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COLORFUL PARTITIONS OF CARDINAL NUMBERS 

J. BAUMGARTNER, P. ERDiiS, F. GALVIN AND J. LARSON 

1. Introduction. Use the two element subsets of K, denoted by [K]~, as the 
edge set for the complete graph on K points. Write CP(rc, CL, v) if there is an 
edge coloring R: [K]” -+ fi with p colors so that for every proper Y element set 
X 2 K, there is a point 3t E K -X so that the edges between x and X receive at 
least the minimum of p and Y colors. Write CP#(K, p, v) if the coloring is one- 
to-one on the edges between x and elements of X. 

Peter W. Harley III [5] introduced CP and proved that for K L w, 
CP (K+, K, K) holds to solve a topological problem, since the fact that CP (xl, &, 
&) holds implies the existence of a symmetrizable space on N1 points in which 
no point is a GA. 

G. i\IcNulty showed that U’(K, ~1, v) holds for K~ = K and Y 2 p 2 w. W’e 
heard about the problem from him and from Trotter. The paper owes its title 
to hIcNulty. We would like to thank the referee for several useful suggestions. 

Slany people have worked on the problem of determining for which finite m 
and k with m 2 k -l- 1 2 3 these relations hold. The following list summarizes 
the known results and is based on notes from W. T. Trotter, Jr. 

I. CP(K + 1, k, k) if and only if k is odd (many people) 
2. not CP(3, 2, 2) (from 1) CP (m, 2, 2) for m 2 4 (Gauter, i\IcNulty, 

Sumner, Trotter) 
3. CP(4, 3, 3) (from 1) not CP(5, 3, 3) (many people) not CP(6, 3, 3) 

CP(7, 3, 3) (Sumner and Trotter) CP(10, 3, 3) and CP(ll, 3, 3) (Weese) 
CP(19, 3, 3) (Gauter and Rosa) 

4. CP (m, k, k) if K 2 3 and m 2 K3%” (Erdos) 
5. For every e > 0 there is a k, so that if k + 2 5 m 5 k-1i2-tek and 

k 2 ko then not CP(m, k, k) (Erdiis and Spencer). 
For the last two results, Erdiis and Spencer use the “probabilistic” method. 

It would be desirable to obtain an asymptotic formula for CP(m, k, k) but this 
does not seem to be easy. Sumner and Trotter, and Gauter and Rosa construct 
the colorings for CP(7, 3, 3) and CP(19, 3, 3) respectively. Not much else has 
been done to construct colorings in the other cases for which the relation is 
known to hold. 

In this paper, we consider only infinite parameters. We shall prove in Lemma 
5.1 that if p is regular and K 2 p, then CP(K, /.L, cl), and if (1 < or’, then CI’(K, CL, 
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p+), In Theorem 5.2 we characterize CP under the assumption of GCH, by 
proving that for K, p, v with K >= p, K 2 II, the relation CP(K, p, Y) fails only if 
K > p >= v > cfv = cfK. In Theorem 5.3, we characterize CP# under the 
assumption of GCH, by proving that for K, p, Y with K 1 p 2 V, the relation 
CP#(q p, V) fails only if K > j.4 2 Y 2 cf K, 

To prove the theorems about CP and CP#, we introduce two related rela- 
tions BP and BP#. Write B!?(K, X, p, v) if there is a coloring of the complete 
bipartite K, X graph, R: K X X -+ p, with p colors, so that for every v element 
subset X _C K, there is a point x E X, so that the edges from elements of X to 
x receive at least the minimum of p and v colors. That is, IR”X X (x} / 2 
min(p, v). \Vrite BP#(K, X, p, v) if R restricted to X X {x) is one-to-one. 

In Section 2, we reduce problems about CP and CP# to problems about BP 
and BP#. In Section 3, we study BP#, giving a complete characterization under 
GCH. In Section 4, we study BP. Here we get a complete characterization only 
with the assumption of 1’ = L. With GCH, there is still an open problem which 
is formulated in terms of the existence of a tree together with a family of its 
branches satisfying certain properties. In Section 5, we draw the conclusions 
for CP and CP# from the results of the previous sections. 

