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THE SIZE RAMSEY NUMBER
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P . ERDŐS (Budapest), R . J. FAUDREE (Memphis),
C. C. ROUSSEAU (Aberdeen) and R . H. SCHELP (Mempbis)

Abstract

Let i2 denote the class of all graphs G which satisfy G - (Gl, GE ) . As a way of
measuring r inimality for members of P, we define the Size Ramsey number ;(G,, G,) by

r(G,, G,) = min I E(G) ~ .

We then investigate various questions concerned with the asymptotic behaviour of r .

1. Introduction

Ramsey's theorem has inspired many striking and difficult problems .
In this paper, we intend to add to this list of problems and to solve a few
of the problems so introduced .

In its application to graphs, Ramsey's theorem is concerned with the
assertion G -* (GI , G2), the meaning of which is that in every partition (E l , E2 )
of E(G), either <El> Q Gl or <E2> QG2. Given Gl and G2 , we may define the
class of graphs C2 = e(Gj, G2 ) by

C2 = {GIG -> (G1 ) GO) .

Ramsey's theorem establishes that e is non-empty by proving that for every
m and n there is a minimum integer r = r(K, K,) such that Kr (K,,,, K0) .
It follows that for every pair of graphs Gl, G2 , there is a Ram8ey number
r(Gl, G2 ), which is the smallest integer r such that Kr --* (Gl, G2) . The Ramsey
number can be viewed as a measure of minimality for members of the class
C2 = C(GI, G2) in that, as an equivalent definition, we may take

r(Gl , G2 ) = min I V (G) I .
GEG-
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We now wish to introduce the idea of measuring minimality with respect to
size rather than order . Accordingly, we define the size Ramsey number
r(Gl, G2) by

;(GI , G2 ) = min I E(G) I .
GEC

For the purpose of comparing r and r, we define R(G1, G2 ) by

r( G11 92)RPP G2) = 2

From their definitions, we know that r(G1, G2 ) S R(Gl , G2) . In the diagonal
case G, = G2 = G, the symbols H (G), r(G) and r(G) will have their obvious
meanings. In this paper, most of our concern will be with the diagonal case .

There are two preliminary questions concerning the size Ramsey number
which should be answered before posing others . The second of these two
questions is best expressed in terms of the following definition, the purpose
of which is to give a precise meaning to the idea that r(G) may be "signifi-
cantly" less than R(G) .

DEFINITION . Let {G1, } be an infinite sequence o f graphs. Then {G,,, } is called
an o-sequence if ;(G,,) = o(R(G,,)) (n --o- oo) .

The two questions are
(i) Do there exist graphs G1, G2 such that r(Gl, GO = -W11 G2)?
(ü) Do there exist o-sequences ?

Question (i) is answered by the following theorem . This result is due to CHVÁTAL
(personal communication) .

T.EOREm 1 . For all values of m and n, r(K„i, K,) = R(Km, K,,) . Moreover,
if G is a connected graph of size S R such that G - • (K,n, K,,), then G KT .

PROOF . Let us first make an observation which provides the basic idea
for the proof. Let (E1, E2) be a two-colouring of a graph G and suppose that
u and v are two non-adjacent vertices of G . Consider the induced colourings
of the two graphs G - u and G - v. If, in both cases, <E1> K,,, and <E2>
T K,,, then the same is true in G. The reason is very simple . Any assumed
monochromatic complete graph in the two-colouring of G cannot contain
both u and v, since these two vertices are not adjacent . Hence, any such mono-
chromatic complete graph would appear in the induced two-colourings of
either G - u or G - v. Clearly, this observation is special to complete graphs .

Let G = G(V, E) be a connected graph of order p and size q (SR) and
suppose that G KT . We wish to prove that G -+- (K,,, K,) . This is certainly
true if p C r. We now take p > r and make the induction hypothesis that
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the result holds for every graph of order < p and size < R 'other than Kr .
Since, p > r, q < R and G K,, we know that G is not complete. Let u and
v be two non-adjacent vertices of G and set G„ = G - v, G,, = G - u, W
= V - {u, v } and H = G - (u, v } . If there exist two-colourings of G„ and G4,,
agreeing on H, such that <El> I Km and <E2> K,,, then, by the observation
made above, G -+- (K,,,, K,) . To establish the existence of such two-colourings,
we employ the following device . Let K = N(u) U N(v) where N(u) and N(v)
denote the neighbourhoods of u and v respectively in G. Let H„ be the graph
obtained from G„ by adding all edges of the form ux where x E K -- N(u) .
Similarly define H, and note that H„ and H4, are isomorphic graphs of order
p - I and size < q . Moreover, for the reasons which follow, we M00y. assume
that H,,, H, K,. It is clear that Hr ,, H,, K, if and only if H Kr_,
and (N(u), N(v)) is a nontrivial partition of W. If this were to be the case,
then there is, for example, a vertex wE W such that u and w are not adjacent
and N(u) n N(w) 0 . Thus, we may simply consider G u and G = w in
the first place . Hence, it is clear that H„ and H, satisfy the induction .hypo--
thesis. Moreover, since Ht, H,, the existence of the desired two-cólóuringa
which agree on H is manifest . Clearly, the deletion of edges so that H,,:returns
to G„ and H„ returns to G„ spoils nothing so the desired two-colouring has
been constructed .'

