Bases and Nonbases of Square-Free Integers

Paul Erdös
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

AND
Melvyn B. Nathanson
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138 and
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901

Communicated by the Editors
Received January 25, 1978

Abstract

A basis is a set A of nonnegative integers such that every sufficiently large integer n can be represented in the form $n=a_{6}+a_{3}$ with $a_{i}, a_{i} \in A$. If A is a basis, but no proper subset of A is a basis, then A is a minimal basis. A nonbasis is a set of nonnegative integers that is not a basis, and a nonbasis A is maximal if every proper superset of A is a basis. In this paper, minimal bases consisting of square-free numbers are constructed, and also bases of square-free numbers no subset of which is minimal. Maximal nonbases of square-free numbers do not exist. However, nonbases of square-free numbers that are maximal with respect to the set of square-free numbers are constructed, and also nonbases of square-free numbers that are not contained in any nonbasis of square-free numbers maximal with respect to the square-free numbers.

1. Introduction

Let $A=\left\{a_{i}\right\}$ be a set of nonnegative integers, and let $2 A=\left\{a_{i}+a_{i j i, j-1}\right.$ consist of all sums of two not necessarily distinct elements of A. The sum set $2 A$ is an asymptotic basis of order 2 , or, simply, a basis, if $2 A$ consists of all but finitely many nonnegative integers. The basis A is minimal if no proper subset of A is a basis. Minimal bases were introduced by Stöhr [15], and have been studied by Erdös, Härtter, and Nathanson [$2,3,5,10,11,13$]. If the set A is not a basis, that is, if there are infinitely many numbers not of the form $a_{i}+a_{j}$ with $a_{i}, a_{j} \in A$, then A is an asymptotic nonbasis of order 2 , or, simply, a nonbasis. The nonbasis A is maximal if every proper superset of A is a basis. Maximal nonbases were introduced by Nathanson [13], and have been studied by Erdös, Hennefeld, Nathanson, and Turjányi $[4-7,12,14$, 17].

Although minimal bases have been constructed, and also bases no subset of which is minimal, it is usually extremely difficult to decide whether a given "natural" basis for the integers does or does not contain a minimal basis. It is not known, for example, whether the basis consisting of the set of sums of two squares $\left\{m^{2}+n^{2}\right\}_{m, n-0}^{\infty}$ contains a minimal basis. In this paper we consider the set Q of squarefree numbers. Cohen [1], Estermann [8], Evelyn and Linfoot [9], and Subhankulov and Muhtarov [16] proved that Q is an asymptotic basis of order 2 , and have provided estimates for the number of representations of an integer as the sum of two square-free numbers.

We shall show that the set Q contains a minimal basis. More generally, a basis A is called r-minimal if, for any $a_{1}, a_{2}, \ldots, a_{k} \in A$, the set $A \backslash\left\{a_{1}, \ldots, a_{k}\right\}$ is a basis if $k<r$ but a nonbasis if $k \geqslant r$. The 1 -minimal bases are precisely the minimal bases. We shall construct for every $r \geqslant 1$ an r-minimal asymptotic basis of order two consisting of square-free numbers. We shall also construct an \aleph_{0}-minimal basis of square-free numbers; that is, a basis A such that $A \backslash A^{*}$ is a basis for every finite subset $A^{*} \subseteq A$, but $A \backslash A^{*}$ is a nonbasis for every infinite subset $A^{*} \subseteq A$. In particular, an N_{0}-minimal basis is an asymptotic basis of order 2 that does not contain a minimal asymptotic basis.

There cannot exist a maximal asymptotic nonbasis of order 2 consisting entirely of square-free numbers. However, there do exist nonbases that are maximal with respect to Q. More generally, a nonbasis A is called s-maximal with respect to Q if, for any $q_{1}, q_{2}, \ldots, q_{k} \in Q \backslash A$, the set $A \cup\left\{q_{1}, \ldots, q_{k}\right\}$ remains a nonbasis for $k<s$, but becomes a basis for $k \geqslant s$. The 1 -maximal nonbases with respect to Q are precisely the nonbases that are maximal with respect to Q. For every $s \geqslant 1$ we shall construct a set of square-free numbers that is an s-maximal nonbasis with respect to Q, and also a nonbasis of square-free numbers that is not contained in any nonbasis of square-free numbers that is maximal with respect to Q.

Notation. Q denotes the set of positive square-free integers, and $2=$ $p_{1}<p_{2}<p_{3}<\cdots$ denote the prime numbers in ascending order. The cardinality of the set S is $|S|$, and the relative complement of T in S is $S \backslash T$. By $[a, b]$ (resp, $[a, b)$) we denote the interval of integers n such that $a \leqslant n \leqslant b$ (resp. $a \leqslant n<b$). For $n \geqslant 1$, let $S(n)=\{a \in[n / 2, n] \cap Q \mid n-$ $a \in Q\}$. Let $f(n)$ denote the number of representations of n as a sum of two square-free numbers. Then $f(n)=2|S(n)|$ if $n / 2 \notin Q$ and $f(n)=2|S(n)|-1$ if $n / 2 \in Q$, hence $|S(n)| \geqslant f(n) / 2$ for $n \geqslant 1$. The integer part of the real number x is denoted $[x]$.