The set theoretic terminology is standard. The letters K, X, p, Y, k, n, are 
reserved for cardinal numbers, while 01, 0, y, 6, n, b are used for ordinals. Each 
ordinal number is identified with the set of its predecessors. Since the axiom of 
choice is assumed throughout, cardinals are identified with initial ordinals. 
Therefore, in particular, if 1y is an ordinal and X is a cardinal, then cy < X if and 
only if a E X. The set of natural numbers is denoted by w. 

If A is a set, then /A/ is the cardinality of A. The cardinal successor of K is 
denoted by K+. The nth cardinal successor of K is denoted by K+(%). Let v- be the 
immediate predecessor if Y is a successor cardinal, and let v- = v otherwise. 

If (Y is an ordinal, then cf (Y is the least ordinal which can be mapped onto a 
cofmal subset of a. 

A cardinal K is regzllar if cf K = K. It is well known that for any ordinal CY, 
cfcr is regular, and that any successor cardinal is regular. Cardinals which are 
not successor cardinals are limit cardinals. Cardinals which are not regular are 
singular. 

Cardinal arithmetic plays an important role here. At points the Generalized 
Continuum Hypothesis, or GCH, is used, which says that for every cardinal 
K, 2’ = K+. 

We denote by [K]~ the family of all u element subsets of K. We have already 
used this notation for Y = 2. We write “CT for the set of all functions of domain 
a! and range a subset of (T. Write R”A = {R(a): a E A} for the image of a set 
A under a function R. 

In the following, various sets of appropriate cardinality will be used as the 
basis for the graphs and the sets of colors. The colorings themselves will be 
considered as functions from the set of edges into the set of colors, and thus 
may also be thought of as labelings of the edges or as partitions. 
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2, Write BP (K, A, p, V) if there is a coloring R: K x x -+ p, of K x x with p 
colors, so that for every Y element subset X C K, there is a point x E X so that 
X X {x) has min(p, V) colors, that is, IR”X X (x)1 = min(p, v). Write 
BP#(K, X, p, V) if in addition, every edge gets a different color, namely if R is 
one-to-one on X x {xl. 

LEMMA 2.1. If K 2 v und K 1 ~1, then CP (K, p, Y) if and only if BP(K, K, p, v). 

Proof. If R: K + p is a coloring which attests to CP (K, p, Y), then s: K X K -+ 

~1 defined by S(x, y) = R({x, y)) if x # y, S(x, x) = 0 attests to BP(K, K, p, v). 

Suppose S: K x K + p attests to BP{ K, K, fi, v). Without loss of generality we 
may assume IS” K x (x) 1 = p for all x E K. U’e may also aSSLIme s iS Symmetric 

(otherwise replace S by S’, where 

S’b, Y> = ISCX! Y>I S(Y, XII). 

NOW define Ri: [K X K]’ -+ p X p by 

SUppOSe x E K x K, 1x1 = v, X is proper. Let X1 = {x: 3 y (x, y) E X) and 
x2 = (y: 3x(x, y) E X). If XI = K or X2 = K we are done, so suppose not. 
Either /Xr/ = Y or 1x21 = Y. Say IX,] = v. Choose x E K so that IS”Xr x {x) / 
= p and choose y t K - X2. Then ]R”X X { (2, y)) 1 = p. The case jX,l = v 
is symmetric. 

LEMMA 2.2. For all K, p, Y with K 2 p 2 v,;~CPjfc([~]~,z~, Y), thelzBP#(K, K, p, P). 

Proof. Ure prove the contrapositive. So assume not BP#(K, K, p, Y), and 
suppose R: [K]” + p is a coloring. Define s: K X K -+ p by 3(x, y) = R({x, y)) 
if x # y and S(x, y) = 0 if x = y. Choose X r K with /XI = Y so that for all 
x E K, S restricted to X X { ~1 is not one-to-one. Then X has the corresponding 
property for R, so the lemma follows. 

