is true for $n \geqslant 25$. In fact we show in Theorem 1 that we can always choose $i=2$ or 3 , and that

$$
\max _{i} t_{i}=\max \left(t_{2}, t_{3}\right) .
$$

Assume now that no line has more than $(1-\epsilon) \eta$ points on it. Then we are convinced that there is an $\eta=\eta(\epsilon)$ such that

$$
\begin{equation*}
t_{2}+3 t_{3}>\eta\binom{n}{2} . \tag{1}
\end{equation*}
$$

Since $\sum_{i=2}^{n}\binom{i}{2} t_{i}=\binom{n}{2}$ we can rewrite (1) as

$$
\begin{equation*}
t_{2}+3 t_{3}>\frac{\eta}{1-\eta} \sum_{i=4}^{n}\binom{i}{2} t_{i} . \tag{2}
\end{equation*}
$$

A result of Sylvester and Burr et al. [2] shows that there are examples with $t_{2} \leqslant n-3$. Hence (1) is definitely false if $t_{2}+3 t_{3}$ is replaced by t_{2}. What we are able to show (see Theorem 1) is that $t_{3} \geqslant c n^{2}$ whenever $t_{2}<n-1$. We determine c explicitly, but we probably do not have the best value of c. If $t_{2}=n-1$ we can of course have $t_{i}=0,3 \leqslant i<n-1, t_{n-1}=1$, i.e., $n-1$ points on a line.

We also conjecture that $t \geqslant c n$ whenever $t_{3} \geqslant t_{2}$, where t is the total number of lines, i.e., $t=\sum_{i=2}^{n} t_{i}$. Perhaps this conjecture is too optimistic. It has been conjectured that $t_{2} \geqslant n / 2$ always holds, and an example of Motzkin shows that if true it is best possible. It gives a set of $2 n$ points with $t_{2}=n$, $t_{3}=\binom{n}{2}$ and $t_{n}=1$. We think that if $t_{m}>1$ for some $m,(n / 2)(1+\epsilon)<$ $m<(1-\epsilon) n$, then $t_{2}>c_{\epsilon} n^{2}$.

We start with a lemma.
Lemma 1. If r points lie on a line land spoints do not lie on l then $t_{2} \geqslant$ $r s-s(s-1)$.

Proof. The result is true if $s=0$ or $s=1$. We shall suppose $s>1$ and use induction on s. Let P be a point not on l. If we remove P, then $t_{2} \geqslant$ $r(s-1)-(s-1)(s-2)$. The addition of P will spoil at most $s-1$ of these lines and will introduce r new lines at most $s-1$ of which will contain three or more points. Hence $t_{2} \geqslant r(s-1)-(s-1)(s-2)-(s-1)+$ $r s-(s-1)=r s-s(s-1)$, and the result follows by induction.

Corollary. Given n points in the plane, not all on a line, if a line contains exactly $(n / 2)(1+\epsilon)$ points, then $t_{2} \geqslant(1-\epsilon) \epsilon n^{2} / 2$.

Proof. Put $r=(n / 2)(1+\epsilon)$ and $s=(n / 2)(1-\epsilon)$ in the lemma, and we have $t_{2} \geqslant r s-s(s-1)=[(1-\epsilon) \epsilon / 2] n^{2}+(n / 2)(1-\epsilon)$.

Theorem 1. Given n points in the plane, not all on a line, if $n \geqslant 25$ then $\max \left(t_{2}, t_{3}\right) \geqslant n-1$. For all n, if $t_{2}<n-1$, then $t_{3} \geqslant c n^{2}$ where c is a positive constant. Also, we always have $\max _{i} t_{i}=\max \left(t_{2}, t_{3}\right)$.

Proof. We shall suppose that $t_{2}<n-1$. We start by showing that $t_{i}=0$ for $i \geqslant \frac{3}{4} n$. To see this, let l be a line with at least $\frac{3}{4} n$ of the points on it. If l has $n-1$ points, then $t_{2}=n-1$. Hence we may suppose that there are two points P and Q not on l. If we restrict our attention to the points on l, to P and Q, then we get, by Lemma $1, t_{2} \geqslant \frac{3}{2} n-2$. Each of the $n / 4-2$ points not in $l \cup\{P, Q\}$ lies on at most two of these lines. Hence $n-2 \geqslant$
$t_{2} \geqslant \frac{3}{2} n-2-2(n / 4-2)=n+1$, which is absurd. Hence $t_{i}=0$ for $i \geqslant \frac{3}{4} n$.

