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A basis is a set A of nonnegative integers such that every sufficiently large
integer n can be represented in the form n = a + a i with a , ai e A . If A is a
basis, but no proper subset of A is a basis, then A is a minimal basis . A nonbasis
is a set of nonnegative integers that is not a basis, and a nonbasis A is maximal
if every proper superset of A is a basis . In this paper, minimal bases consisting of
square-free numbers are constructed, and also bases of square-free numbers no
subset of which is minimal . Maximal nonbases of square-free numbers do not exist .
However, nonbases of square-free numbers that are maximal with respect to the
set of square-free numbers are constructed, and also nonbases of square-free
numbers that are not contained in any nonbasis of square-free numbers maximal
with respect to the square-free numbers .

1 . INTRODUCTION

Let A = fai l be a set of nonnegative integers, and let 2A = {ai + a,}';_1
consist of all sums of two not necessarily distinct elements of A . The sum set
2A is an asymptotic basis of order 2, or, simply, a basis, if 2A consists of all
but finitely many nonnegative integers . The basis A is minimal if no proper
subset of A is a basis . Minimal bases were introduced by Stöhr [15], and have
been studied by Erdös, Hártter, and Nathanson [2, 3, 5, 10, 11, 13] . If the
set A is not a basis, that is, if there are infinitely many numbers not of the
form a i + a; with ai , a; E A, then A is an asymptotic nonbasis of order 2, or,
simply, a nonbasis . The nonbasis A is maximal if every proper superset of A
is a basis. Maximal nonbases were introduced by Nathanson [13], and have
been studied by Erdös, Hennefeld, Nathanson, and Turjányi [4 - 7, 12, 14,
17] .
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Although minimal bases have been constructed, and also bases no subset
of which is minimal, it is usually extremely difficult to decide whether a given
"natural" basis for the integers does or does not contain a minimal basis . It
is not known, for example, whether the basis consisting of the set of sums of
two squares {m2 + n 21m ,n _ o contains a minimal basis . In this paper we con-
Sider the set Q of squarefree numbers . Cohen [1], Estermann [8], Evelyn and
Linfoot [9], and Subhankulov and Muhtarov [16] proved that Q is an asymp-
totic basis of order 2, and have provided estimates for the number of re-
presentations of an integer as the sum of two square-free numbers .

We shall show that the set Q contains a minimal basis . More generally, a
basis A is called r-minimal if, for any a,, a2 , . . ., ak c- A, the set A\{a	ak} is
a basis if k < r but a nonbasis if k >, r . The 1-minimal bases are precisely the
minimal bases . We shall construct for every r > 1 an r-minimal asymptotic
basis of order two consisting of square-free numbers . We shall also construct
an N,-minimal basis of square-free numbers ; that is, a basis A such that A\A*
is a basis for every finite subset A* C A, but A\A* is a nonbasis for every
infinite subset A * C A . In particular, an N o-minimal basis is an asymptotic
basis of order 2 that does not contain a minimal asymptotic basis .

There cannot exist a maximal asymptotic nonbasis of order 2 consisting
entirely of square-free numbers . However, there do exist nonbases that are
maximal with respect to Q . More generally, a nonbasis A is called s-maximal
with respect to Q if, for any ql , q2 , . . ., qk E Q\A, the set A v {q	q,J
remains a nonbasis for k < s, but becomes a basis for k > s . The 1-maximal
nonbases with respect to Q are precisely the nonbases that are maximal with
respect to Q . For every s _ I we shall construct a set of square-free numbers
that is an s-maximal nonbasis with respect to Q, and also a nonbasis of
square-free numbers that is not contained in any nonbasis of square-free
numbers that is maximal with respect to Q .

