When the Cartesian Product of Directed Cycles is Hamiltonian

William T. Trotter, Jr. UNIVERSITY OF SOUTH CAROLINA

Paul Erdös
HUNGARIAN ACADEMY OF SCIENCES

ABSTRACT

The cartesian product of two hamiltonian graphs is always hamiltonian. For directed graphs, the analogous statement is false. We show that the cartesian product $C_{n_{1}} \times C_{n_{2}}$ of directed cycles is hamiltonian if and only if the greatest common divisor (g.c.d.) d of n_{1} and n_{2} is at least two and there exist positive integers d_{1}, d_{2} so that $d_{1}+d_{2}=d$ and g.c.d. $\left(n_{1}, d_{1}\right)=$ g.c.d. $\left(n_{2}, d_{2}\right)=1$. We also discuss some number-theoretic problems motivated by this result.

1. INTRODUCTION

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. The cartesian product (see p. 22 of [1]) of G_{1} and G_{2}, denoted $G_{1} \times G_{2}$, is the graph $G=(V, E)$ where $V=V_{1} \times V_{2}$ and

$$
E=\left\{\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}: \begin{array}{rl}
u_{1}=u_{2} & \text { and } \\
\text { or } v_{1}=v_{2} & \text { and } \\
\left\{v_{1}, v_{2}\right\} \in E_{2} \\
\left\{u_{1}, u_{2}\right\} \in E_{1}
\end{array}\right\}
$$

A graph $G=(V, E)$ is hamiltonian if there exists a listing $v_{1}, v_{2}, \ldots, v_{n}$ of the vertex set V so that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $i=1,2, \ldots, n-1$ and $\left\{v_{n}, v_{1}\right\} \in$ E. It is elementary to show that if G_{1} and G_{2} are hamiltonian, so is $G_{1} \times G_{2}$.

Now let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be directed graphs, i.e, E_{1} and Journal of Graph Theory, Vol. 2 (1978) 137-142 (c) 1978 by John Wiley \& Sons, Inc.
E_{2} are sets of ordered pairs of V_{1} and V_{2}, respectively. The cartesian product $G_{1} \times G_{2}$ is the directed graph $G=(V, E)$ where $V=V_{1} \times V_{2}$ and

$$
E=\left\{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right): \begin{array}{rlll}
u_{1}=u_{2} & \text { and } & \left(v_{1}, v_{2}\right) \in E_{2} \\
\text { or } & v_{1}=v_{2} & \text { and } & \left(u_{1}, u_{2}\right) \in E_{1}
\end{array}\right\} .
$$

A directed graph $G=(V, E)$ is said to be hamiltonian if there exists a listing $v_{1} v_{2}, \ldots, v_{n}$ of V so that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1,2, \ldots, n-1$ and $\left(v_{n}, v_{1}\right) \in E$. As we shall see, the cartesian product of hamiltonian directed graphs need not be hamiltonian.

2. DIRECTED CYCLES

For an integer $n \geq 2$, let C_{n} be the directed graph with vertex set $\{0,1,2, \ldots, n-1\}$ and edge set $\{(i, i+1): i=0,1,2, \ldots, n-1(\bmod n)\}$. In this section we will determine when the cartesian product $C_{n_{1}} \times C_{n_{2}}$ of directed cycles is hamiltonian. We begin by developing some necessary conditions. We suppose that $v_{1}, v_{2}, \ldots, v_{n_{1} n_{2}}$ is a hamiltonian cycle in $C_{n_{1}} \times C_{n_{2}}$. Without loss of generality we may assume that $v_{1}=(0,0)$.