REMARK . As we shall soon demonstrate, the determination of ' (Gl, G2}
when Gi and G2 are not both complete can pose a basically new :problem : `Thus,
Theorem I shows that the study of the size Ramsey number belongs to gene-
ralized, as opposed to classical, Ramsey theory . In the classical l case,' no new-
problems are created by the introduction of r •

The answer to Question (ü) will follow from the following . simple result,.
which gives r for stars .

THEOREM 2 . For all values of m and n, r(K,, ,,,, K l ,,,) = m +n - 1 .

PROOF. It is clear that in any two-colouring of Kl,,,,+n_1 either <El>
Kl ,,,, or <E2> Q K1 , 11 . Hence r" (K, , ,,t , Kl,,,) S m +n - 1 . In what follows, :

we suppose, without loss - of generality, that n m. Let G be a graph .
of size q < m +n - 2. It is clear that G has at most one vertex of degree n . .
If there is no vertex of degree >n, then we may safely set E2 = E(G). If there-
is one vertex, v, of degree > n, then deg (v) < m +n - 2 and every other
vertex has degree less than m. In this case, we may colour G - v arbitrarily
and then colour the edges incident with v in such a way that <El> T Kl , ,,,
and <E2> Kl,,, . 1

COROLLARY. The sequence {Kl ,,, I is an o-sequence.

10*
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Hence

PROOF. It is known that

and lim r(K1,n)~R(Ki ,n ) = 0.'
n--

n even
n odd .

n even

n odd

In the scheme of this paper, Theorem 2 and its corollary have more than
their face value. Taking a clue from the corollary, we shall study sequences
of graphs which are obtained from a fixed graph by adding, in a prescribed
way, progressive larger stars . We shall then ask whether or not such a sequence
is an o-sequence ..

2. Notation

In general, our graph-theoretic notation will follow [1] or [9] . However,
some comments are in order concerning some of the more specialized notation
which we shall use .

It is common to use [X]m to denote the collection of all m-element subsets
of the set X . In a similar vein, we shall let [X, Y] denote the collection of all
pairs {x, y} with xEX and yE Y. To denote a complete graph on the vertex
set X we shall write [X] 2 . Also, [X, Y] will signify the complete bipartite
graph with parts X and Y.

Let v be a vertex in a graph G . We shall use N(v) to denote the neigh-
bourhood of v and deg (v) _ I N(v) ( will signify the degree of v . If A = N(v)
is a neighbourhood, then A will denote the closed neighbourhood, including v .
Let X denote a set of vertices in G . Then, we shall use X (v) to denote X n N(v) .
With the underlying graph G(V, E) understood and X, YC V, E(X) will
denote E n [X]2 and E(X, Y) will denote E n [X, Y] .

Throughout this paper, we shall be concerned with partitions (E1 , E2 )
of E(G) . Such a partition will be referred to as a two-colouring of G. To indicate
N(v), deg (v), X (v) etc. in <E,> and <E2> we shall use a subscript . Thus, for
example, N1(v) is the neighbourhood of v in the graph <E,> .

The graphs considered in this paper will be obtained by means of three
"star" operations. The join of two graphs, symbolized by	is familiar .

2n - 1r(K~, n ) = 2n

1
n-1r(K1,n)

R(K1,n) 1I n
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Thus, given a graph G, the graph G +K, is obtained from G by introducing
n new vertices and by joining each v ertex of G to each of these n additional
vertices . If G is_of order m, then G +K1z is of order m +n . In a similar way,
we define G ®K1z . This is the graph obtained from G by introducing, for
each vertex v of G, n additional vertices and by joining v to these n vertices .