Notation . Q denotes the set of positive square-free integers, and 2 =
pl < p 2 < p3 < . . . denote the prime numbers in ascending order. The
cardinality of the set S is I S I , and the relative complement of T in S is
S\T. By [a, b] (resp . [a, b)) we denote the interval of integers n such that
a < n < b (resp. a < n < b) . For n > 1, let S(n) _ {a e [n/2, n] n Q I n -
a E Q} . Let f (n) denote the number of representations of n as a sum of two
square-free numbers . Thenf (n) = 2 1 S(n) ~ if n/2 0 Q and f (n) = 2 1 S(n) I- 1
if n/2 E Q, hence ( S(n) I >, f (n)/2 for n > 1 . The integer part of the real
number x is denoted [x] .

2 . SOME LEMMAS

LEMMA 1 . Let m o , mi , . . ., m t be pairwise relatively prime integers > 1, let
s be any integer, and let R i C [0, mi - I] for i = 1, 2, . . ., t . Let
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Z = {a e [K + 1, L]I a -- s (mod m) but
a ri (mod mi) for all
i = 1, . . ., t and ri e R i}

IZI> L-K' (1- IRi1,)-F1(mi-IRi1) .
ni,

	

i=1

	

mi

	

a=1

Proof. Let So = {s} and let S i = [0, mi - 1]\R i for i = 1, 2, . . ., t. Then
I Si I = mi - Ri I , and a # ri (mod mi) for all ri e Ri if and only if a =-
si (mod mi ) for some s i e Si . Let m = mom, • • • m t . Since the moduli mi
are pairwise relatively prime, the Chinese remainder theorem implies that
there is a set S C [0, m - 1] with I S I = S~ I "' I St I such that Z = {a e
[K + 1, L] I a = s (mod m) for some s e S} . The interval [K + 1, L] contains
[(L - K)/m] complete sets of residues modulo m, each of which contains I S I
elements of Z. Therefore,

IZI >1Lm
K
iISI >( L m K-1 )ISI

L-KF1
Isi1 _jl lsilm0

	

i=1 mi

	

i=1

L K11 (1-	
Mi ) - H(mi

m

	

- Ri )
i=1

	

i

	

i=1

LEMMA 2 . Let f (n) denote the number of representations of n as a sum of
two square free numbers. Then

f(n) >n(~(1-	22) - e
i-1

	

pi

199

for every e > 0 and all n > no(e) . In particular, the square free numbers
form an asymptotic basis of order 2 .

Proof. Let e > 0. Choose p t so large that Y_í.t+, 1/p ie < e/4 . If a e [1, n]
and a 0 Q or n - a 0 Q, then a =- 0 (mod pi e) or a = n (mod pi e) for some
prime pi G n1 /2 . The number of a e [1, n] such that a -_- 0 or n (mod p,2) for
some pi > pt is at most

1

	

2 ([ n2]

	

1) < 2 n { 2n1 / 2 .

	

(1)
Pt<p Gni/2

	

hi

Let Z = {a c [1, n]I a # 0 or n (mod pi e) for all i =

	

Letmo = s = 1,
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let m2 = pie for i = 1, 2, . . ., t, and let Ri consist of the least nonnegative
residues of 0 and n modulo pz 2 . Then I R i I = 1 or 2. By Lemma 1,

1 Zi > nF1(1-, ~ 2~ )-11(pi2- ~Ri1)
i=1

	

pi
	

i=1

	 2

	

i
>nlj(1-2) - li(pi2-1) .

	

(2)
i=1

	

pi

	

i=1

The number of a e [1, n] such that both a e Q and n - a c- Q is precisely f (n) ;
estimates (1) and (2) imply that

f(n) >n 22) - 11(pi2- 1) - 2n - 2n1 / 2
i=1

	

pi

	

i=1

	 2 2 ) - E)

pi

for all n > no (E) . Since l lip--1 (1 - 2/p ie) > 0, it follows that f(n) > 0 for n
sufficiently large, and so Q is an asymptotic basis of order 2 .

LEMMA 3. Let q, , q2 , . . ., qs be square free numbers, and let R i consist of
the least nonnegative residues of q, , q2 , . . ., qs modulo pie . Then the number of
w < n such that w - q, , w - q 2 , . . ., w - q s are simultaneously square free is
greater than

n

	

(1 - IRil ) - s)2
i=1

	

pi

for every c > 0 and all n > n(E) . In particular, the numbers w - q, , . . ., w - qs
are simultaneously square free for arbitrarily large w .