LEMMA 2.3. For all K, p, Y with K 2 p 2 v, if BP#(K, K, p, Y), then CP#(K, ~1, Y). 

Proof. If v = K, then we have K = I* = V. So every coloring which is one-to- 
one on [xl2 attests to CP#(K, II, Y), thus for Y = K the lemma holds. 

So assume Y < K. Let R: K x K --) p attest to BP#(K, K, p, v). Since Y < K, we 

have Y+ 5 K. lvrite K as the disjoint union of vf subsets each of power K, 

K = u{d,: GJ < V+). For each (Y < vf, let {r&(P): p < K) enumerate A, in 
order type K. Then 

K = {a,@): a! < Vf and p < Kl. 

Define S: [K]” ---f p by 

s(l~(P), a,@)l) = R(am(b9, 6) if a < Y and 

S((a,(P>, a,@)) 1 = 0 if a = Y. 
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Suppose X E K and JXJ = ~.Findr<~+sothatX~U{A,:~u<rj.Find 
6 E K so that R restricted to X X {S) is one-to-one. Then a,(6) 4 X and S 
restricted to 

I pact@>, 4@)1: am(B) E Xl 

is one-to-one. So the lemma holds for v < K. 

3. BP#. In this section we discuss BP#(K, X, p, Y). Since the relation makes 
no sense if v > K and cannot hold if v > 1-1, in discussing BP#(K, X, p, v) we 
always assume K 2 v and fi 2 Y. First we give arguments showing no coloring 
exists. Then we construct colorings under various assumptions. We show how 
to use the assumption of the relation in some cases to prove it in others. 
Finally, we discuss the relation under the assumption of GCH. 

LEMMA 3.1. If K > p and v 2 X, then the relation BP#(K, h, p, v) fails to hoid. 

Proof. Let R: K X h -+ Jo be a coloring. For each y E X, R~:K + p is defined 
by RY(x) = R(x, y). Csing the fact that K > p, for each a! < X choose two 
points u,, uor so that R,(u,) = R,(v,). Let Y be any set of power v having all the 
w&‘s and V~‘S as elements. Then Y works for R. 

LEMMA 3.2. If ‘v 2 cfX and for all p < X, pp < K, then the relation 
BP#(K, X, p, Y) fails to hold, 

Proof. Let R: K X X -+ p be a coloring. Divide 

x = U(A,: a < CfX} 

into cfX disjoint sets each of power less than X. For each a! < cf X, since 
jAmI = p < X, also CLP < K. So there are fewer than K functions from A, into p. 
For each (Y < cf X choose two points ua, va E K so that R restricted to (u,) X A, 
induces the same function on A, as R restricted to (v,) X A,. Let Y be a set 
of power v having all the U,‘S and v,‘s as elements. Then Y works for R. 

LEMMA 3.3. If px < K, then the relation BP#(K, X, p, II) fails to hobd. 

Proof. Let R: K X X --+ ,u be a coloring. For each x E K, R,: X --+ g is defined 
by Ri,(y) = R(x, y). There are at most pi < K functions from X into ~.r. So for 
some S: X + JJ and some X G K of power v, we have R, = S for all x E X. Then 
X works for R. 

LEMMA 3.4. If p is singubur, (cf p)” < cf K, and cf ~1 s v < II, then 
BP#(K, X, cc, v) holds Zf atid only if for some p with v 5 p < JJ, the rela.tion 
BP#(K, X, p, v) holds. 

Proof. One direction follows from the definition. We prove the contrapositive 
of the other direction. Assume for all p with v s p < ,u, the relation 
BP#(K, X, p, v) fails to hold. Let R: K X X + p be a coloring. Divide p = 
U{A,: (Y < cf gcr) into the disjoint union of cf g sets each of power between cf or 
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and p. Define R: K X X -+ cfp by 2(x, y) = cr where R(x, y) E A,. Since 
CfK > (cfp)“, there is a set X C K of power K and a function S: X --f cfp so that 
for all (x, y) E X X h, R(x, y) = S(y). N ow S induces a partition of X = 
U(B,:a <cfp},whereB, = (y:S(y) =ai.Foreachcr<cfp,Rrestrictedto 
X X & maps into A,. So for each a < cf p, let Y, & X be a set attesting to 
not BP#(K, h,jA,I, v) for R restricted to X X B,. Then Y = U{ Y,: cv < cf p] 
works for R. 

