
SOME NUMBER THEORETIC PROBLEMS ON BINOMIAL COEFFICIENTS

P . ERDÖS AND G . SZEKERES

We state a few simple but probably very difficult problems about binomial
coefficients . The problems came up at the International Combinatorial Conference in
Canberra, August 1977 .

Let 1 <- i < j <- bln . First observe that

(ti), (j)) > 1 .

To prove (1) put

_ ny)l _Zi)
From (2) we evidently have

I( n ), ( j )) ? (in)/(j) ? 2'

	

(3)

Since (p) is not divisible by p, we have (2p,(
p

)) = 2 hence equality in (3) for

i = 1, n = 2p, j = p . For i > 1 there is always strict inequality in (3) and it seems

likely that there is an h(n) tending to infinity with n so that

I ~ n ), ~ n )) ? h(n)

	

for

	

2 <- i < j <_ 'fin .

Denote by P(m,n) the greatest prime factor of (m,n), and in particular by

P(m,n) the greatest prime factor of m . A well known theorem of Sylvester and Schur

states that P{( n ), ( n )) > i. This result generalizes the theorem of Tschebicheff

according to which there always is a prime between n and 2n .

Conjecture 1 . For every 1 <_ i < j <- in we have

Pl ( i ), ( j )) ? i .

	

(4)

(4) if true is probably very deep . We also conjecture that

P1`i ), `j ) )
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(1)

(2)

(5)

holds except in a few special cases . First of all we discuss some of the counter-

examples to (5) .

(5) fails for i = 2 and some special values of n, all of which seem to be

powers of 2 . Assume n = 2 r to be of the form pq + 1 where p,q are primes, e .g .



2 4 = 1 + 3 x 5, or 2 11 = 1 + 23 x 89 . Then
(
2) = 2r-Ipq so that

p[ ( 2 ), ( )1 = 2

ot

provided that j is such that (~) is not divisible by pq . The best chance for this

happen is if j is such that j 2 0(mod p) , j 2 1(mod q) . For instance in the

previous two cases, when n = 16, p = 3, q = 5, j = 6 we have
((16),

(6 ) = 8

and when n = 2048, p = 23, q = 89, j = 713 we have ((2 048) (2048)) = 210 . The same71

method can of course be used if 2 1' - 1 = u - v, (u,v) = 1 where u,v are not necessarily
primes, but the chance of failure is much greater .

There are a few scattered counterexamples for i = 3 like [(3), 1,)] = 2 2 x 3 ;

the numbers 3r + 1 have the best chances . For i ? 4 there should only be a few

incidental counterexamples to (5) . We only know one such counterexample, namely

( 5 ), (14 ) ) = 2 3.3 3 .5 .

In trying to prove conjecture 1 the following further problem occurred . Put

f(n) = min
1<j Jn

From (2) it follows that

f(n) z p(n)

	

(6)

where p(n) is the smallest prime factor of n . If n = pk is a prime power then equality
sign holds in (6), f(p k) = p . For composite n we have the further inequality

f(n) ` P(n)

	

(7)

where P(n) is the greatest prime power which divides n . To see this put j = pa where

pa l n, pa+1,,n,
then

ln'
(n)) __ n
j

	

pa

as seen immediately from (2) . If n = pq, p < q then there is equality both in (6) and

in (7) . This again is seen from (2) :

"qq' = P/q_2
hence (qq) is divisible by p but not by q . This shows that f(pq) = p = Q, and equality
in (6) and (7) follows . Another case with equality in (7) is f(30) = 6; the high value

of f(3) is caused by the presence of 25 and 27 near 30 . It would be of interest to
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characterize the composite n with f(n) = n/P(n) . Numbers of the form R p with

k > 6 do not seem to have this property ; for instance

	

p<_k

f(210) = 1210, 301) = 14 < P(210) = 30 .

There are also cases other than pq with equality in (6) . For instance we have

f(3pq) = 3, namely ( 33) 9 0(mod pq), for infinitely many pairs of primes p,q . We

leave the proof to the reader .

One more remark . Let n be composite . It is immediate that for infinitely

many n, f(n) 2 vi, say when n = p 2 . There are some n for which the strict inequality

f(n) > f

	

(8)

holds, e .g . f(30) = 6, f(70) = 0, f(154) = 14 (all of the form 2pq) . It seems likely

that there are infinitely many n for which the inequality (8) is true, although we

cannot prove this at present .

From (7) it follows that

f(n) < (1+0(1)) logn

	

(9)

To prove (9) observe that the prime number theorem easily implies P(n)2 (1 + 0(1)) log n .
Thus (7) implies (9) . Perhaps it is true that for every a > 0 there is an n0(a) so
that for every composite n > n0(a), f(n) < n/(log n) OE .
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