Proof. Since the q; are square-free, 0 0 R i and so J R i I < min {s, p ie - 1} .
Therefore, jj 1 (I - Ri /p,2) > 0 .

Let q = max {q1 , q2 , . . ., q,}. If w e [q 1, n] and w - q; 0 Q for some
j = 1, . . ., s, then w - q; (mod p ie) for some prime pi < n1 /2 . For E > 0,
choose pt so large that I- t+1 I/p z 2 < E/2s . The number of w c [q + 1, n]
such that w q; (mod pz2) for some j = 1, . . ., s and i > t is at most

s (L n 2q~ } 1)< e
n-f sn1 12 .

p t <Pi<n=12

	

pi

	

2
(3)
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Let Z = {w e [q + 1, n] I w # q; (mod p,2) for all j = 1, . . ., sand i
By Lemma 1,

~ Z > (n - q) ~ (1 - Ri

	

(pi2 - Ri D •

	

(4)
i=1

	

pi

	

i=i

Lemma 3 follows from estimates (3) and (4) .

LEMMA 4 . Let n > 1, and let p; 2 and pk2 be the two smallest
primes such that neither p,2 nor p k 2 divides n . Then p;pk < cI Joe n for all
•

	

> n l .

Proof. Suppose p, < Pk . Then rj = Y pie divides np,2p 2 , and so (rj =l p, )2
< np,2p k 2 < np k4 . By Chebyshev's theorem, B(x) _ Y_p,x log p > cx for
some c > 0 and all x > 2 . Exponentiating and squaring this inequality with
x = pk , we obtain

e2cpk < ~
pi)2

G npk4 .

But pk4 < ecpk for all k > t, and so ecpk < n for k > t . If n > e"t, then
e°'17° < n for all k. Therefore, Pk < (1/c) log n for all n > n l = [e l pt] . For
cl = 1 /C 2, we have

PjPk < pk' < Cl log' n .

LEMMA 5 . Let S(w) _ {a e [w/2, w] n Q I w - a c Q} . Let Ajw) consist
•

	

all square free numbers q > u except q c S(w), i.e. Ajw) = Q\(S(w) v
[1, u]) . Then w 0 2A,,,(w) . If w > w* and if w > 8u + 4, then n c- 2A u(w) for
all n > w/2, n w .

Proof. If w = q + q' with q, q' c Q and q' < q, then w/2 < q < w and
q' = w - q c Q, hence q c S(w) . Therefore, q 0 Ajw) and so w 0 2Au(w) .

By Lemma 2, there exists 0 < c o < C2 = rjj , (1 - 2/p i ') such thatf(n) >
c on for all n > n o . If w > con,/2 and n > 2w/co , then f(n) > c on > 2w. But
Ajw) is missing at most w square-free integers, and so n E 2Au(w) for all
•

	

> 2w/c, .
Suppose that w/2 < n < 2w/c o , and n w . Then w < I w(n - w)I <

2W2/C O . Let p ; , pk be the two smallest primes such that neither p;' nor p k 2
divides w(n - w). If w > n, , then Lemma 4 implies that

pi2pk2 < C_12 log o I W(n - w)I < c,,' log o (2W2/Co) (5)

Let Z* _ {a e [u + 1, n - u - I]j a = w (modp, 2) and a -- n - w (mod
pk2 )} . Since (p ;', p k 2 ) = 1, Z* _ {a e [u } 1, n - u - 1]I a = s (mod p;2pk 2)}
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for some s . If a E Z*, then w - a =- 0 (mod p;2) and so a 0 S(w) . Similarly, if
a E Z*, then w - (n - a) _- 0 (mod pk2) and so n - a 0 S(w) . Therefore, if
a E Z* and a, n - a e Q, then a, n - a c Ajw) and so n e 2A,,,(w) . Let
a E Z* . If a 0 Q or n- a 0 Q, then a= 0 (mod p,2) or a- n (modp i2) for
some prime pi < n1 1 2 . By the choice of the primes p; and Pk , if a e Z* then
a =- w -, 0, n (modp,2) and a =- n - w 0, n (mod p k2 )