From [5] we have

$$
\begin{equation*}
(n-2) \geqslant t_{2} \geqslant 3+\sum_{i \geqslant 4}(i-3) t_{i} \tag{3}
\end{equation*}
$$

and clearly

$$
\begin{equation*}
t_{2}+3 t_{3}+\sum_{i>4}\binom{i}{2} t_{i}=\binom{n}{2} . \tag{4}
\end{equation*}
$$

We consider now how large $S=\sum_{i>4}\binom{i}{2} t_{i}$ can be if (3) holds. If we choose $t_{i}=0,4 \leqslant i<k, k=\frac{3}{4} n$ and choose t_{k} as large as possible, we will get an upper bound on S which is valid even if k is not an integer. We then have $n-2=3+(k-3) t_{k}, t_{k}=(n-5) /(k-3)<4 / 3$ and $S=\binom{k}{2} t_{k} \leqslant$ $\frac{1}{2}\left(\frac{3}{4} n-1\right)\left(\frac{3}{4} n-2\right) \frac{4}{3} \leqslant \frac{3}{8}(n-1)(n-2)$.

To show that $\max \left(t_{2}, t_{3}\right) \geqslant n-1$ it is enough to obtain a contradiction from the assumption that $t_{3} \leqslant n-2$. From (4) we obtain

$$
\begin{gathered}
n-2+3(n-2)+S \geqslant\binom{ n}{2} \\
4(n-2)+\frac{3}{8}(n-1)(n-2) \geqslant \frac{1}{2} n(n-2),
\end{gathered}
$$

which reduces to $n^{2}-27 n+58 \leqslant 0$, which is false for $n \geqslant 25$.
To show that $t_{3} \geqslant \mathrm{cn}^{2}$, we procede as follows:
We have $S \leqslant \frac{3}{8} n^{2}$, and from (4)

$$
\begin{gathered}
n-2+3 t_{3}+\frac{3}{8} n^{2} \geqslant\binom{ n}{2}, \\
3 t_{3} \geqslant \frac{1}{2} n^{2}-\frac{1}{2} n-\frac{3}{8} n^{2}-n+2=\frac{1}{8} n^{2}-\frac{3}{2} n+2, \\
t_{3} \geqslant \frac{1}{24} n^{2}-\frac{n}{2}-\frac{2}{3} \geqslant c n^{2} \quad \text { for } n>n_{0},
\end{gathered}
$$

where c is any constant less than $\frac{1}{24}$ and n_{0} depends only on c.
Finally, we remark that the assertion $\max _{i} t_{i}=\max \left(t_{2}, t_{3}\right)$ follows from the second inequality in (3).

We conclude this section be stating an old conjecture of one of the authors: Assume $t_{l}=0$ for all $l>k \geqslant 5$. Then $t_{k}=o\left(n^{2}\right)$. This is certainly false for $k=3$ (Sylvester and Burr et al., see [2]). Croft and Erdös observed that it is false if the assumption $t_{l}=0$ is not made. (This is in fact shown by the lattice points in the plane.)

Kártezi proved that $t_{k}>c n \log n$ is possible and Grünbaum showed recently that $t_{k}>c n^{1+1 / k}$ is possible.

2

Let there be given n distinct X_{1}, \ldots, X_{n} in the plane not all on a line, let L_{1}, \ldots, L_{m} be the lines determined by the points, and let $\left|L_{i}\right|$ denotc the number of points on the line L_{i}. Assume $\left|L_{1}\right| \geqslant\left|L_{2}\right| \geqslant \cdots \geqslant\left|L_{m}\right|$. The result of Sylvestor and Gallai states that $\left|L_{m}\right|=2$, and that $m \geqslant n$.

It would be interesting to determine or estimate the number $A(n)$ of families of sets $\left\{\left|L_{1}\right|, \ldots,\left|L_{m}\right|\right\}$ determined by n points in the plane. The difficulty is that it is not at all clear to us (and as far as we know to anybody else) what conditions a sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ must satisfy in order that there should be a set of points X_{1}, \ldots, X_{n} with $\left|L_{i}\right|=\alpha_{i}, 1 \leqslant i \leqslant m$.

These problems can be restated in a more combinatorial form. Let \mathscr{S} be a set, $|\mathscr{S}|=n$ and let $A_{i} \subset \mathscr{S}, 2 \leqslant\left|A_{i}\right|<n$ for $1 \leqslant i \leqslant m$ be a family of subsets of \mathscr{S} so that every pair $x, y \in \mathscr{S}$ is contained in one and only one of the A_{i}. A theorem of de Bruijn and Erdös [1] states that $m \geqslant n$. Now let $F(n)$ be the smallest integer for which there is a system $\left\{A_{i}\right\}$ with the above properties so that for every $r(2 \leqslant r \leqslant n-1)$ the number of indices i with $\left|A_{i}\right|=r$ is at most $F(n)$. It would be interesting to determine or estimate $F(n)$. We conjecture

$$
\begin{equation*}
F(n)=c n^{1 / 2}+o\left(n^{1 / 2}\right) \tag{5}
\end{equation*}
$$

It is a simple consequence of the theorem of de Bruijn and Erdös that $F(n)>c_{1} n^{1 / 2}$, but we could not prove $F(n)<c_{2} n^{1 / 2}$. Perhaps this will not be so very difficult, but we were only able to prove $F(n)<c n^{3 / 4}$, which is our Theorem 2.