K3* K 4

K319 K4

Fig. 1 . Star operations

Thus, if G is of order m, then G ®K12 is of order m(n + l ) . Finally, we let
v be a particular vertex of G and define G * K 12 (v) to be the graph obtain-
ed by adding n vertices and joining just v to the n additional vertices .
If G is of order m, then G * K,(v) is of order m + n . In case the choice of v
is immaterial, we shall write G * K, These three star operations are illustrated
in Fig. 1 .

In probabilistic arguments, we shall, in general, follow the notation
of [4]. Thus, B(n, p) denotes the binomial distribution characteristic of the
sum of n independent random variables, each of which takes the value 1 with
probability p and 0 with probability 1 - p. IfA is an event, P(A) will denote
the probability of A and A will denote the complementary event . If X is
a random variable, X will denote the expected value of X . As in [4], Gn ,p
will denote a random graph on n labelled vertices where, for each pair fu, v},
uv E E(G) with independent probability p.

K3 + K4

149
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3. Statement of the problem

In order to motivate the subsequent development of this paper, we now
pose two basic problems .

PROBLEM A. Characterize those graphs G for which {G * !,,I is an
-o-sequence . Do the same for {G +gn } and IG ED k,,) .

PROBLEM B . Determine the asymptotic behaviour of r(K m * K„) with m
-fixed and n , oo . Do the same for r(K,,,,), ;(K,, +K,,), and

The fact that {K1,,,} is an o-sequence suggests that there are other
~o-sequences to be obtained by means of the star operations, * K,,, + 1T,,, and
® . ,, . This suggestion leads, in turn, to the formulation of Problem A. As we
shall see, the characterization called for in Problem A turns out to be strikingly
simple. We do not completely solve Problem B, but we are able to give useful
upper and lower bounds in all cases .

4. Comments on the methods of solution

The methods which we shall use in considering the two problems just
,stated will involve only the simplest kind of combinatorial and probabilistic
arguments. Because of their recurring use, three methods deserve to be
brought to the attention of the reader .

The first method, which we shall call the nested-neighbourhood method,
will be_used to obtain upper bounds for r(K,,, * K,), r(K,, +k,), and

.r(K,,,®K„ ) . By steadfastly assuming that we have a two-colouring (El, E2 )
of Kp in which neither <El> nor <E2> contains the graph in question, we shall
find, in either <El> or <E2>, a sequence of vertices xl , x2, . . ., xm and a cor-
responding sequence of neighbourhoods Al, A2 , . . ., Am such that A l

. 2 ? : . . Q A, Moreover, if p is sufficiently large, the neighbourhoods
will be of sufficient cardinality that the nested-neighbourhood sequence
will contain the. graph in question . In this way we obtain the desired con-
tradiction .

The second "method" is really a general purpose counterexample .
Let the .graph G and the natural number n be specified . Correspondingly, we
define a high-low colouring of G with respect to n . First of all, n divides the
vertices ,of G into "high" and "low" as defined by

and
H = {vi deg (v) > n}

L= v 1 deg (v) C n},
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respectively. Then, the high-low colouring of G with respect to n is defined by
setting El = E(H, L) and E2 = E(H) U E(L) . In particular, if I E ( S 70/2,
the high-low colouring of G(V, E) has several useful properties, which we now
summarize .

FACT A. Suppose that I E I < 70/2 and let (El , E2) be the high-low colouring
of G(V, E) with respect to n . Then

(i) <El> contains no non-bipartite subgraph,
(ü) <El> contains no two vertices of degree n which are adjacent, and
(iii) <E2> contains no vertex of degree > n.

Part (i) follows since <El> is bipartite . Part (ü) follows since any two such
vertices must lie inH and they are joined by an edge in E 2 . Finally, to establish
part (iii) we note that the vertex and its neighbours must lie in H, but since
J E j <n2/2, we know that 1H1 <n.

The final "method" is simply an appeal to a known fact about random
variables which have a binomial distribution .

FACT B. Let X have the binomial distribution B(n, p) . Let s > 0 and k
be fixed. Then

lim nkp(IX-XI >ne)=0>
y 00

This fact follows immediately from Bernstein's inequality applied in the
binomial case ([10], p. 200) .

5. Size Ramsey numbers for G * .K,,

The asymptotic behaviour of r(G * K„) is strongly influenced by whether
or not G is bipartite . In fact, the results of this section will show that {G * 1, 1
is an o-sequence if and only if G is bipartite .

Let us first consider the case where G is bipartite. Our theorem in this
case relies on two known results. The first is a result of GUY and ZNÁM which
arises in their treatment of a problem of ZARANKIEwICZ [8] .