Let 0 < E < COC2/8 . Choose p t so large that Jji}1 1/p,2 < E/2 . If i j, k,
then (p, 2, p,2pk 2) = 1 and so Z* contains at most 2([(n - 2u - 1)/pi2pj 2p k 2 ]
+ 1) numbers a such that a = 0, n (mod pi 2 ) . Therefore, the number of
a c Z* such that a -- 0, n (mod p,2) for some prime p i > pt is at most

~`)~+2 (L n a 22 2 1 ]+1) <	 2 2 E+2n 1 /2
Pt<PiQ'i/2

	

pi p, Pk

	

pi pk

	 2EW

	

(	
CO

	 2w ) 1/2<
cOp72pk 2 +2		(6)

Let Z = {a c- Z* 1 a * 0, n (mod p i 2 ) for i < t, i j, k} . It follows from
Lemma 1 and from iv > 8u + 4 that

t
Z

	

n -2u-1
1

	

(1 - 2 ) -

	

(pi 2 - 1)
Pi pk

	

i=1

	

p,2
i=1

i#7,k^

	

i#7,k

w/2-2u-1
> C2

	

Pi2pk2

	

C3

c2w
> 4pj2pk2

- c 3

Combining estimates (5), (6), and (7), we conclude that the number of a E Z*

with a, n - a c- Q is at least

C2W

	

C

	

2EW - 2 2W \1/2

4pj2pk2

	

3

	

copj2pk2

	

c,
>

	

(C82 -
E)	w

-2( CW \1/2- C
2 2

	

3
o

	

pi pk

	

o

>1
for w > n2 . Therefore, if w > w* = max {c on,/2, n, , n2 } and
then n c 2A .,u(w) for all n> w/2, n w .

LEMMA 6 . Let W = {w k},°, be a sequence of integers such that w, > w*
and wk > 8W7_ 1 + 4 for all k > I . , Let S(wk) {a c [wk/2, w k] n Q I W k -
a c Q} . Let A(W) - Q\Uk1 S(Wk) . Then wk 0 2A(W)for k ->- 1, but n e 2A(W)

(7)

w>8u+4,
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for all n > w 1 /2, n 0 W. If Q* C [l, w t] n Q, then wk 0 2(A(W) V Q*)for all
k > t, but n e 2(A(W)\Q*)for all n > w ttl /2, n o W.

Proof. If A C Q and A n S(wk) _ 0, then wk 0 2A . Since (A(W) U
Q*) n S(Wk ) _ 0 for all k > t, it follows that w k 0 2(A(W) v Q*) for all
k > t. In particular, w k 0 2A(W) for k > 1 .

By Lemma 5, the sum set 2A,wk 1(Wk) contains all n i Wk12, n

	

w, . If
k > t and n e [w k/2, wk+1/2), n

	

w7,, then n = q + q' where

q, q 'E AWk ,(Wk) n [Wk-1 + 1, Wk,,/2)

= Q n [Wk-1 + 1, Wk+1/ 2)\S(Wk) A(W)\Q*

and so n e 2(A(W)\Q *) for all n > wt}1/2, n 0 W. In particular, n e 2A(W)
for all n _>- w,/2, n 0 W.

3 . MINIMAL ASYMPTOTIC BASES

THEOREM 1 . There exists an N,-minimal asymptotic basis of order 2
consisting of square free integers .

Proof. We shall construct an increasing sequence of finite sets Ao C A, C
A2 C . . . whose union A = U,--O Ak is an X,-minimal basis of square-free
numbers. Let wo > w*, and let Ao - Q n [1, w j For any q, c A,, choose
w, > 8w o + 4 such that w, - q, c Q . Then w, - q, e [w1/2, w1 ], hence
w, - q, e S(w,) . Let

Al = Ao u {[WO + 1, Wll n Q\S(W,)} u {W1 - q1} .