2. Some Lemmas

Lemma 1. Let $m_{0}, m_{1}, \ldots, m_{t}$ be pairwise relatively prime integers $\geqslant 1$, let s be any integer, and let $R_{i} \subseteq\left[0, m_{i}-1\right]$ for $i=1,2, \ldots, t$. Let

$$
\begin{aligned}
Z=\{a \in[K+1, L] \mid a & \equiv s\left(\bmod m_{0}\right) \text { but } \\
a & \neq r_{i}\left(\bmod m_{k}\right) \text { for all } \\
i & \left.=1, \ldots, t \text { and } r_{i} \in R_{i}\right\}
\end{aligned}
$$

Then

$$
|Z| \geqslant \frac{L-K}{m_{0}} \prod_{i=1}^{t}\left(1-\frac{\left|R_{i}\right|}{m_{i}}\right)-\prod_{i=1}^{t}\left(m_{i}-\left|R_{i}\right|\right)
$$

Proof. Let $S_{0}=\{s\}$ and let $S_{i}=\left[0, m_{i}-1\right] \backslash R_{i}$ for $i=1,2, \ldots, t$. Then $\left|S_{i}\right|=m_{i}-\left|R_{i}\right|$, and $a \neq r_{i}\left(\bmod m_{i}\right)$ for all $r_{i} \in R_{i}$ if and only if $a \equiv$ $s_{i}\left(\bmod m_{i}\right)$ for some $s_{i} \in S_{i}$. Let $m=m_{9} m_{1} \cdots m_{t}$. Since the moduli m_{i} are pairwise relatively prime, the Chinese remainder theorem implies that there is a set $S \subseteq[0, m-1]$ with $|S|=\left|S_{1}\right| \cdots\left|S_{z}\right|$ such that $Z=\{a \in$ $[K+1, L] \mid a \equiv s(\bmod m)$ for some $s \in S]$. The interval $[K+1, L]$ contains $[(L-K) / m]$ complete sets of residues modulo m, each of which contains $|S|$ elements of Z. Therefore,

$$
\begin{aligned}
|Z| & \geqslant\left[\frac{L-K}{m}\right]|S|>\left(\frac{L-K}{m}-1\right)|S| \\
& =\frac{L-K}{m_{0}} \prod_{i=1}^{t} \frac{\left|S_{i}\right|}{m_{i}}-\prod_{i=1}^{t}\left|S_{i}\right| \\
& =\frac{L-K}{m_{0}} \prod_{i=1}^{t}\left(1-\frac{\left|R_{i}\right|}{m_{i}}\right)-\prod_{i=1}^{t}\left(m_{i}-\left|R_{i}\right|\right) .
\end{aligned}
$$

Lemma 2. Let $f(n)$ denote the number of representations of n as a sum of two square-free numbers. Then

$$
f(n)>n\left(\prod_{i=1}^{\infty}\left(1-\frac{2}{p_{i}^{2}}\right)-\epsilon\right)
$$

for every $\epsilon>0$ and all $n>n_{0}(\epsilon)$. In particular, the square-free numbers form an asymptotic basis of order 2 .

Proof. Let $\epsilon>0$. Choose p_{t} so large that $\sum_{i-t+1}^{\infty} 1 / p_{t}{ }^{2}<\epsilon / 4$. If $a \in[1, n]$ and $a \notin Q$ or $n-a \notin Q$, then $a \equiv 0\left(\bmod p_{i}^{2}\right)$ or $a \equiv n\left(\bmod p_{i}^{2}\right)$ for some prime $p_{i} \leqslant n^{1 / 2}$. The number of $a \in[1, n]$ such that $a \equiv 0$ or $n\left(\bmod p_{i}^{2}\right)$ for some $p_{i}>p_{t}$ is at most

$$
\begin{equation*}
\sum_{p_{t}<p_{i}<n^{1 / 2}} 2\left(\left[\frac{n}{p_{s}^{2}}\right]+1\right)<\frac{\epsilon}{2} n+2 n^{1 / 2} \tag{1}
\end{equation*}
$$

Let $Z=\left\{a \in[1, n] \mid a \neq 0\right.$ or $n\left(\bmod p_{i}^{2}\right)$ for all $\left.i=1,2, \ldots, t\right\}$. Let $m_{0}=s=1$,
let $m_{i}=p_{i}{ }^{2}$ for $i=1,2, \ldots, t$, and let R_{i} consist of the least nonnegative residues of 0 and n modulo $p_{i}{ }^{2}$. Then $\left|R_{i}\right|=1$ or 2 . By Lemma 1,

$$
\begin{align*}
|Z| & \geqslant n \prod_{i=1}^{t}\left(1-\frac{\left|R_{i}\right|}{p_{i}^{2}}\right)-\prod_{i=1}^{t}\left(p_{i}^{2}-\left|R_{i}\right|\right) \\
& >n \prod_{i=1}^{\infty}\left(1-\frac{2}{p_{i}^{2}}\right)-\prod_{i=1}^{t}\left(p_{i}^{2}-1\right) . \tag{2}
\end{align*}
$$

The number of $a \in[1, n]$ such that both $a \in Q$ and $n-a \in Q$ is precisely $f(n)$; estimates (1) and (2) imply that

$$
\begin{aligned}
f(n) & >n \prod_{i=1}^{\infty}\left(1-\frac{2}{p_{i}^{2}}\right)-\prod_{i=1}^{i}\left(p_{i}^{2}-1\right)-\frac{\epsilon}{2} n-2 n^{1 / 2} \\
& >n\left(\prod_{i=1}^{\infty}\left(1-\frac{2}{p_{i}^{2}}\right)-\epsilon\right)
\end{aligned}
$$

for all $n>n_{0}(\epsilon)$. Since $\prod_{i=1}^{\infty}\left(1-2 / p_{i}^{2}\right)>0$, it follows that $f(n)>0$ for n sufficiently large, and so Q is an asymptotic basis of order 2 .

Lemma 3. Let $q_{1}, q_{2}, \ldots, q_{d}$, be square-free numbers, and let R_{i} consist of the least nonnegative residues of $q_{1}, q_{2}, \ldots, q_{*}$ modulo $p_{t}{ }^{2}$. Then the number of $w \leqslant n$ such that $w-q_{1}, w-q_{2}, \ldots, w-q_{n}$ are simultaneously square-free is greater than

$$
n\left(\prod_{i-1}^{\infty}\left(1-\frac{\left|R_{i}\right|}{p_{i}^{2}}\right)-\epsilon\right)
$$

for every $\epsilon>0$ and all $n>n(\epsilon)$. In particular, the numbers $w-q_{1}, \ldots, w-q_{*}$ are simultaneously square-free for arbitrarily large w.