For an integer $n \geq 2$, we denote by Z_{n} the cyclic group of order n. We use the symbols $\{0,1,2, \ldots, n-1\}$ for the elements of Z_{n} with the operation being addition modulo n. We denote the direct sum of $Z_{n_{1}}$ and $Z_{n_{2}}$ by $Z_{n_{1}} \oplus Z_{n_{2}}$ and adopt the natural convention of using group notation for the elements of $C_{n_{1}} \times C_{n_{2}}$. In particular note that for each $i=$ $1,2, \ldots, n_{1} n_{2}$, either $v_{i+1}=v_{i}+(1,0)$ or $v_{i+1}=v_{i}+(0,1)$.
We let V denote the vertex set of $C_{n_{1}} \times C_{n_{2}}$ and then set

$$
V_{1}=\left\{v_{i}: v_{i+1}=v_{i}+(1,0)\right\} \text { and } V_{2}=\left\{v_{i}: v_{i+1}=v_{i}+(0,1)\right\} .
$$

Note that V_{1} and V_{2} are nonempty and their union is V.
Lemma 1. $v \in V_{1}$ if and only if $v+\left(1, n_{2}-1\right) \in V_{1}$.
Proof. For each vertex $u \in V$, there are exactly two vertices $u_{1}, u_{2} \in V$ for which $\left(u_{1}, u\right) \in E$ and $\left(u_{2}, u\right) \in E$, i.e.,

$$
u=u_{1}+(1,0)=u_{2}+(0,1) .
$$

Now suppose $v \in V_{1}$ and let $v=v_{i}$; then $v_{i+1}=v_{i}+(1,0)$. If $v+\left(1, n_{2}-1\right) \in V_{2}$ and $v+\left(1, n_{2}-1\right)=v_{i}$, then $i \neq j$ but $v_{i+1}=v_{i+1}$. This contradicts the assumption that $v_{1}, v_{2}, \ldots, v_{n_{1} n_{2}}$ is a hamiltonian cycle in $C_{n_{1}} \times C_{n_{2}}$, i.e., each vertex appears exactly one time in this list.

On the other hand, if $v+\left(1, n_{2}-1\right) \in V_{1}$ and $v \in V_{2}$, then $v+(1,0)$ does not appear in the list since $v+(1,0)=v_{i+1}$ and $v_{i}=v+\left(1, n_{2}-1\right)$ require $v+\left(1, n_{2}-1\right) \in V_{2}$ whereas $v_{i}=v$ requires $v \in V_{1}$.

Let $(a, b) \in Z_{n} \oplus Z_{n_{2}}$ and let $\langle(a, b)\rangle$ denote the subgroup generated by (a, b). Then the order of $\langle(a, b)\rangle$ is the least common multiple of the integers $O(a)$ and $O(b)$ which are the orders of a and b in $Z_{n_{1}}$ and $Z_{n_{2}}$, respectively. Let $H=\left\langle\left(1, n_{2}-1\right)\right\rangle=\left\langle\left(n_{1}-1,1\right)\right\rangle$. Then $|H|=$ 1.c.m. $\left(n_{1}, n_{2}\right)=n_{1} n_{2} / d$ where $d=$ g.c.d. $\left(n_{1}, n_{2}\right)$. [1.c.m.-least common multiple; g.c.d.-greatest common divisor.]

It follows from Lemma 1 that V_{1} and V_{2} are both the union of distinct cosets of H. Since they are nonempty and disjoint, we see that the greatest common divisor d of n_{1} and n_{2} must be at least two. However, as we shall see, the condition that d be at least two is not sufficient.

Lemma 2. $v_{i} \in V_{1}$ if and only if $v_{i+d} \in V_{1}$.
Proof. Note that for each i, there exist e_{1}, e_{2} so that $e_{1}+e_{2}=d$ and $v_{i+d}=v_{i}+\left(e_{1}, e_{2}\right)$. We now show that $\left\{\left(e_{1}, e_{2}\right): e_{1}+e_{2}=d\right\} \subset H$. It suffices to show that $(d, 0) \in H$. Choose integers q_{1} and q_{2} which satisfy the Diophantine equation $n_{1} q_{1}+n_{2} q_{2}=-d$. Then

$$
\begin{aligned}
\left(n_{1} q_{1}+d\right)\left(1, n_{2}-1\right) & =\left(-n_{2} q_{2}\right)\left(1, n_{2}-1\right) \\
& =\left(n_{1} q_{1}+d,-n_{2} q_{2} n_{2}+n_{2} q_{2}\right) \\
& =(d, 0) .
\end{aligned}
$$

Now let $v_{d+1}=v_{1}+\left(d_{1}, d_{2}\right)$. Then $d_{1}+d_{2}=d$ and $d_{1}, d_{2}>0$ since neither V_{1} nor V_{2} is empty.