LEMMA (Guy-Znám) . Suppose that G C Km,N . If I E(G) I > Nu, where

Nu >(j - 1) ~~
2

	

2

then G Q K1, j .
This result follows very simply from the pigeonhole principle and Jensen's

inequality . The second result is, perhaps, less well-known and, for this reason,
we shall give a short proof. The result is quoted by GUY in [7] and there
attributed to CHVITAL and NivEN.
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LEMMA (Chvátal-Niven) . Let f (m, k) denote the smallest integer n such
that in every two-colouring of [A, B]

	

K2i,,,, there is a monochromatic K,,,, k .
Then

f(m, k) _ (k - 1) i2m +1 .
~m

PROOF. Consider the example in which for every XE [A]m , there are
precisely k - 1 vertices v (EB) such that A.(v) = X. This example shows

2m
that f (m, k) > (k - 1)

m
. Now we wish to prove that if (El, E2 ) is an

arbitrary two-colouring of [A, B] where I A = 2m and I B _ (k - 1) 2m + 1,
m

then either <El> or <E2> contains a K,,,,k . It is convenient to weaken our
hypothesis by taking I A = 2m - 1. Let the elements of [A]' be identified

2m - 1
as X., X2 , . . ., XN , where N =

	

.
m

	

For each v(E B), let i (1 or 2) be

determined by
IA,(v) I = max (IA,(v)I, 1A2(v)I)

and let j be any index such that Xj C A,(v) . Then assign the label (i, j) to

vertex v. Since there are only
2 2m- 1

	

2m
=

	

such labels and IB I =
In

	

m

(k - 1) 2m + 1, it follows that k vertices of B must have the same label
m

and so there is a monochromatic K,,,, k . '

The following theorem gives upper and lower bounds for r(G * k,)
when G is bipartite.

THEOREM 3 . Let G be a bipartite graph with parts A and B having cardi-
nalities m and k respectively and suppose that v E A . Then

r(G * FZ,(v)) > mn/2,

and, if n is sufficiently large,

r(G * .1 „(v)) < 4m(2(n+ k) - 1) .

PROOF. For simplicity of notation, we shall let G * .k,(v) be denoted
as simply G* . The lower bound is based on the high-low colouring method .
Given a graph of size < mn/2, in forming H and L we know that IH I < m.

It follows that in the corresponding high-low colouring, neither <El> nor
<E2> contains G* .

The upper bound is established by successively applying the two lemmas .
Let (El , E2 ) be an arbitrary two-colouring of [A, B], where I A I = 4m and
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B = N = 2(n + k) - 1 . If n is sufficiently large, then N (k - 1)
2m

+ 1 .

Hence, applying the Chvátal-Niven lemma, there is a monochromatic
[X, Y] , K2m,k • We shall assume that [X, Y] C El . If, for any vertex v (EX),
Bl(v)d > n+ k, then <El> ? G* . If not, then I B2 (v) I N - (n+ k - 1) _
n + k for every v (E X) and so I E2(X, B) I > 2m (n + k) > mN . Applying

the Guy-Znám lemma with u = m, i = m and j = k, we find that <E2> Q
Q [W, Z] Km, k . Since every vertex v (E W) satisfies I B2 (v) n-}- k, we
find, in this case, that <E2> Q G* . ,

A lower bound for r(G * K„) when G is non-bipartite is already implicit
in our observations concerning the high-low colouring method .

THEOREM 4 . If G is non-bipartite, then r(G * K,,) > n2/2 .

PROOF. This follows from parts (i) and (iii) of Fact A . '

An upper bound for r(G * K„) when G is non-bipartite follows from_an
upper bound for r(K,,, * k,,) (m 3) . The following theorem gives r(Km * K„)
precisely, provided n is sufficiently large . The proof of this theorem uses the
technique of the proof of Theorem 2 in [2] .

THEOREM 5 . Let m 3 be fixed . If n is sufficiently large, then

r(Km * K,) _ (m - 1)(m-+- n - 1) + 1 .

In particular, r(K3 * K„) = 2n -}- 5 for all n 1 and r(K4 * K„) = 3n + 10
for all n>3 .

PROOF. Let p = (m - 1)(m -}- n - 1) and consider the two-colouring
of Kp defined by setting <El> _ (m - 1)Km+n-1 . In this two-colouring,
<El> contains no vertex of degree m + n - 1 and <E2> contains no Km
Hence, r(K„z * Kn ) > (m - 1) (m + n - 1) .

The remainder of the proof utilizes a nested neighbourhood argument .
Let (El , E2 ) be an arbitrary two-colouring of Kp where

p=(m-1) (m+n-1)-}-1 .