Proof. Since the q_{i} are square-free, $0 \ddagger R_{i}$ and so $\left|R_{i}\right| \leqslant \min \left\{s, p_{i}{ }^{2}-1\right\}$. Therefore, $\prod_{i=1}^{\infty}\left(1-\left|R_{i}\right| \mid p_{i}{ }^{2}\right)>0$.

Let $q=\max \left\{q_{1}, q_{2}, \ldots, q_{s}\right\}$. If $w \in[q+1, n]$ and $w-q_{j} \dot{\varphi} Q$ for some $j=1, \ldots, s$, then $w \equiv q_{j}\left(\bmod p_{i}{ }^{2}\right)$ for some prime $p_{i}<n^{1 / 2}$. For $\epsilon>0$, choose p_{t} so large that $\sum_{i-t+1}^{\infty} 1 / p p_{i}^{2}<\epsilon / 2 s$. The number of $w \in[q+1, n]$ such that $w \equiv q_{j}\left(\bmod p_{i}{ }^{2}\right)$ for some $j=1, \ldots, s$ and $i>t$ is at most

$$
\begin{equation*}
\sum_{p_{t}<p_{i}<n^{2 / 2}} s\left(\left[\frac{n-q}{p_{t}^{2}}\right]+1\right)<\frac{\epsilon}{2} n+s n^{1 / 2} . \tag{3}
\end{equation*}
$$

Let $Z=\left\{w \in[q+1, n] w\right.$ 㹟 $q_{j}\left(\bmod p_{i}^{2}\right)$ for all $j=1, \ldots, s$ and $\left.i=1, \ldots, t\right\}$. By Lemma 1 ,

$$
\begin{equation*}
|Z| \geqslant(n-q) \prod_{i=1}^{t}\left(1-\frac{\left|R_{i}\right|}{p_{i}^{2}}\right)-\prod_{i=1}^{t}\left(p_{i}^{2}-\left|R_{i}\right|\right) . \tag{4}
\end{equation*}
$$

Lemma 3 follows from estimates (3) and (4).
Lemma 4. Let $n \geqslant 1$, and let p_{j}^{2} and $p_{k}{ }^{2}$ be the two smallest primes such that neither p_{j}^{2} nor p_{k}^{2} divides n. Then $p_{j} p_{k}<c_{1} \log ^{2} n$ for all $n>n_{1}$.

Proof. Suppose $p_{s}<p_{k}$. Then $\prod_{i=1}^{k} p_{i}{ }^{2}$ divides $n p_{j}{ }^{2} p_{k}{ }^{2}$, and so $\left(\prod_{i=1}^{k} p_{i}\right)^{2}$ $\leqslant n p_{j}{ }^{2} p_{k}{ }^{2}<n p_{k}{ }^{4}$. By Chebyshev's theorem, $\theta(x)=\sum_{p<w} \log p>c x$ for some $c>0$ and all $x \geqslant 2$. Exponentiating and squaring this inequality with $x=p_{k}$, we obtain

$$
e^{2 c p_{k}}<\left(\prod_{i=1}^{N} p_{i}\right)^{2}<n p_{k}{ }^{4} .
$$

But $p_{x}{ }^{4}<e^{c p_{k}}$ for all $k>t$, and so $e^{c p_{k}}<n$ for $k>t$. If $n>e^{c p_{t}}$, then $e^{c p_{k}}<n$ for all k. Therefore, $p_{k}<(1 / c) \log n$ for all $n>n_{1}=\left[e^{c p_{t}}\right]$. For $c_{1}=1 / c^{2}$, we have

$$
p_{s} p_{k}<p_{k}^{2}<c_{1} \log ^{2} n .
$$

Lemma 5. Let $S(w)=\{a \in[w / 2, w] \cap Q \mid w-a \in Q\}$. Let $A_{w}(w)$ consist of all square-free numbers $q>u$ except $q \in S(w)$, i.e. $A_{u}(w)=Q \backslash(S(w) \cup$ $[1, u])$. Then $w \notin 2 A_{w}(w)$. If $w>w^{*}$ and if $w>8 u+4$, then $n \in 2 A_{n}(w)$ for all $n \geqslant w / 2, n \neq w$.

Proof. If $w=q+q^{\prime}$ with $q, q^{\prime} \in Q$ and $q^{\prime} \leqslant q$, then $w / 2 \leqslant q \leqslant w$ and $q^{\prime}=w-q \in Q$, hence $q \in S(w)$. Therefore, $q \notin A_{u}(w)$ and so $w \notin 2 A_{u}(w)$.

By Lemma 2, there exists $0<c_{0}<c_{2}=\prod_{i-1}^{\infty}\left(1-2 / p_{i}^{2}\right)$ such that $f(n)>$ $c_{0} n$ for all $n>n_{0}$. If $w>c_{0} n_{0} / 2$ and $n>2 w / c_{0}$, then $f(n)>c_{0} n>2 w$. But $A_{w}(w)$ is missing at most w square-free integers, and so $n \in 2 A_{u}(w)$ for all $n>2 w / c_{0}$.