LEMMA 3.5. If X is singular and cf X 5 Y, then BP#(h+, X, p, V) $ and only if 
for some T < X, BP#(x+, 7, /J, v), 

Proof. One direction follows from the definition. We prove the contrapositive 
of the other direction, Suppose for all 7 < X, the relation BP#( (x+, 7, p, V) fails 
to hold. Let R: X+ X X -+ p be a coloring. Divide X = VIA,: ar < cf X) into 
cf X disjoint sets each of power less than X. For each CI < cf X, let X, C X+ be 
a set of power v attesting to not BP#(X+, IAnI, )I, v), for R restricted to 
X+ X A,. Then X = U{ A,: a < cf X) works for R. 

LEMMA 3.6. If p 2 K, then BP#(q X, p, v). 

Proof. Define R: K X X t p by R((xl y) = x. 

LEMMA 3.7. If there is a family F C [K]~ covering all szcbsets of K of power V, 

(that is, if A E [K]~, then there is B E F with A C B), then the relation 
BP#(K, IFI, u, Y) holds. 

Proof. Let R: K X F -+ Jo be any coloring with the property that for each 
B E F, R restricted to B X {B) is one-to-one. 

Given a disjoint family of sets (A a: (Y < p], a transversal of the family is a 
set B such that for every LY < p, /B f7 A,1 = 1. Two transversals are almost 
disjoint if their intersection has cardinality < p. 

LEMMA 3.8. (TRASSVERSAL LEMMA) Let p be a cardinal, let (A,: CY < pj be a dis- 
joizt family of sets, a.nd 2et D be a family of almost disjoint trmsversals. Let 
p < cf p, and let F S: Um<,,[AII]~ be a collection of sets so tha.t every member of 
lJa+,[AJY is a szLbset of some member of F. Then BP#(ID(, IFI, p, v). 

Proof. For each x E F, let fi: x + ~1 be a bijection. Define R: D X F -+ p so 
that R(B, x) = fi(x A B) if x A B # 0. 

Suppose X G [D] y. Choose a! so that if B, C E X and B # C, then 
BnA, z CnA,.Let 

x = U{B f7 A,: B E Xl, 

and choose y E F so that x C y. Then for all B, C E X, if B # C, then 

R(B, Y> f R(C, Y>. 

COROLLARY 3.9. For all n with 0 < n < w, the relation BP#(p+@+l), p+@), JL, p) 
holds. 
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This corollary is derived using two lemmas which are proved by induction. 

LEMMA 3.10. For all n < w, there is a covering family F C [p+@)]p of power 
p+@) so thatfor all x E [p+@)]‘, there is y E F with x E y. 

LEMMA 3.11. If for all a! < X, IAmj = X, then there is a jumily D of almost 

disjoint transversals with IDI = X+. 

Lemma 3.11 is proved in [3, Lemma 4.11. 

COROLIAR~ 3.12. If 5ZKo < &I and 2”0 < Pxl, then for all X 5 2x1, 

BP#(h N,, No, Ko). 

Proof. Start with a disjoint family of NI sets each of power 81. Lemma 3.10 
guarantees the existence of the required covering family. To obtain the required 
set of transversals, employ the techniques of [l] which were used there to con 
struct almost disjoint families of subsets of a given set. 

COROLLARY 3.13. For any cardinals u, 7, V, if Y < cf T, then the relation 
BP#(ar, 7) 6, V) holds, 

Proof. Let T be a complete u-branching tree of height r. Then jTI = VZ, and 
IBI = ur where B is the set of branches of T of length T. Define R: B X T + T 
by R(f, a) = flc~ =-f restricted to (Y. Suppose X G .B and 1x1 = v. Then for 
some cr, if f and g are in X and f z g, then f(~) f g(a). So R restricted to 
X X {ti + 1) is one-to-one. 