If n is sufficiently large, then p

	

r(K,,,), in which case either <El>
or <E2> contains a Km . We shall assume that <El> [X]2 ti K,,, . If, for any
v (E X), deg, (v) m -}- n - 1, then <El> Q K,,, * K,l . If not, we may select
V (E X), set A = N2 (v) and be sure that I A I (m - 1)(m + n - 1) -
--- (m + n - 2) _ (m - 2) (m + n - 1) + 1 . Assume that n is large enough
that I A I r(K,n , Kii_,) and consider the induced two-colouring of <A> .
Note that if <A>2 Q K,,,_l , then <E2> Q K,n * K,, . Hence, we assume that
<A>1 Q K,,, and note that we may now simply repeat the argument from the,
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point where we had assumed that <El> Q Km. By repetition of the basic
argument, we see that <E2> contains a sequence of nested neighbourhoods
A, Q A2 . . . Q Am-2, and a simple induction shows that J A k ( >
>(m -k- 1) (m + n - 1)+1, fork= 1, . . .,m- 2. Let us set B = Am_2
and remind ourselves that I B I > m + n . Finally, we consider the induced
two-colouring of <B> . If <B>2 Q K2 , then <E2> Q Km Kn . If not, then
<El> Q Km+n and, hence, <E1> ? K,,, * Kn .

For the success of this proof, we see that it suffices to set n large enough
so that (m - k - 1) (m + n - 1)+1 r(Km, Km_k ) fork = 0, 1, . . ., m_- 2 .
A quick check using known Ramsey numbers then shows that r(K. + Kn) _
= 2n+ 5 for all n 1 and r(K4 *1n) = 3n+ 10 for all n 3 . '

We are now able to give the solution of Problem A for the sequence
{G * Kn} .

COROLLARY . The sequence {G * Kn} is an o-sequence if and only if G
is bipartite .

PROOF . If G is bipartite, then, by Theorem 3, r(G * Kn ) = 0(n) (n , oo),

whereas, trivially, R(G * Kn ) > 21
. Hence, if G is bipartite, then {G * Kn}

is an o-sequence. If G is a non-bipartite graph of order m and if n is sufficiently
large then, by Theorems 4 and 5,

Consequently, if G is non-bipartite, then {G * Kn} is not an o-sequence .'

6. Size Ramsey numbers for G + Kn

In order that {G + K, j be an o-sequence, G must be severely restricted .
We shall show that {G + Kn} is an o-sequence if and only if G is an empty
graph .

First, we take up the case where G is empty by considering the size
Ramsey number of Km+ Kn = Km ,n

THEOREM 6 . Let m 2 be fixed and suppose that n is sufficiently large .
Then

n212<r(G* j_< r (Km *Kn)~R(Km * Kn)<m2n212 .

é1m2`1n < r(K,n,n) < 28 M22`1n.
9

PROOF. Consider first the upper bound . Let (E1 , E2) be an arbitrary
two-colouring of [A, B] Km,N . We may assume that I E1 I MN/2. Hence,
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setting u = M/2 in the Guy-Znám lemma, <El> Q Km,n if

N
í
M12 > (n-1)

M
.

M

	

m

This will certainly be the case if we set N =
M

j n
M/2

. It follows that
m j

~
m

for all M (> 2m),

M M

M/2
	 n.m~

m

155

In particular, if we set M = m2/2, then the expression on the right hand side
is asymptotic to em22m-'n as m , oo . A more detailed study shows that if
an upper bound of the form cm2 2'n'ln is to hold in general, then c must be

taken somewhat greater than e, namely
9

, in order to take care of the worst

case, which is m = 3 .
The proof of the lower bound employs the probabilistic method. Suppose

that G(V, E) is a graph in which every two-colouring produces a monochrom-
atic K,,,,, . Let

and
A = {v l deg (v) > n}

B = {v1deg (v) > m} .

Then J A J

	

2 1 E J/n and I B I_< 2 1 E I/m . If G-2 [C, D] ^- K,,,, n, then,
clearly, C C A and D C B. Hence, setting M= I A I and N= I B 1, it must
be true that every two-colouring of Km,N produces a monochromatic K,,,,, .
However, in a random two-colouring of Km,N in which P(uv E ED _
= P(uv E E2 ) = 1/2, the probability that there is a monochromatic K,,,,,, is

not more than 2 M ~N~ 12" . Moreover,
Im n

2 íX~ N 2" S 2(Mm/m!)(N"/n!)/2mn < 2(Mmfm!) (eN/2mn)n .