Suppose that $w / 2 \leqslant n \leqslant 2 w / c_{0}$, and $n \neq w$. Then $w \leqslant|w(n-w)|<$ $2 w^{2} / c_{0}$. Let p_{j}, p_{k} be the two smallest primes such that neither $p_{j}{ }^{2}$ nor $p_{k}{ }^{2}$ divides $w(n-w)$. If $w>n_{1}$, then Lemma 4 implies that

$$
\begin{equation*}
p_{3}^{3} p_{k}^{2}<c_{1}{ }^{2} \log ^{4}|w(n-w)|<c_{1}^{2} \log ^{4}\left(2 w^{2} / c_{0}\right) \tag{5}
\end{equation*}
$$

Let $Z^{*}=\left\{a \in[u+1, n-u-1] \mid a \equiv w\left(\bmod p_{j}{ }^{2}\right)\right.$ and $a \equiv n-w(\bmod$ $\left.\left.p_{k}{ }^{2}\right)\right\}$. Since $\left(p_{j}^{2}, p_{k}{ }^{2}\right)=1, Z^{*}=\left\{a \in[u+1, n-u-1] \mid a \equiv s\left(\bmod p_{j}{ }^{2} p_{k}{ }^{2}\right)\right\}$
for some s. If $a \in Z^{*}$, then $w-a \equiv 0\left(\bmod p_{j}{ }^{2}\right)$ and so $a \notin S(w)$. Similarly, if $a \in Z^{*}$, then $w-(n-a) \equiv 0\left(\bmod p_{k}^{2}\right)$ and so $n-a \notin S(w)$. Therefore, if $a \in Z^{*}$ and $a, n-a \in Q$, then $a, n-a \in A_{u}(w)$ and so $n \in 2 A_{w}(w)$. Let $a \in Z^{*}$. If $a \notin Q$ or $n-a \notin Q$, then $a \equiv 0\left(\bmod p_{i}{ }^{2}\right)$ or $a \equiv n\left(\bmod p_{i}{ }^{2}\right)$ for some prime $p_{i} \leqslant n^{1 / 2}$. By the choice of the primes p_{j} and p_{k}, if $a \in Z^{*}$ then $a \equiv w \neq 0, n\left(\bmod p_{j}{ }^{2}\right)$ and $a \equiv n-w \neq 0, n\left(\bmod p_{k}{ }^{2}\right)$.

Let $0<\epsilon<c_{0} c_{2} / 8$. Choose p_{t} so large that $\sum_{i-t+1}^{\infty} 1 / p_{i}^{2}<\epsilon / 2$. If $i \neq j, k$, then $\left(p_{i}{ }^{2}, p_{j}{ }^{2} p_{k}{ }^{2}\right)=1$ and so Z^{*} contains at most $2\left(\left[(n-2 u-1) / p_{i}{ }^{2} p_{j}{ }^{2} p_{k}{ }^{2}\right]\right.$ $+1)$ numbers a such that $a \equiv 0, n\left(\bmod p_{i}^{2}\right)$. Therefore, the number of $a \in Z^{*}$ such that $a \equiv 0, n\left(\bmod p_{i}^{2}\right)$ for some ptime $p_{i}>p_{t}$ is at most

$$
\begin{align*}
\sum_{p_{k}<p_{i}<n^{1 / 2}} 2\left(\left[\frac{n-2 u-1}{p_{i}^{2} p_{j}^{2} p_{k}^{2}}\right]+1\right) & <\frac{n}{p_{j}^{2} p_{k}^{2}} \epsilon+2 n^{1 / 2} \\
& <\frac{2 \epsilon w}{c_{0} p_{j}^{2} p_{k}^{2}}+2\left(\frac{2 w}{c_{0}}\right)^{1 / 2} \tag{6}
\end{align*}
$$

Let $Z=\left\{a \in Z^{*} \mid a \neq 0, n\left(\bmod p_{i}{ }^{2}\right)\right.$ for $\left.i \leqslant t, i \neq j, k\right\}$. It follows from Lemma 1 and from $w>8 u+4$ that

$$
\begin{align*}
|Z| & \geqslant \frac{n-2 u-1}{p_{s}^{2} p_{k}^{2}} \prod_{\substack{i=1 \\
i \neq l, k}}^{i}\left(1-\frac{2}{p_{i}^{2}}\right)-\prod_{\substack{i=1 \\
i \neq i, k}}^{i}\left(p_{i}^{2}-1\right) \\
& >c_{2} \frac{w / 2-2 u-1}{p_{j}^{2} p_{k}^{2}}-c_{3} \\
& >\frac{c_{2} w}{4 p_{j}^{2} p_{k}^{2}}-c_{3} \tag{7}
\end{align*}
$$

Combining estimates (5), (6), and (7), we conclude that the number of $a \in Z^{*}$ with $a, n-a \in Q$ is at least

$$
\begin{aligned}
& \frac{c_{2} w}{4 p_{j}^{2} p_{k}{ }^{2}}-c_{3}-\frac{2 \epsilon W}{c_{0} p_{j}^{3} p_{k}{ }^{2}}-2\left(\frac{2 w}{c_{0}}\right)^{1 / 2} \\
& \quad>\frac{2}{c_{0}}\left(\frac{c_{0} c_{2}}{8}-\epsilon\right) \frac{w}{p_{j}^{2} p_{k}^{2}}-2\left(\frac{2 w}{c_{0}}\right)^{1 / 2}-c_{3} \\
& \quad>1
\end{aligned}
$$

for $w>n_{2}$. Therefore, if $w>w^{*}=\max \left\{c_{0} n_{0} / 2, n_{1}, n_{2}\right\}$ and $w>8 u+4$, then $n \in 2 A_{w}(w)$ for all $n \geqslant w / 2, n \neq w$.

Lemma 6. Let $W=\left\{w_{k}\right\} t_{0}^{\infty}$ be a sequence of integers such that $w_{0}>w^{*}$ and $w_{k}>8 w_{k-1}+4$ for all $k \geqslant 1$. Let $S\left(w_{k}\right)=\left\{a \in\left[w_{k} / 2, w_{k}\right] \cap Q \mid w_{k}-\right.$ $a \in Q\}$. Let $A(W)=Q \bigcup \bigcup_{k-1}^{\infty} S\left(w_{k}\right)$. Then $w_{k} \notin 2 A(W)$ for $k \geqslant 1$, but $n \in 2 A(W)$
for all $n \geqslant w_{1} / 2, n \notin W$. If $Q^{*} \subseteq\left[1, w_{d}\right] \cap Q$, then $w_{k} \notin 2\left(A(W) \cup Q^{*}\right)$ for all $k>t$, but $n \in 2\left(A(W) \backslash Q^{*}\right)$ for all $n \geqslant w_{t+1} / 2, n \notin W$.