COROLLARY 3.14. (GCH) For all v < cf iu, the relation BP#(p+, cf p, ~.r, V) 

holds. 

Proof. With GCH, ztCt~ = p+ and pc3 = p. 

COROLLARY 3.15. Assume p < cf r. Then BP#(uf u:, p, Y). 

Proof. For (Y < 7, let A, = “u be the collection of all functions from 01 into cr. 
Let D be the collection of branches of length r through the tree T = (JaCr%. 
Let F = Uai7 p(;3a. 

COROLLARY 3.16. (GCH) For all p < cf X, the rektion BP#(X+, X, p, Y) 
holds. 

Proof. With GCH, X+ = Xcfx and X = A%. 

COROLLARY 3.17. If X is strongly inaccessible, then for all p < X, the relation 
BP#(XX, A, ~.r, Y) holds. 

Proof. Here XL = X. 

LEMMA 3.18. For all n with 0 < n < W, ;I BP#(K, X, p+@), p) holds, thelz 
BP#(K, he ~-r-t(~), p, cl) holds. 

Proof. The proof is by induction on n. Suppose BP#(K, X, p+@+l), p) holds, 
and s: K X X -+ pf(‘+l) attests to the fact. For each rr < p+@+l), let fa: (Y -+ 



530 J. BAUMGARTNER, P. ERD&,F.GALVIN AND J.LARSON 

p+ck) be a one-to-one function. Define 

R: K X 0, X p+(“+l)) A p+(n) 

so that 

Suppose X c K and 1x1 = p. Then for some fi < X, S is one-to-one on X X (pi. 
Choose y so large that S(X X {PI) E y. Then (@, y) works for X and R. 

LEMMA 3.19. Ilf BP# ( c, 7, p, V) and BP#(ti, X, 6, V) holds, then BP#(K, 7. X, p, V) 
holds. 

Proof. Let S: (T X 7 -+ p and T: K X X -+ u attest to BP#(a, T, p, V) and 
BP#(K, X, g, V) respectively, Define R: K X (A X T) --) p by R(ru, (0, y)) = 

So-b, P>, Y). 
Suppose X E [K]~. Then there is fi < X so that 1’ is one-to-one on X X {Pi. 

So T”X x {PI E [cly. Thus there is y < T, so that S is one-to-one on 
(Y’X X 101) X jr). Therefore R is one-to-one on X X { (p, r) 1. 

The following corollary gives some insight into the uses of this lemma. 

COROLLARY 3.20. If BP#(2#o, X1, Ko, X0) holds, then BP#(Zxl, Ni, Ko, No) 
also holds. 

Proof. From Corollary 3.13 to the Transversal Lemma, it follows that 
BP#(2*‘, Ki, 2*0, No) holds. Set 

u = 2HQ, 7 = X = xi, p = v = &, and K = 2*l, 

to derive the above statement from the previous lemma. 

LEMMA 3.21. If u is singuiar and for ail v’ < v, the relation BP#(K, X, p, v+) 

holds, then the relation BP#(K, Xcfv, pciv, v) holds. 

Proof. Let {v rr: cy < cf v) be an increasing sequence cofinal in V, For each 
(21 < cf v, let S,: K X X + p be a coloring attesting to BP#(K, X, p, Ye). Define 
R: K X Cfyii -+ OfVp by R@,f) = g where for all a! < cf v, g(Ly) = S,(@,f(a)). 

Suppose X E [K] V. Express X = * U{Xol. LY < cf V) as the union of a chain of 
increasing sets where IX,] = v,. Let f: cf v -+ CL be a function so that for each 
(Y < cf v, the valuef(a) attests to BP#(K, A, p, v~) for X, and S,. If P and y are 
in X and /3 f y, then choose (Y so large that 0 and y are both in X,. Since S, 
restricted to X, X {f(a) 1 is one-to-one, it follows that R(p,f) # R(-y, f). Thus 
R is one-to-one on X X {f}. 