M n

Now suppose that I E I < e-'m2'-'n . Then M C m2m/e and N < n2m/e so
that (eN/2'n) < 1 . It follows that if n is sufficiently large, then the probability
that there is a monochromatic K," , " is less than 1 . Hence, our assumption that
G (K,,," ), where I E I <-e -1m2'-1n has led to a contradiction .'
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If G is not empty, then a lower bound for r(G + K,,) is contained in
Fact A .

THEOREM 7 . If G is not empty, then r(G + K 1z ) > n2/2 .

PROOF . This follows from parts (ü) and (iii) of Fact A .'

Our next objective is to obtain upper and lower bounds for r(K„' + Kn ) .
A lower bound of n2/2 has been obtained already, but this can be strengthened .
In order to obtain the stronger result, we shall refine the high-low colouring
method. The refinement is based, in part, on the following result .

LEMMA. Let B and C be positive constants and suppose that G(Y, E) is
a graph of order N (<Bn) such that for every v (E Y), deg (v) S K = [Cn] .
Let S be a fixed positive number and let M be a fixed natural number . If n is
sufficiently large, there exists a partition (Y l , Y2 , . . ., Y11,I ) of Y such that

Y;(vj )I < (I + 6)Cn/M, i = I,-, M, j = I,-, N.

PROOF . The proof uses the probabilistic method . Let (Yl, Y2 , . . ., YM)
be a random partition of the N vertices into M parts, where, for each i and j,
P(vj E Yi ) = 1/M . Let A denote the following event : for all i and j, I Y;(vj)l <
< (1 + 8)Cn/M . It suffices to prove that P(A) > 0 .

For j = 1, . . ., N, let dj = deg (vj ) and note that Xlj = ~ Y,(vj )I is a
random variable having the binomial distribution B(dj , 1/M) . Let X denote
a random variable having the distribution B(K, 1/M) . Then

M N
P(A) ZZ P(X ij > ( 1 + 8)Cn/M) < MN P(X > (1 + S)Cn/M)

i=1 j=1
CMNP(JX -XI >Kb).

Since K tends to infinity linearly with n whereas N < Bn, Fact B implies
that P(A) -* 0 as n , oo and, hence, P(A) > 0 for all sufficiently large n.'

The desired lower bound for r(K,, + KJ Is implied by the following
result .

THEOREM 8 . Let s be a fixed real number satisfying 0 < s < 1 and let
m > 3 be a fixed natural number. If n is sufficiently large, then

r(K,,,, K1,J > max

	

s) (m - 2)2 n2/2 .
4

PROOF . The lower bound of n2/2 follows from parts (i) and (iii) of Fact A .
To improve the result when m > 5, we use a refinement of the high-low
colouring method. Let G(V, E) be a graph of size IE I < (1 - s)LMn2/2,



where L + M = m - 2 . Let (X, Y, Z) be the partition of V defined by
setting

and
Z = {v I deg (v) > M(1 - s)n}.

Further, in a way to be described presently, we shall partition Y into
(Y1, Y2 , . . ., Ym) and Z into (Zl, 4 . . ., ZL ). Thus, we partition V into
L + .M + 1 = m - 1 parts altogether . Now we two-colour G(V, E) in the
following way . For every uv E E set uv E El if u and v are in different parts
and set uv E E2 if u and v are in the same part . It is clear that <E,> ~)_ K"'
since for any set of m vertices there must be two vertices which are in the same
part and therefore joined in E2 . To see that <E2> TK,,17 let us consider the three
possible cases. If v E X, then deg (v) < n in G and so deg (v) < n in <E2> .
Now suppose that v E Z . Since each vertex in Z has degree at least M(1 - E)n
in G, we know that I Z I M(1 - s)n/2 < I E I < LM(1 - E)n2/2 and hence,
Z I < Ln. Certainly, then, we can form the partition (Z1	ZL ) of Z in such
a way that I Zk I < n for k = 1, . . . , L. Having done this, we are assured
that if v E Z then deg (v) < n in <E2>. Finally, let us suppose that v E Y .
Since each vertex in Y has degree at least n in G, we know that I YJn/2 <
< I El < LM(1 - e)n2/2 and hence, I YJ < LM(1 - s)n . Now set S < E/(1 - E)
and apply the previous lemma to the induced subgraph < Y> . We thus obtain
the desired partition (Y,, . . ., Ym) of Y such that for every v E Y, deg (v) <
< n in <E2> .