Proof. If $A \subseteq Q$ and $A \cap S\left(w_{k}\right)=\varnothing$, then $w_{k} \notin 2 A$. Since $(A(W) \cup$ $\left.Q^{*}\right) \cap S\left(w_{k}\right)=\varnothing$ for all $k>t$, it follows that $w_{k} \notin 2\left(A(W) \cup Q^{*}\right)$ for all $k>t$. In particular, $w_{k} \notin 2 A(W)$ for $k \geqslant 1$.

By Lemma 5, the sum set $2 A_{w_{k-1}}\left(w_{k}\right)$ contains all $n \geqslant w_{k} / 2, n \neq w_{k}$. If $k>t$ and $n \in\left[w_{k} / 2, w_{k+1} / 2\right), n \neq w_{k}$, then $n=q+q^{\prime}$ where

$$
\begin{aligned}
& q, q^{\prime} \in A_{w_{k-1}}\left(w_{k}\right) \cap\left[w_{k-1}+1, w_{k+1} / 2\right) \\
&=Q \cap\left[w_{k-1}+1, w_{k+1} / 2\right)\left(S\left(w_{k}\right) \subseteq A(W) \backslash Q^{*}\right.
\end{aligned}
$$

and so $n \in 2\left(A(W) \backslash Q^{*}\right)$ for all $n \geqslant w_{t+1} / 2, n \notin W$. In particular, $n \in 2 A(W)$ for all $n \geqslant w_{1} / 2, n \notin W$.

3. Minimal Asymptotic Bases

Theorem 1. There exists an x_{0}-minimal asymptotic basis of order 2 consisting of square-free integers.

Proof. We shall construct an increasing sequence of finite sets $A_{0} \subseteq A_{1} \subseteq$ $A_{2} \subseteq \cdots$ whose union $A=\bigcup_{k=0}^{\infty} A_{k}$ is an x_{0}-minimal basis of square-free numbers. Let $w_{0}>w^{*}$, and let $A_{0}=Q \cap\left[1, w_{0}\right]$. For any $q_{1} \in A_{0}$, choose $w_{1}>8 w_{0}+4$ such that $w_{1}-q_{1} \in Q$. Then $w_{1}-q_{1} \in\left[w_{1} / 2, w_{1}\right]$, hence $w_{1}-q_{1} \in S\left(w_{1}\right)$. Let

$$
A_{1}=A_{0} \cup\left\{\left[w_{0}+1, w_{1}\right] \cap Q \backslash S\left(w_{1}\right)\right\} \cup\left\{w_{1}-q_{1}\right\} .
$$

If q_{k-1}, w_{k-1}, and A_{k-1} have been determined, let $q_{k} \in A_{k-1}$ and choose $w_{k}>8 w_{k-1}+4$ such that $w_{k}-q_{k} \in Q$. Then $w_{k}-q_{k} \in S\left(w_{k}\right)$. Let

$$
A_{k}=A_{k-1} \cup\left\{\left[w_{k-1}+1, w_{k}\right] \cap Q \mid S\left(w_{k}\right)\right\} \cup\left\{w_{k}-q_{k}\right\} .
$$

This determines q_{k}, w_{k}, and A_{k} for all k. Set $A=\bigcup_{k-0}^{\infty} A_{k}$.
The sequence $\left.W=\left\{w_{k}\right\}\right\}_{k-0}$ satisfies $w_{0}>w^{*}$ and $w_{k}>8 w_{k-1}+4$ for all $k \geqslant 1$. Moreover, $A=A(W) \cup\left\{w_{k}-q_{k}\right\}_{k=1}^{\infty}$. The numbers $q_{k} \in A_{k}$ were chosen arbitrarily. Here is the crucial part of the construction: Choose the numbers q_{k} so that, if $a \in A$, then $a=q_{k}$ for precisely one k. Then A will be an x_{0}-minimal basis.

Let Q^{*} be a finite subset of A, say, $Q^{*} \subseteq\left[1, w_{t}\right]$. Since $A(W) \subseteq A$, Lemma 6
implies that $2\left(A \backslash Q^{*}\right)$ contains all sufficiently large $n \notin W$. If $w_{k} \in W$ and $k \geqslant 1$, then $w_{k}=\left(w_{k}-q_{k}\right)+q_{k}$ is the unique representation of w_{k} as a sum of two elements of A. If $k>t$, then $w_{k}-q_{k} \in A \backslash Q^{*}$. Since each $a \in A$ is chosen only once as a number q_{k}, and since Q^{*} is finite, it follows that, for k sufficiently large, $q_{k} \in A \backslash Q^{*}$ and $w_{k} \in 2\left(A \backslash Q^{*}\right)$. Therefore, $A \backslash Q^{*}$ is an asymptotic basis for every finite subset Q^{*} of A. But if Q^{*} is an infinite subset of A, then $q_{k} \in Q^{*}$ for infinitely many k, hence $w_{k} \notin 2\left(A \backslash Q^{*}\right)$ for infinitely many k, hence $A \backslash Q^{*}$ is an asymptotic nonbasis.

Corollary. There exists an asymptotic basis of order 2 consisting of square-free numbers that does not contain a minimal asymptotic basis of order 2 .

Theorem 2. For every $r=1,2,3, \ldots$, there exists an r-minimal basis of order 2 consisting of square-free numbers.