If qk_1, Wk-1 , and A k-, have been determined, let qk c A k-, and choose
wk > 8wk-1 + 4 such that wk - qk c Q . Then Wk - qk E S(wk ). Let

Ak = Ak-1 u {[Wk- 1 + 1, Wk] n Q\S(WJ} U {Wk - qk} .

This determines qk , wk , and Ak for all k . Set A = Uk-o A k .
The sequence W = {wk}k0 satisfies wo > w* and wk > 8wk-1 + 4 for all

k > 1 . Moreover, A = A(W) v {wk - qk}k 1 . The numbers qk e A k were
chosen arbitrarily . Here is the crucial part of the construction : Choose the
numbers qk so that, if a c- A, then a = q k for precisely one k . Then A will be
an X,minimal basis .

Let Q* be a finite subset of A, say, Q* C [1, w t] . Since A(W) C A, Lemma 6
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implies that 2(A\Q*) contains all sufficiently large n ~ W. If wk E W and

k > 1, then wk = (wk - qk) + qk is the unique representation of wk as a
sum of two elements of A . If k > t, then w k - qk c- A\Q* . Since each a c- A is
chosen only once as a number qk , and since Q* is finite, it follows that, for k
sufficiently large, q k e A\Q* and Wk e 2(A\Q*) . Therefore, A\Q* is an asymp-
totic basis for every finite subset Q * of A . But if Q * is an infinite subset ofA,
then qk E Q* for infinitely many k, hence wk 0 2(A\Q*) for infinitely many k,
hence A\Q* is an asymptotic nonbasis .

COROLLARY . There exists an asymptotic basis of order 2 consisting of
square-free numbers that does not contain a minimal asymptotic basis of order 2 .

THEOREM 2. For every r = 1, 2, 3, . . ., there exists an r-minimal basis of
order 2 consisting of square free numbers.

Proof. We shall construct an increasing sequence of finite sets of square-
free integers A o C A l C A2 C . . . such that A = Uko A k is an r-minimal basis .
Choose w o > w* sufficiently large that A o = Q n [1, wj contains at least r
numbers. Choose distinct integers q

'
(1) , qi2)	qir) E A o . By Lemma 3, there

exists w, > 8w o + 4 such that w, - q,(') E Q for j = 1, . . ., r . Let

Al = Ao u {[wo + 1, wi ] n Q\S(wi)} U {w l - qi ) } ;=1

Suppose that the numbers qk'-'1 , w k_, and the set A1_, have been determined .
Choose distinct integers qkr) E A k_1 . By Lemma 1, there exists w k >
8w 7c_1 { 4 such that wk - gk'> E Q for j = 1, . . ., r. Let

Ak = Ak-1 U {[Wk-1 1, Wk] n TWO) U {Wk - qk ) } rj=1

This determines sets A k for all k . Let A = Uk-0 Ak .
The sequence W = {wk}k o satisfies w o > w* and wk > 8Wk_1 + 4 for all

k > 1, and A = A(W) U (UL1 {wk - qk )}~1) . Moreover, A n S(W k) _
{wk - qk' ) } j= 1 . The numbers qk1), . . ., qkr) E Ak_, can be chosen arbitrarily for
each k. Choose them in such a way that every set a, , . . ., a r is chosen infinitely
often for qk), . . ., qkr) ; that is, if Q* C A and I Q* I = r, then Q* _ { qk~}j__1 for
infinitely many k. Then A will be an r-minimal basis .

Let Q* be a finite subset of A . Since A(W) C A, Lemma 6 implies that
2(A\Q*) contains all sufficiently large n 0 W. If Wk E W, k > 1, then w k has
exactly r representations w k = (w k - qk'~) qk'~ as a sum of two elements of
A. If I Q* I < r, then not all of these representations are destroyed, and so
wk e 2(A\Q*) for all k > 1 . But if I Q* I = r, then Q* _ {qk>}j=1 for infinitely
many k, hence wk 0 2(A\Q*) for infinitely many k . Therefore, A\Q* is a basis
if and only if I Q* I < r, and so A is an r-minimal basis .
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4. MAXIMAL ASYMPTOTIC NONBASES

THEOREM 3 . There does not exist a maximal asymptotic nonbasis of order
2 consisting of square free numbers .