As a final step, we maximize LM subject to the condition L + M =
_ 2

= m - 2, obtaining the result (m42) when L and M are as nearly equal

as possible . '

The upper bound for r(K,,, + k,) stems from our knowledge of the ordi-
nary Ramsey number r(K,,, + Kn ) .

THEOREM 9. For all values of m and n,

r(K„,+ .K,) < 22m-1 (n+ 1) - 1,

and, if m and E > 0 are fixed and n is sufficiently large, then

r(Km + K n ) > [(2m - E)n] .

PROOF . The upper bound is obtained by a nested neighbourhood argu-
ment. Let (EI, E2) be an arbitrary two-colouring of Kp. Arbitrarily select a
vertex v and let X be the larger of the two neighbourhoods N,(v) and N2(v) .
Note that JX J > (p - 1)/2 . Consider the induced two-colouring of <X> and
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X = {v l deg (v) < n},

Y = {v 1 n < deg (v) < M(1 - E)n},
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repeat the process starting with the selection of an arbitrary vertex . In this
way obtain a sequence of neighbourhoods X1, X2 , . . ., X2 „2_1 . By induction,
IXk 1 (p+ 1 - 2 k )/2 k for k = 1, 2, . . ., 2m - 1 . Of the 2m - 1 times the
process is performed, the majority colour must be the same m times. Hence,
in either <El> or <E2>, we find a nested neighbourhood sequence A l, A 2 , . . ., Am .
Finally, since JA,I > IX2m-1J > (p+ 1 - 22m-1)f22m-1, it follows that if
p > 22m-1 (n+ 1) - 1 then IAmI > n and so

/
there is a monochromatic

Km + K,,.
The lower bound is obtained by the probabilistic method . Consider the

random graph G = GN,-J where N = [(272 - E)n] . Let A denote the following
event: G Km +K 1,. To describe this event, let [VIM = {Sl, 822 . . ., Sk}

where k =
N and, for j = 1, . . ., k, define the random variable Xj to be
m

the number of vertices which are adjacent to all the vertices of Sj . Then

Hence
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k
A= U {G I [Sj ]2 C E(G) and Xj n} .

j-1

í

N~ P(X n)

P(A) S
m

	

)
2

where X represents a typical X,. If P(A) < 1/2 we can be sure that N <
< r(Km + K 12 ) . Note that X has the binomial distribution B(N - m, 1/211 ) .
Hence, X = (N - m)j2' and X > n implies that I X - X 1 > NS, where
S = E/4' . It follows that

P(A) S

	

m
m	 P(IX - Xj > NS) .

W 2()

Applying Fact B, we see that P(A) < 1/ 2 for all sufficiently large n. '

REMARK . It is natural to raise the question of whether or not one of the
two bounds in Theorem 9 is, in general, asymptotically correct . For m = 1
there is no question, since both bounds are asymptotic to 2n . For m = 2 the
issue has been settled in favour of the lower bound . ROUSSEAU and SHEEHAN [111

have proved that, for all n, r(K2 + .K12) < 4n + 2 and that if 4n + 1 = p"
(a prime power) then r(K2 + K7) = 4n + 2 .

The results of this section contain the solution of Problem A for the
sequence {G + K 12 } .

COROLLARY . The sequence {G+ ! 1J is an o-sequence if and only if G
is empty .
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PROOF . By Theorem 6, r(Km -}- K,,) = 0(n) (n --> oo), whereas, trivially,

R(K,n + Kn )
> 2

. Hence, if G is empty, then {G + .9,,j is an o-sequence .

If G is a non-empty graph of order m then, by Theorems 7 and 9,

n2/2 C r(G + Kn) < r(Km -}- K n ) S I~(Km+ K,) < 24m- 3n2 .

Consequently, if G is non-empty, then {G + .k,,) is not an o-sequence .

7. Size Ramsey numbers for G Q+ K n

The story here is the same as in the preceding episode : {G O Kj is an
o-sequence if and only if G is empty .

We may dispose of the case where G is empty, by a simple observation .
We note that ;(k,,, (@ K,,) S (2m - 1) (2n - 1), since , in any two-colouring
of (2m - 1)KI,2n-I there is a monochromatic mK, ,n = K,n Q+ K n .

To complete the story when G is non-empty, we need only one new result .

THEOREM 10 . Let m be fixed . If n is sufficiently large, then

r(Km +Q k,,) S (2m2 - m+ 1) (n+ 1) - 1 .