Proof. We shall construct an increasing sequence of finite sets of squarefree integers $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots$ such that $A=\bigcup_{k=0}^{\infty} A_{k}$ is an r-minimal basis. Choose $w_{0}>w^{*}$ sufficiently large that $A_{0}=Q \cap\left[1, w_{0}\right]$ contains at least r numbers. Choose distinct integers $q_{1}^{(1)}, q_{1}^{(2)}, \ldots, q_{1}^{(i)} \in A_{0}$. By Lemma 3, there exists $w_{1}>8 w_{0}+4$ such that $w_{1}-q_{1}^{(3)} \in Q$ for $j=1, \ldots, r$. Let

$$
A_{1}=A_{0} \cup\left\{\left[w_{0}+1, w_{1}\right] \cap Q \backslash S\left(w_{1}\right)\right\} \cup\left\{w_{1}-q_{1}^{()_{1} r}\right\}_{j-1} .
$$

Suppose that the numbers $q_{k-1}^{(3)}, w_{k-1}$ and the set A_{k-1} have been determined. Choose distinct integers $q_{k}^{(1)}, \ldots, q_{k}^{(5)} \in A_{k-1}$. By Lemma 1, there exists $w_{k}>$ $8 w_{k-1}+4$ such that $w_{k}-q_{k}^{(j)} \in Q$ for $j=1, \ldots, r$. Let

$$
A_{k}=A_{k-1} \cup\left\{\left[w_{k-1}+1, w_{k}\right] \cap Q \backslash S\left(w_{k}\right)\right\} \cup\left\{w_{k}-q_{k}^{(9)}\right\}_{j-1}^{\tau} .
$$

This determines sets A_{k} for all k. Let $A=\bigcup_{k=0}^{\infty} A_{k}$.
The sequence $W=\left\{w_{k}\right\}_{\hbar=0}^{\infty}$ satisfies $w_{0}>w^{*}$ and $w_{k}>8 w_{k-1}+4$ for all $k \geqslant 1$, and $A=A(W) \cup\left(\bigcup_{k=1}^{\infty}\left\{w_{k}-q_{k}^{(j)}\right\}_{j-1}\right)$. Moreover, $A \cap S\left(w_{k}\right)=$ $\left\{w_{k}-q_{k}^{(j)}\right\}_{j=1}$. The numbers $q_{k}^{(1)} \ldots, q_{k}^{(\eta)} \in A_{k-1}$ can be chosen arbitrarily for each k. Choose them in such a way that every set a_{1}, \ldots, a_{r} is chosen infinitely often for $q_{k}^{(1)}, \ldots, q_{k}^{(r)}$; that is, if $Q^{*} \subseteq A$ and $\left|Q^{*}\right|=r$, then $Q^{*}=\left\{q_{k}^{(s)}\right\}_{i=1}$ for infinitely many k. Then A will be an r-minimal basis.

Let Q^{*} be a finite subset of A. Since $A(W) \subseteq A$, Lemma 6 implies that $2\left(A \backslash Q^{*}\right)$ contains all sufficiently large $n \notin W$. If $w_{k} \in W, k \geqslant 1$, then w_{k} has exactly r representations $w_{k}=\left(w_{k}-q_{k}^{(3)}\right)+q_{k}^{(3)}$ as a sum of two elements of A. If $\left|Q^{*}\right|<r$, then not all of these representations are destroyed, and so $w_{k} \in 2\left(A \backslash Q^{*}\right)$ for all $k \geqslant 1$. But if $\left|Q^{*}\right|=r$, then $Q^{*}=\left\{q_{k}^{(j)}\right\}_{j-1}^{*}$ for infinitely many k, hence $w_{k} \notin 2\left(A \backslash Q^{*}\right)$ for infinitely many k. Therefore, $A \backslash Q^{*}$ is a basis if and only if $\left|Q^{*}\right|<r$, and so A is an r-minimal basis.

4. Maximal Asymptotic Nonbases

Theorem 3. There does not exist a maximal asymptotic nonbasis of order 2 consisting of square-free numbers.

Proof. Let $A \subseteq Q$ be a nonbasis. Let $n_{1}<n_{2}<n_{3}<\cdots$ be the infinite sequence of numbers not belonging to $2 A$. If A is maximal, then $n_{i}-b \in A$ for every $b \notin A$ and i sufficiently large. Choose b so that $b \equiv 0\left(\bmod 2^{2}\right)$, $b \equiv 1\left(\bmod 3^{2}\right), b \equiv 2\left(\bmod 5^{2}\right)$, and $b \equiv 3\left(\bmod 7^{2}\right)$. Then, $b, b-1, b-2$, $b-3$ are non-square-free numbers, hence $b-j \notin A$ for $j=0,1,2,3$, and so $n_{i}-b+j \in A$ for $j=0,1,2,3$ and all i sufficiently large. But this is impossible, since there do not exist four consecutive square-free integers.

Theorem 4. For every $s \geqslant 1$ there exists an asymptotic nonbasis of order 2 consisting of square-free mumbers that is s-maximal with respect to the squarefree numbers.

Proof. Let $w_{0}>w^{*}$, and choose $w_{1}>8 w_{0}+4$ so that $\left|S\left(w_{1}\right)\right| \geqslant s$. Let $A_{1}=\left[1, w_{1}\right] \cap Q \backslash S\left(w_{1}\right)$. Then $B_{1}=\left[1, w_{1}\right] \cap Q \backslash A_{1}=S\left(w_{1}\right)$. Choose $Q_{2} \subseteq B_{1}$ with $\left|Q_{a}\right|=s-1$. By Lemma 3, there exists $w_{2}>8 w_{1}+4$ such that $w_{2}-b \in Q$ for all $b \in B_{1}$. Let

$$
A_{2}=A_{1} \cup\left\{\left[w_{1}+1, w_{2}\right] \cap Q\left\{S\left(w_{2}\right)\right\} \cup\left\{w_{2}-b\right\}_{b \in B_{1} \backslash O_{2}} .\right.
$$

Suppose that w_{k-1} and A_{k-1} have been determined. Let $B_{k-1}=\left[1, w_{k-1}\right] \cap$ $Q \mid A_{k-1}$. Choose $Q_{k} \subseteq B_{k-1}$ with $\left|Q_{k}\right|=s-1$. By Lemma 3, there exists $w_{k}>8 w_{k-1}+4$ such that $w_{k}-b \in Q$ for all $b \in B_{k-1}$. Let

$$
A_{k}=A_{k-1} \cup\left\{\left[w_{k-1}+1, w_{k}\right] \cap Q \mid S\left(w_{k}\right)\right\} \cup\left\{w_{k}-b\right\}_{b \in B_{k-1} 1 O_{k}} .
$$