It would be interesting to determine or estimate the number $B(n)$ of sequences

$$
\begin{equation*}
\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}, \quad\left|\alpha_{1}\right| \geqslant \cdots \geqslant\left|\alpha_{m}\right| \geqslant 2 \tag{6}
\end{equation*}
$$

for which there is a system $A_{i} \subset \mathscr{S},\left|A_{i}\right|=\alpha_{i}$, so that every pair (x, y) of \mathscr{S} is contained in one and only one A_{i}. As in the geometric case we do not have any necessary and sufficient conditions for a sequence (6) which would ensure the existence of a corresponding system $\left\{A_{i}\right\}$. We are convinced that $B(n)$ is very much larger than $A(n)$.

Theorem 2. $F(n)<c n^{3 / 4}$.

Proof. We use the probability method and only outline the proof. Let p be the largest prime for which $p^{2}+p+1<2 n$, and put $m=p^{2}+p+1$. Consider a finite geometry of m points and $m(p+1)$-tuples. Choose at random n of the points. One can do this in $\binom{m}{n}$ ways. It is not hard to show that all but $o\binom{m}{n}$) choices have the property that there are fewer than $\mathrm{cn}^{3 / 4}$ lines with the same number of points. The computations are somewhat laborius and we suppress them, since this method cannot give any better result than $F(n)<c n^{3 / 4}$ and we are certain that $F(n)<c n^{1 / 2}$ is true.

3

Let there be given n points in the plane, not all on a line, and form all the connecting lines. We ask how many points are needed to represent all the lines, if a point represents a line by being on it, and if none of the original n points can be used for representation. Let $f(n)$ be the minimum of the representation numbers taken over all configurations of n points not all on a line. The example of $n-1$ points on a line and one other point shows that $f(n) \leqslant n$. We conjecture that $f(n) \geqslant c n$ for some $c>0$, but we can only prove

Theorem 3. $f(n) \geqslant n^{1 / 2}$.

Proof. If there are $n^{1 / 2}$ points on a line, then take a point P not on the line and at least $n^{1 / 2}$ points are needed to represent the lines through P. If there are not $n^{1 / 2}$ points on a line, then pick any point Q. Then Q has at least $n^{1 / 2}$ lines going through it, and at least $n^{1 / 2}$ points are needed to represent all of these lines. This concludes the proof.

Let $g(n)$ denote the minimum number of different directions determined by n points in the affine plane not all on a line. Scott has shown [7] that

$$
\frac{1}{2}\left\{1+(8 n-7)^{1 / 2}\right\} \leqslant g(n) \leqslant 2\left[\frac{n}{2}\right] .
$$

We show here
Theorem 4. $g(n) \geqslant f(n)$.
Proof. Let n points, not all collinear, be given in the affine plane. Each collection of parallel lines intersects the line at infinity in a single point. If there are m directions, then m points at infinity suffice to represent all the points, and these points are distinct from the original points. Hence $g(n) \geqslant$ $f(n)$.

We may alter the definition of $f(n)$ by insisting that no three points of the original configuration lie on line, obtaining $h(n)$. Clearly $f(n) \leqslant h(n)$. Grünbaum pointed out that the regular n-gon and the regular n-gon with center shows that $h(n) \leqslant 2[n / 2]$. We also conjecture that $h(n) \geqslant c n$, and this might be easier to prove than $f(n) \geqslant c n$.

Note added in proof. G. R. Burton and G. Purdy have recently proved that $g(n) \geqslant[n / 2]$.

References

1. N. G. De Bruinn and P. Erdös, On a combinatorial problem, Nederl. Akad. Wetensch. 51 (1948), 1277-1279.
2. S. Burr, B. Grünbaum, and N. J. A. Sloane, The orchard problem, Geometriae Dedicata 2 (1974), 397-424.
3. P. Erdös, On a problem of Grünbaum, Canad. Math. Bull. 15 (1972), 23-25.
4. P. Erdös, On some problems of elementary and combinatorial geometry, Ann. di Mat. Ser. IV 103 (1975), 99-108.
5. L. M. Kelly and W. O. J. Moser, On the number of ordinary lines determined by n points, Canad. J. Math. 10 (1958), 210-219.
6. Th. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70 (1951), 451-464.
7. P. R. Scotr, On the sets of directions determined by n points, Amer. Math. Monthly 77 (1970), 502-505.