Lemma 3. The order of $\left\langle\left(d_{1}, d_{2}\right)\right\rangle$ in $Z_{n_{1}} \oplus Z_{n_{2}}$ is $n_{1} n_{2} / d$.

Proof. Let $t=$ order $\left\langle\left(d_{1}, d_{2}\right)\right\rangle$. It follows from Lemma 2 that $v_{1+k d}=$ $v_{1}+k\left(d_{1}, d_{2}\right)$. Since $v_{1}+t\left(d_{1}, d_{2}\right)=v_{1}$ and we visit exactly d vertices between v_{i} and v_{i+d}, we see that $t d=n_{1} n_{2}$, i.e., $t=n_{1} n_{2} / d$.

Lemma 4. g.c.d. $\left(n_{1}, d_{1}\right)=$ g.c.d. $\left(n_{2}, d_{2}\right)=1$.

Proof. Suppose that there exists a prime p so that $p \mid d_{1}$ and $p \mid n_{1}$. Let $t_{1}=O\left(d_{1}\right)$ and $t_{2}=O\left(d_{2}\right)$ in $Z_{n_{1}}$ and $Z_{n_{2}}$, respectively. Let us also suppose that $p \mid d_{2}$. Then $p \mid d$ and $p n_{2}$. Then the order of $\left\langle\left(d_{1}, d_{2}\right)\right\rangle$ in $Z_{n_{1}} \oplus Z_{n_{2}}$ is 1.c.m. $\left(t_{1}, t_{2}\right)$. Since $d_{1} \cdot\left(n_{1} / p\right)=\left(d_{1} / p\right) \cdot n_{1}$ and t_{1} is the least integer for
which $n_{1} \mid d_{1} t_{1}$, we see that $t_{1} \mid\left(n_{1} / p\right)$; similarly $t_{2} \mid\left(n_{2} / p\right)$. Therefore
1.c.m. $\left(t_{1}, t_{2}\right) \leq 1 . c . \mathrm{m} .\left(n_{1} / p, n_{2} / p\right)=\left(n_{1} n_{2}\right) /(p d)<\left(n_{1} n_{2}\right) / d$ contradicting Lemma 3.

On the other hand, suppose that $p \nmid d_{2}$. Then $p \nmid d$ and $p \nmid n_{2}$. Then $t_{1} \mid\left(n_{1} / p\right)$ and $t_{2} \mid n_{2}$ and

$$
\text { 1.c.m. }\left(t_{1}, t_{2}\right) \leq \text { 1.c.m. }\left(n_{1} / p, n_{2}\right)=\frac{n_{1} n_{2}}{p d}<\frac{n_{1} n_{2}}{d},
$$

again contradicting Lemma 3.
We conclude that g.c.d. $\left(n_{1}, d_{1}\right)=1$ and dually we have g.c.d. $\left(n_{2}, d_{2}\right)=$ 1.

We are now ready to present the principal result of the paper.

Theorem 1. The cartesian product $C_{n_{1}} \times C_{n_{2}}$ of directed cycles is hamiltonian if and only if $d=$ g.c.d. $\left(n_{1}, n_{2}\right) \geq 2$ and there exist positive integers d_{1}, d_{2} so that $d_{1}+d_{2}=d$ and g.c.d. $\left(n_{1}, d_{1}\right)=$ g.c.d. $\left(n_{2}, d_{2}\right)=1$.

Proof. The necessity has been established by the preceding Lemmas. Sufficiency is established by constructing the hamiltonian cycle in the obvious fashion. Let $v_{1}=(0,0)$ and $v_{d+1}=\left(d_{1}, d_{2}\right)$. Then choose any directed path $v_{1}, v_{2}, \ldots, v_{d}, v_{d+1}$ between $(0,0)=v_{1}$ and $\left(d_{1}, d_{2}\right)=v_{d+1}$; e.g., let $v_{2}=(1,0), v_{3}=(2,0), \ldots, v_{d_{1}+1}=\left(d_{1}, 0\right), v_{d_{1}+2}=\left(d_{1}, 1\right), v_{d_{1}+3}=$ $\left(d_{1}, 2\right), \ldots$ Then construct the remaining part of the cycle using (as required by Lemma 4) the rule $v_{i+d}=v_{i}+\left(d_{1}, d_{2}\right)$. It is straightforward to verify that the construction produces a hamiltonian cycle (see [2] for details).