This determines sets A_{k} for all k. Let $A=\bigcup_{k-1}^{\infty} A_{k}$.
The sequence $W=\left\{w_{k}\right\}_{k-0}^{\infty}$ satisfies $w_{0}>w^{*}$ and $w_{k}>8 w_{k-1}+4$ for all $k \geqslant 1$, and the set A has the form

$$
A=A(W) \cup\left(\bigcup_{k=2}^{\infty}\left\{w_{k}-b\right\}_{b e B_{k-1} \mid a_{k}}\right) .
$$

Then $S\left(w_{k}\right) \cap A=\left\{w_{k}-b\right\}_{0 \in B_{k-1} \mid o_{k}}$, but $b \notin A$ whenever $w_{k}-b \in A$, hence $w_{k} \notin 2 A$ for all $k \geqslant 2$. Therefore, A is an asymptotic nonbasis of order 2 .

The ($s-1$)-element sets $Q_{k} \subseteq B_{k-1}$ can be chosen arbitrarily. Choose them in such a way that every $(s-1)$-element subset of $B=Q \backslash A$ is chosen as a Q_{k} infinitely often. Then A will be s-maximal with respect to Q.
Since $A(W) \subseteq A$, the sum set $2 A$ contains all $n \geqslant w_{1} / 2, n \notin W$. Let Q^{*} be a finite subset of $B=Q \backslash A$, say, $Q^{*} \subseteq\left[1, q_{t}\right]$. Then $Q^{*} \subseteq B_{k-1}$ for every $k>t$. Suppose $\left|Q^{*}\right| \geqslant s$. If $k>t$, then A contains all but $s-1$ elements of the
form $w_{k}-b$ with $b \in B_{k-1}$, and so $w_{k}-b \in A$ for some $b \in Q^{*}$, hence $w_{k} \in 2\left(A \cup Q^{*}\right)$. But if $\left|Q^{*}\right|=s-1$, then $Q^{*}=Q_{k}$ for infinitely many k, and for each such k the numbers in $\left\{w_{k}-b_{j b o}\right.$. do not belong to A, hence $w_{k} \notin 2\left(A \cup Q^{*}\right)$. Therefore, if $Q^{*} \subseteq Q \backslash A$, then $A \cup Q^{*}$ is a nonbasis if and only if $\left|Q^{*}\right|<s$, and so A is a nonbasis that is s-maximal with respect to Q.

Theorem 5. There exists an asymptotic nonbasis of order 2 consisting of square-free numbers that is not contained in any nonbasis of square-free numbers that is maximal with respect to the square-free numbers.

Proof. By Lemma 2, there exists $c_{0}>0$ and n_{0} such that $|S(w)| \geqslant$ $f(w) / 2>c_{0} w / 2$ for all $w>n_{0}$. Let $w_{0}>\max \left\{w^{*}, n_{0}\right\}$, and let $w_{1}>\max$ $\left\{8 w_{0}+4,4 w_{0} / c_{0}\right\}$. Let $A_{1}=\left[1, w_{1}\right] \cap Q \mid S\left(w_{1}\right)$. Since $\left|S\left(w_{1}\right)\right| \geqslant f\left(w_{1}\right) / 2>$ $c_{0} w_{1} / 2>2 w_{0}$, there exists $q_{1} \in S\left(w_{1}\right) \cap\left[\left(w_{1}+1\right) / 2, w_{1}-w_{0}-1\right]$. Then $w_{1}-q_{1} \in A_{1}$.

Suppose numbers w_{i} and q_{i} and sets $A_{i} \subseteq\left[1, w_{i}\right] \cap Q$ have been determined for all $i<k$. Let $B_{k-1}=\left[1, w_{k-1}\right] \cap Q \backslash A_{k-1}$. By Lemma 3, there exists $w_{k}>\max \left\{8 w_{k-1}+4,4 w_{k-1} / c_{0}\right\}$ such that $w_{k}-b \in Q$ for all $b \in B_{k-1}$. Let

$$
A_{k}^{-}=A_{k-1} \cup\left\{\left[w_{k-1}+1, w_{k}\right] \cap Q \mid S\left(w_{k}\right)\right\} \cup\left\{w_{k}-b\left|b \in B_{k-1}\right|\left\{q_{i j}^{*} z_{i-1}^{2-1}\right\} .\right.
$$

Since $f\left(w_{k}\right) / 2>c_{0} w_{k} / 2>2 w_{k-1}$, there exists $q_{k} \in\left[\left(w_{k}+1\right) / 2, w_{k}-w_{k-1}\right.$ $-1] \cap S\left(w_{k}\right)$. Then $w_{k}-q_{k} \in A_{k}$. Since $w_{k}-b \in\left[w_{k}-w_{k-1}, w_{k}\right]$ for all $b \in B_{k-1}$, it follows that $w_{k}-q_{k} \neq q_{k}$ for all $i<k$. This determines w_{k}, q_{k}, and A_{k} for all k. Let $A=\bigcup_{k=1}^{\infty} A_{k}$.

The sequence $W=\left\{w_{k}^{*}\right\}_{k=0}$ satisfies $w_{0}>w^{*}$ and $w_{k}>8 w_{k-1}+4$ for all $k \geqslant 1$. Moreover,

$$
A=A(W) \cup \bigcup_{k=2}^{\infty}\left\{w_{k}-b \mid b \in B_{k-1}\right\}\left\{q_{(i,-1}^{k-1}\right\} .
$$

Then $n \in 2 A$ for all $n \geqslant w_{1} / 2, n \notin W$, but $w_{k} \notin 2 A$ for all $k \geqslant 1$. Let $B=$ $Q \backslash A$. If $b \in B$, say, $b \in\left[1, w_{t}\right] \cap Q \backslash A=B_{t}$, and if $b \neq q_{t}$ for any $i \leqslant t$, then $w_{k}-b \in A$ for all $k>t$, and so $w_{k}=\left(w_{k}-b\right)+b \in 2(A \cup\{b\})$ for all $k>t$. Thus, $A \cup\{b\}$ is a basis. It follows that if $Q^{*} \subseteq B$ and $A \cup Q^{*}$ is a nonbasis, then $Q^{*} \subseteq\left\{q_{i}\right\}_{i=1}^{\infty}$.