Proof. Let A C Q be a nonbasis . Let n l < n 2 < n3 < . . . be the infinite
sequence of numbers not belonging to 2A. If A is maximal, then n i - b e A
for every b 0 A and i sufficiently large . Choose b so that b - 0 (mod 22 ),
b =- 1 (mod 3 2), b =- 2 (mod 5 2), and b =- 3 (mod 7 2 ) . Then, b, b - 1, b - 2,
b - 3 are non-square-free numbers, hence b - j 0 A for j = 0, 1, 2, 3, and
so ni - b + j e A for j = 0, 1, 2, 3 and all i sufficiently large . But this is
impossible, since there do not exist four consecutive square-free integers .

THEOREM 4 . For every s > 1 there exists an asymptotic nonbasis of order 2
consisting of square free numbers that is s-maximal with respect to the square-
free numbers.

Proof. Let wo > w*, and choose w l > 8wo + 4 so that I S(wl)I > s. Let
Al = [1, wI ] n Q\S(w,). Then Bl = [1, w l ] n Q\Al = S(w,) . Choose Q2 C Bl
with I Q2 I = s - 1 . By Lemma 3, there exists w 2 > 8w l -}- 4 such that
w 2 -bcQforallbcB, . Let

A2 = A l u {[Wl + 1, w2] n Q\S(W2)} U {W2 - b}bGB1~Q2 .

205

Suppose that Wk-, and Ak_ I have been determined . Let Bk_l = [1, w k_l ] n
Q\Ak_I . Choose Qk C Bk_ I with I Qk I = s - 1 . By Lemma 3, there exists
wk > 8Wk_l -I- 4 such that wk - b e Q for all b e B k_ I . Let

Ak = Ak-I U {[Wk-i + 1 , Wk] n Q\S(wk )} U {Wk - blbeBk_1\Qk .

This determines sets A k for all k . Let A = Uk, Ak .
The sequence W = {wkik.0 satisfies wo > w* and wk > 8Wk_ I - I- 4 for all

k > 1, and the set A has the form

A = A(W) U ( U {w k - b}bes7 _l\ Qk .k=2

Then S(wk) n A = {wk - b}beak-1\Qk , but b 0 A whenever w k - b c A, hence
wk 0 2A for all k > 2 . Therefore, A is an asymptotic nonbasis of order 2 .
The (s - 1)-element sets Qk C Bk_l can be chosen arbitrarily . Choose

them in such a way that every (s - 1)-element subset of B = Q\A is chosen
as a !2k infinitely often . Then A will be s-maximal with respect to Q .

Since A(W) C A, the sum set 2A contains all n > wI/2, n 0 W. Let Q* be a
finite subset of B = Q\A, say, Q* C [1, q t] . Then Q* C Bk_l for every k > t.
Suppose I Q* I > s. If k > t, then A contains all but s - 1 elements of the
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form wk - b with b c Bk_, , and so w k - b c A for some b c Q*, hence
W k e 2(A U Q*). But if I Q* I = s - 1, then Q* = Qk for infinitely many k,
and for each such k the numbers in {Wk - b}bco . do not belong to A, hence
wk ~ 2(A U Q*) . Therefore, if Q* C Q\A, then A U Q* is a nonbasis if and
only if I Q* I < s, and so A is a nonbasis that is s-maximal with respect to Q .

THEOREM 5 . There exists an asymptotic nonbasis of order 2 consisting of
square free numbers that is not contained in any nonbasis of square free numbers
that is maximal with respect to the square free numbers.