Example 1. $C_{40} \times C_{56}$ is hamiltonian. In this case $d=8$ and we may choose either $(3,5)$ or $(7,1)$ for $\left(d_{1}, d_{2}\right)$. Note that there are then $\binom{8}{3}+\binom{8}{1}$ different hamiltonian cycles.

Example 2. Let $n_{1}=2^{4} \cdot 5 \cdot 11$ and $n_{2}=2^{4} \cdot 3 \cdot 7 \cdot 13$. Then $C_{n_{1}} \times C_{n_{2}}$ is not hamiltonian. This is the smallest example where $d \geq 2$ but the product is not hamiltonian since it is relatively easy to show that if g.c.d $\left(n_{1}, n_{2}\right)=$ d and $2 \leq d \leq 15$, then suitable d_{1} and d_{2} can always be found.

Klerlein [3] has shown that the Cayley color graph of the direct product of cyclic groups using the standard presentation is the cartesian product of directed cycles of appropriate orders. Theorem 1 can then be applied to determine when this Cayley color graph is hamiltonian.

3. SOME NUMBER THEORETIC RESULTS

Following [2], we say that an integer d is prime partitionable if there exist n_{1}, n_{2} with $d=$ g.c.d. $\left(n_{1}, n_{2}\right)$, so that for every $d_{1}, d_{2}>0$ with $d_{1}+d_{2}=d$ either g.c.d. $\left(n_{1}, d_{1}\right) \neq 1$ or g.c.d. $\left(n_{2}, d_{2}\right) \neq 1$. The first ten prime partionable numbers are $16,22,34,36,46,52,56,64,66$, and 70 . Note that all these values are even. In [2] it is asked whether infinitely many prime partionable number exist and whether there are any odd prime partionable numbers. We settle these questions in the affirmative.

Theorem 2. There exist infinitely many prime partionable numbers.
Proof. It follows from a theorem of Motohashi [4] that there exist infinitely many primes pairs p_{1}, p_{2} with $p_{1}>3$ and $p_{2}=2 p_{1}+1$. To see that for such primes, $d=p_{1}+p_{2}$ is always prime partionable, let $n_{1}=d \cdot p_{1} \cdot p_{2}$ and n_{2} be the product of d with all the primes other than p_{1} and p_{2} which are less than d.

We also found several odd prime partionable numbers by computer search for solutions to Diophantine equations. These values are $d=15$, 395; $d=397,197 ; d=1,655,547 ; d=2,107,997$; and $d=2,969,667$.

Example 3. For the value $d=15,395$ let $n_{1}=d p_{1} p_{2} p_{3}$ where $p_{1}=197$, $p_{2}=317$, and $p_{3}=359$. Then let n_{2} be the product of d with all primes other than p_{1}, p_{2}, and p_{3} which are less than d. Then observe that $d-p_{1}=48 p_{2} ; d-p_{2}=42 p_{3} ; d-p_{3}=84 p_{1} ;$ and $d-1=86 p_{1}$. Furthermore each of the terms $p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, p_{1} p_{2}, p_{1} p_{3}$, and $p_{2} p_{3}$ is larger than d. Thus d is prime partionable and $C_{n_{1}} \times C_{n_{2}}$ is not hamiltonian.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of Professor Carter Bays in the computer search for odd prime partionable numbers.

References

[1] F. Harary, Graph Theory. Addison Wesley, Reading, Mass. (1969).
[2] W. Holsztynski and R. F. E. Strube, Paths and circuits in finite groups. Discrete Math., to appear.
[3] J. B. Klerlein, Hamiltonian cycles in Cayley color graphs. J. Graph Theory, to appear.
[4] Y. Motohashi, "A note on the least prime in an arithmetic progression with a prime difference", Acta Arith. 17 (1970) 283-285.