Suppose $Q^{*} \subseteq\left\{q_{i}\right\}_{i-1}^{\infty}$ and $w_{k} \in 2\left(A \cup Q^{*}\right)$. Since $w_{k}-q_{i} \notin Q^{*}$ for $i=$ $1,2, \ldots, k-1$, but $w_{k}-q_{k} \in A$, it follows that the only possible representation of w_{k} as a sum of two elements of $A \cup Q^{*}$ is $w_{k}=\left(w_{k}-q_{k}\right)+q_{k}$. Therefore, $w_{k} \in 2\left(A \cup Q^{*}\right)$ if and only if $q_{k} \in Q^{*}$. Consequently, $A \cup Q^{*}$ is a nonbasis if and only if Q^{*} does not contain infinitely many elements of $\left\{q_{i}\right\}_{i=1}^{\infty}$. Since there is no such maximal set Q^{*}, the nonbasis A is not contained in a nonbasis of square-free numbers that is maximal with respect to the square-free numbers.

5. Problems

An asymptotic basis A of nonnegative integers is an infinitely oscillating basis if it oscillates from basis to nonbasis to basis to nonbasis... as random elements are successively removed from, then added to, the set A. Equivalently, A is an infinitely oscillating basis if, for all finite sets A^{*}, B^{*} of nonnegative integers such that $A^{*} \subseteq A$ and $B^{*} \cap A=\varnothing$, the set $\left(A \backslash A^{*}\right) \cup B^{*}$ is a basis if $\left|B^{*}\right| \geqslant\left|A^{*}\right|$ and a nonbasis if $\left|B^{*}\right|<\left|A^{*}\right|$. Similarly, an asymptotic nonbasis A is an infinitely oscillating nonbasis if $A \cup\{b\}$ is an infinitely oscillating basis for every nonnegative integer $b \notin A$. Erdös and Nathanson [6] proved that there exist infinitely oscillating bases and nonbases. Moreover, they constructed a partition of the nonnegative integers into two sets A and B such that A is an infinitely oscillating basis and B is an infinitely oscillating nonbasis. Does there exist an infinitely oscillating basis of square-free numbers? That is, does there exist $A \subseteq Q$ such that, for all finite sets $A^{*} \subseteq A$ and $B^{*} \subseteq Q \backslash A$, the set $\left(A \backslash A^{*}\right) \cup B^{*}$ is a basis if and only if $\left|B^{*}\right| \geqslant\left|A^{*}\right|$? Is there a partition of the square-free numbers into two sets A and $B=$ $Q \backslash A$ such that A is an infinitely oscillating basis and B is an infinitely oscillating nonbasis?
A set A of nonnegative integers is an asymptotic basis of order h if every sufficiently large integer is the sum of h terms of A; otherwise, A is an asymptotic nonbasis of order h. Do there exist minimal bases and maximal nonbases of square-free numbers of orders $h>2$?

References

1. E. Cohen, The number of representations of an integer as the sum of two square-free numbers, Duke Math. J. 32 (1965), 181-185.
2. P. Erdös, Einige Bemerkungen zur Arbeit von A. Stöhr, "Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe," J. Reine Angew. Math. 197 (1957), 216-219.
3. P. Erdös and E. HÖrtter, Konstruktion von nichtperiodischen Minimalbasen mit der Dichte $1 / 2$ für die Menge der nichtnegativen ganzen Zahlen, J. Reine Angew. Math. 221 (1960), 44-47.
4. P. Erdŏ́s and M. B. Nathanson, Maximal asymptotic nonbases, Proc. Amer. Math. Soc. 48 (1975), 57-60.
5. P. Erdös and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer. Math, Soc, 53 (1975), 253-258.
6. P. Erdös and M. B. Nathanson, Partitions of the natural numbers into infinitely oscillating bases and nonbases, Comment. Math. Helv. 51 (1976), 171-182.
7. P. Erdös and M. B. Nathanson, Nonbases of density zero not contained in maximal nonbases, J. London Math. Soc. 15 (1977), 403-405.
8. T. Estermann, On the representation of a number as the sum of two numbers not divisible by k-th powers, J. London Math. Soc, 6 (1931), 37-40.
9. C. J. A. Evelyn and E. H. Linfoot, On a problem in the additive theory of numbers, II, J. für Mash. 164 (1931), 131-140.
10. E. HÄrtter, Ein Beitrag zur Theoric der Minimalbasen, J. Reine Angew. Math. 196 (1956), 170-204.
11. E. HÄrtter, Eine Bemerkung uber periodische Minimalbasen für die Menge der nichtnegativen ganzen Zahlen, J. Reine Angew. Math. 214/215 (1964), 395-398.
12. J. Hennefeld, Asymptotic nonbases not contained in maximal asymptotic nonbases, Proc. Amer. Math. Soc. 62 (1977), 23-24.
13. M. B. Nathanson, Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333.
14. M. B. Nathanson, s-maximal nonbases of density zero, J. London Math. Soc. 15 (1977), 29-34.
15. A. StöHr, Gelöste und ungelöste Fragen über Basen der näturlichen Zahlenreihe, J. Reine Angew. Math. 194 (1955), 40-65, 111-140.
16. M. A. Subhankulov and S. N. Muhtarov, Representation of a number as a sum of two square-free numbers, Izv. Akad. Nauk UzSSR Ser. Fiz,-Mat. No. 4 (1960), 3-10.
17. S. TURJÁNYI, On maximal asymptotic nonbases of zero density, J. Number Theory 9 (1977), 271-275.