Proof. By Lemma 2, there exists c o > 0 and no such that I S(w)I
f (w)/2 > cow/2 for all w > n o . Let wo > max {w*, no}, and let w l > max
{8wo + 4, 4w,/co}. Let Al = [1, w l ] n Q\S(w,). Since I S(wl) I > f (wl)/2 >
cowl/2 > 2wo , there exists q, E S(wl) n [(wl + 1)/2, wl - wo - I]. Then
wl - g1 EA, .
Suppose numbers w i and qi and sets Ai C [1, wi] n Q have been deter-

mined for all i < k. Let Bk_ 1 = [ 1, W k _1 ] n Q\Ak-1 . By Lemma 3, there
exists wk > max{8Wk_1 + 4, 4wk_1 /co } such that W k - b e Q for all b e B,-, .
Let

Ak = Ak-1 U {[Wk-1 + 1, Wk] n Q\S(Wk)} U {W k - b I b c Bk-1\{qi}k_1} .

Since f(Wk)12 > C oWk/2 > 2Wk_1 , there exists qk E [(Wk + 1)/2, Wk - Wk-1
- 1] n S(W k ) . Then W k - qk c A k . Since W k - b E [Wk - W 1_1 , W k ] for all
b c Bk_ 1 , it follows that wk - qi

	

qk for all i < k. This determines w k , qk ,
and Ak for all k. Let A = U,_ 1 Ak .
The sequence W = {wk}k o satisfies w o > w* and wk > 8W7_1 + 4 for all

k > 1 . Moreover,

A= A(W) U U {W k - b 1 b e Bk_1\{qi}k=1}-
k=2

Then n c- 2A for all n > w 1 /2, n 0 W, but wk 0 2A for all k > 1 . Let B =
Q\A. If b e B, say, b e [1, w t] n Q\A = B,, and if b qi for any i G t, then
Wk - b E A for all k > t, and so Wk = (wk - b) + b E 2(A U {b}) for all
k > t. Thus, A U {b} is a basis . It follows that if Q * C B and A U Q * is a
nonbasis, then Q* C {qi} 1 .

Suppose Q * C {qi} , and w k e 2(A U Q*). Since Wk - qi 0 Q * for i =
1, 2, . . ., k - 1, but W k - qk e A, it follows that the only possible representa-
tion of wk as a sum of two elements of A U Q* is W k = (Wk - qk) + qk
Therefore, Wk e 2(A U Q*) if and only if qk E Q*- Consequently, A U Q * is a
nonbasis if and only if Q* does not contain infinitely many elements of
{qi} , . Since there is no such maximal set Q*, the nonbasis A is not con-
tained in a nonbasis of square-free numbers that is maximal with respect to
the square-free numbers .
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5. PROBLEMS

An asymptotic basis A of nonnegative integers is an infinitely oscillating
basis if it oscillates from basis to nonbasis to basis to nonbasis . .. as random
elements are successively removed from, then added to, the set A . Equivalently,
A is an infinitely oscillating basis if, for all finite sets A*, B* of nonnegative
integers such that A* C A and B* n A = 0, the set (A\A*) U B* is a basis
if I B* I > I A* I and a nonbasis if I B* I < I A* 1 . Similarly, an asymptotic
nonbasis A is an infinitely oscillating nonbasis if A v {b} is an infinitely
oscillating basis for every nonnegative integer b 0 A . Erdős and Nathanson [6]
proved that there exist infinitely oscillating bases and nonbases . Moreover,
they constructed a partition of the nonnegative integers into two sets A and
B such that A is an infinitely oscillating basis and B is an infinitely oscillating
nonbasis . Does there exist an infinitely oscillating basis of square-free
numbers? That is, does there exist A C Q such that, for all finite sets A* C A
and B* C Q\A, the set (A\A*) U B* is a basis if and only if I B* I ~>_ I A* I ?
Is there a partition of the square-free numbers into two sets A and B =
Q\A such that A is an infinitely oscillating basis and B is an infinitely oscilla-
ting nonbasis?

A set A of nonnegative integers is an asymptotic basis of order h if every
sufficiently large integer is the sum of h terms of A ; otherwise, A is an asymp-
totic nonbasis of order h . Do there exist minimal bases and maximal nonbases
of square-free numbers of orders h > 2?
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