Now we use the lemmas already proved to give a characterization of the 
relation BP# under the assumption of GCH. 
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THEOREM 3.22. (GCH) 1f K is a limit ca.rdinaZ, then BP#(K, A, ~.r, V) holds if 
andodyifp 2 ~orh > KOY (A = Kandv < cfK). 

Proof. If p 2 K, then Lemma 3.6 gives the desired coloring. So assume 
K > p. If X > K, or X = K and v < cf K, then GCH implies that X 2 I[K]~/, so 

Lemma 3.7 gives the desired coloring. 
If u < K and X < K, then $ < K, so by Lemma 3.3, the relation BP#(K, X, p, V) 

fails. SO assume not only that @ < K, but also that X = K, and P 2 cf K. If K is 
regular, then our assumptions would give the contradiction v 2 cf K = 

K > p >= V. So we may assume K is singular. In this case, by Lemma 3.2, the 
relation BP#(K, A, p, Y) fails to hold. So the theorem follows. 

THEOREM 3.23. (GCH) If K is a SuccesSor cardinal, K 2 p, p 2 Y, then 
BP#(K, X, g, V) holds if aad only if one of the following conditions holds: 

(a) 1 L K, 
(b) x 2 K, 
(c) K = $-und X 2 cfpand u < cfp, 
(d) K = X+ and Y < cf A. 

Proof. If p 2 K, then Lemma 3.6 gives the desired coloring. So assume 
p < K. If X 2 K, then X 2 K = KY = I[K]~/, so Lemma 3.7 gives the desired 
coloring. So assume X < K. 

If ti > A+ and K > pf, then K > px, so by Lemma 3.3, BP#(K, A, p, V) fails to 
hold. So assume either K = p+ or K = A+. 

First assume K = pL+. If X < cf .q then K > $, and Lemma 3.3 gives the 
desired result. So assume X 2 cf p. If v < cf p, then Corollary 3.14 yields 
BP#(K, h, p, v). If v 2 cf g and p is regular, then p+ = K > X 2 cf p = p, so 
v 2 cf p = p = X and Lemma 3.1 yields not BP#(rc, A, ~1, v). If v 2 cf p and ~1 
is singular, then we shall show that not BP#(K, X, ~1, v). Looking at the defini- 
tion, we see that it is enough to show that BP#(pCr+, p, CL, cf cl) fails. Since p is 
singular, by Lemma 3.5, it suffices to show that for all 7 < ~1, BP#(p+, 7, p, cf p) 
fails to hold. If T < p, then (cf JL)I < p+, so by Lemma 3..4, to show that 
BP#(p+, 7, CL, cf p) fails, it suffices to show for all p < p with cf ~1 5 p < IL, that 
BP#(p+, 7, p, cf p) fails. But if p < p and 7 < ~.r, then p* > pr, so Lemma 3.3 
yields the desired result. 

Sow assume K = X+ and p < A. If u < cf X, then by Corollary 3.16, 
BP#(X+, A, V, Y) holds and BP#(X+, A, IL, V) holds. If v 2 cf X, then by Lemma 
3.2, BP#(X+, X, I*, V) fails 

This completes the proof of the theorem. 

4. BP. Recall that we write BP(K, X, p, V) if there is a coloring R: K X h + p 

so that for every v element set X E [K]~, there is a point x E X so that 
IR”X X (xl1 2 min (CL, Y). If v > K, the relation makes no sense, so we 
assume that K 2 V. We discuss the relation first in general, and then under the 
assumption of GCH. Even under GCH, we do not have a complete characteri- 
zation, but we do have a complete characterization if V = L. 
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LEMMA 4.1. (R~ONOTONICITY) (a) Assume that BP(K, X, p, IJ) holds, and that 
K’ _< K, A’ 2 X, p’ 2 p. Assume also that if Y > p, then p = p’. Then 
BP(K’, X’, ;, v) holds. 

(b) Ijc BP(K, X, H, Y) holds and Y’ 2 v 2 p, then BP(K, h, IL, v’) holds. 

The above lemma and the following one follow straightforwardly from the 
definitions. 

LEMMA 4.2. I’f BP#(K, X, p, V) holds, then for all v’ 5 v, the relation 
BP (K, X, p, v’) holds. 