PROOF . The result will be obtained by using the nested neighbourhood
argument. First of all, we make the following general observation . If (El, E2 )
is a two-colouring ofKP where p > r(K,,,) then there is either a monochromatic
KmQ Kn or a monochromatic Ki,q where q = p - m(n + 1) . The reason is
very simple. Since p r(K,n), we may suppose that <E1> Q K. . If each of
these m vertices has degree at least m(n + 1) - 1 in <El>, then <El> Q
Q Km O+ Kn . If not, then there is certainly a vertex of degree at least p -
- m(n + 1) in <E2> .

Let (El, E2 ) be a two-colouring of [V]2- KP. Set Xa = V and, for
i = 1, 2, . . ., 2m - 1, apply the observation made above to the induced two-
colouring of <X,_ l>. Assuming that IXj_1I > r(K,,,) and that there is no
monochromatic K,n @ Kn, we obtain Xi as the neighbourhood in the resulting
monochromatic star .

Clearly, IXk1

	

p - km(n+ 1) for k _* 1,2,-- .,2m- 1 . Of the
2m - 1 monochromatic stars, m must be of the same colour . Hence, in either
<El> or <E2>, there is a nested neighbourhood sequence Al , A2 , . . ., Am.
Let us re-index the A's so that A,n Q A,,t_, Q . . . ? Al . Now note that if
IAkI Z k(n+ 1) - 1 for k = 1, 2, . . . , m, then there is a monochromatic
K,,, O+ Kn . But IAkI IX2m-i1 ~ p - m(2m - 1) (n + 1) . Hence, if p =
_ (2m2 - m + 1) (n + 1) - 1, then there must be a monochromatic Km O+ Kn-
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For the success of this proof, we see that it suffices to set n large enough
so that 1 x2m-2I r(Km) . Hence, if n is large enough that (m + 1) (n + 1) -
- 1

	

r(Km) the result holds.'
Now we can give the solution of Problem A for the sequence G O+ Kn •

COROLLARY. The sequence {G O+ Kn } is an o-sequence if and only if G is
empty .

PROOF. We have observed that r(Km Q+ K n) - O(n) (n , oo) . Then,
because of the trivial fact that R(K, n (@ K7,) > 2 we see that {gym (D k,,)

is an o-sequence. If G is non-empty, then r(G (D Kn) > n?,/ 2 by parts (ii) and
(iii) of Fact A . Hence, using the result of Theorem 10, if G is a non-empty
graph of order m, then

n /2 < r(G E Kn) r(Km q) K,z) ú(K,, Q+ n) < 2m%2.

Consequently, if G is non-empty, then {G Q+ Kn} is not an o-sequence . '

8. Open questions
Except for complete graphs and stars, we have given no general, exact

results for r . Some asymptotic results have been obtained, but there are many
open questions . Theorem 5 and Theorem 8 imply that for n sufficiently large
there exist constants al and a 2 such that

alm2n2 < r(Km * Rn) S a2m2n2 .

Although for this case the size Ramsey number is known up to a constant,
the same cannot be said for r(K,n,n ), r(K,n + Kn ), and r(K. (Dk,,) . The
known bounds are as follows

b lm2'n-ln < r(K,n,n) S b2m22'n-ln for n sufficiently large,

clm2n2 <- r(K,,., + K,,) < C242% 2 1

d1m3n2 < r(Km +~ Kn) S d2m4n2 ,

where bl , b 2 , c l , c 2 , dl and d2 are appropriate constants . These bounds are either
explicitly given or implied by the results of Theorems 6, 8, 9 and 10 . It would
be nice to determine each of these size Ramsey numbers up to a constant .

In Section 6 it is shown, for m fixed and n sufficiently large, that {Km , 1,j
is an o-sequence. The arguments used there for the lower bound are not valid
when m is allowed to grow large with n. It is thus an open question as to
whether {K,, ,72 } is an o-sequence. Bounds for r(K,7, ,1 ) are

aln2n/2 S r(Kn,n) S a 2n2n
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and proved in [3] . By a straightforward probabilistic argument one can show
that r(K,,n ) > bln$2 n1$ . Hence, using the upper bound given in Theorem 6,
one obtains

blna2n/2

	

r(Kn,n) S b2n32n-1 .

Determination of the exact size Ramsey number for even a simple graph
like a path, Pn, on n vertices seems quite difficult . It is well known (see [6])
that r(Pn) = n + [n/2] - 1. In [5] it is shown that Kn,,, Pn . Thus r(Pn ) <
S n2 < R(P,,) . It would be interesting to know if lim r(P )n exists, and if so

n-» n
determine its value . An easier but still apparently difficult question is to
determine if {Pn} is an o-sequence .
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