Thus for BP, attention may be restricted to those cardinals for which the 
sharp relation is not settled positively. 

LEMMA 4.3. (a) If ~2 < K and either K is regular or v < K, then BP(K, A, p, v) 

fails to hold. 
(b) If K > ph 2 /.L > cf K, thelz BP&, h, fir v) fails to hoZd. 
(c) If K > ph rend K > cf K 2 p, then B!?(K, A, p, K) holds if and only if 

BJ?(cf K, A, /.L, cf K). 

Proof. Let R: K X X --+ p be a coloring. For each x E K, let RR,: h + p be 
defined by R,(y) = R(x, y). There are only px < K functions from X into /J. 

For part (a), select a set X C [K]” so that for all x, y E X, R, = R,. Then X 
works for R. 

For parts (b) and (c), express K = IJaCctx A, as the disjoint union of cf K sets 
each of power a regular cardinal less than K but greater than J.?. For each 
01 < cf K, select X, C A, with /X,1 = jA,l so that for all x, y E X,, R, = R,. 
Let X = IJaCcfx X,. Then 1x1 = K, and for all x E x, JR”X X {x)1 5 cf K. So 
(B) is proved. 

\IVe continue this argument to prove part (G). Using R restricted to X X X, 
define S: cf K X X -+ p by S(cr, y) = R(x, y) for any y E X,. A set Y C cf K 
attesting to not BP(cf K, A, p, cf K) gives rise to a set 2 = u(X,: (Y E Y} 
attesting to not B!?(K, X, IJ, K). So if BP(cf K, X, II, cf K) fails to hold, then also 
BP(K, h, p, v) fails. Using similar arguments, one can show that a coloring 
S: cf K X X -+ p which attests to BP(cf K, X, p, cf K) gives rise to a coloring of 
R: K X h + p by setting X(x, y) = S(cy, y) for x f: A,, and this coloring 
attests to BP(K, X, p, K). So part (c) is proved. 

LEMMA 4.4. Ilf K > cf K, then BP(K, X, cf K, K) holds. 

Proof. Write K = Uaccfr A, as the disjoint union of cf K sets each of power 
less than K. Define R: K X X + cf K by R (x, y) = LY where x: E A,. 

LEMMA 4.5. (a) If BP (g, 7, p, v) and BP(K, X, u, Y), then BP(K, 7 - X, ti, v). 
(b) If Y > u and BP(a, 7, I-(, u) and BP (K, X, u, v), then BP(K, 7. X, I*, v). 

The proof of this lemma is essentially the same as the proof of the analogous 
lemma for BP#, Lemma 3.19. 
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LEMMA 4.6. For all k and v (= ,uf, the relation BP(p+, g+, p, v) holds. 

Proof. Use Lemma 4.2, Corollary 3.9, and if Y > CL, also Lemma 4.1 (0). 

LEMMA 4.7. If BP(K, A, p+, Y), then BP(K, X. p+, p, v). 

Proof. By Lemma 4.6, BP(p*, p*, p, p) holds, where p = min(v, cl+), If 
BP(K, X, F+, V) holds, then by Lemma 4.5, BP (K, A. p+, p, v) holds. 

LEMMA 4.8. For a.11 n with 0 < n < w, if BP(K, X, p+@), CL) holds, then also 
BP (K, X * g+(@, I*, ,u) holds. 

Proof. Use Lemma 4.7 and induction 

LEMMA 4.9. 1f BP(K, h, p, V) holds, then also BP (K+, X 9 K+, g, v) hokds. 

Proof. By Lemma 4.6, we have BP (K+, K+, K, v). If BP(K, X, ,u, v) holds, then 
by Lemma 4.5 (u), BP (of, h * K+, CL, v) holds. 

LEMMA 4,lO. If K is a limit cardind, cf v # cf K and (p: BP (p, X, p, v) ] is 

cujinal in K, then BP(K, X 0 cf K, p, v). 

Proof. If p 2 K, then by Lemmas 4.2 and 3.6, BP(K, X. cf K, p, v) holds. So 
assume K > p. Since K 2 v and cf K # cf v, we have K > v. Express 
K = urrCcfx A, as the union of a chain of nested sets where 1Ao) > cc, Y, and for 
each a < cf K, BP(J&j, X, p, v) holds. For each CY, let R,: A, X (X X (cx)) -+ p 
be a function attesting to BP (/&I, X, p, v). Then any extension of UaCcix R, to 
a function from K x (A x cf K) into p attests to BP (K, x. cf K, p, v), 

LEMMA 4.11. If ~1 is regular and p S K, then BP(K, K, p, p) holds. 

Proof. The proof proceeds by induction on K. BP (cl, p, p, p) holds by Lemmas 
4.2 and 3.6. If BP@, A, II, p) and K = A+, then BP(K, K, p, p) holds by Lemma 
4.9. If K is a limit and cf K # cf p, then BP(K, K, p, p) holds by Lemma 4.10. 
So suppose K is a limit cardinal, cf K = cf p and for all X with K > A 2 p, 

BP@, X, p, IL) holds. Let (Aa: LY < cf K) be an increasing sequence of cardinals 
cofinal in K with 10 2 p. For each 01 with 0 < o( < cf K, let R,: X, X (ii, X (cx)) 
-+ I-L attest to BP@,, A,, p, p). Let A0 = 10, and for a! > 0, A, = h, - 
Uaca Xg. Then K = Ua~efn A,. Define RG K X (K X IO]) + I.L by RRO(X, (y, 0)) 
= a! where x E A,. Let R: K X (K X cf K) + p be any function which extends 

a<cix R,. Now suppose X E [K]“. If X E X, for some a! < cf K, then using the 
iduction hypothesis, we can find (x, a) E A, X {olj so that IR,“X X { (x, (Y)) j 
2 ~1. Then IR”X X { ( x, a)}/ = p, If X is not a subset of A, for any a! < cf K, 

then X is cofinal in K, and IRo”X X { (0, 0) 1 I = p, so IR”X X { (0, 0)) / = p. 
In either case, the lemma follows. 

LEMMA 4.12. Ilf JJ < K, then BP (K, K, p, p+) holds. 

Proof. Use Lemmas 4.11 and 4.7. 
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LEMMA 4.13. For any K and p with J,L 5 K, BP(K, #cf@, CL, p) holds. Hence if 
K 2 ~1 2 V, BP(K, ~~~~~ p, V) holds. 

Proof. The proof is by induction on K using Lemmas 4.9 and 4.10. The only 
difficult case is cf K = cf p. If K = p then B,P (K, ~~~~~ IL, p) holds by Lemma 3.6. 
It also holds if p = cf p by Lemmas 4.11 and 4.1. So suppose K > p > cf p = 
cf K and that BP@, Xc”‘, p, p ) holds for p 5 X < K. Let (pa: (Y < cf cc) be an 
increasing sequence of regular cardinals with limit p. 

%‘rite K = VIA,: 01 < cf ~1 as the disjoint union of cf p sets with 
p 5 IAfi] < K, and for LY < cf p put B, = l.J~s~ AD. Also, write K’*-” = u(&: 

(Y < cf p) as the disjoint union of cf p sets each of power K~‘P. Let 1 denote the 
set of all ordered pairs, (f, g), of functions f, g with f E c*p cf K, g E cip K and 
such that g(a) E A, for all TY < cf K. Clearly 111 5 ~‘4 and we may assume 
without loss of generality that 1 C CO. 

Now for 0 < cr < cf p it follows from the induction hypothesis that there is 
a coloring S,: B, X C,--+p which attests to BP(IB,I, I&[, p, p). Also, by 
Lemma 4.11, BP(IA,I, IAm/, pB, ~0) holds for (Y, /3 < cf p. Let Tap: A, X A, 
+ ~0 be a coloring which attests to this fact. Now define a coloring 
So: K X I -+ p by setting &(x, (f, g)) = Tarc,)(x, g(cr)) for x E A, and 
01 < cf ~.r. The required coloring R: K X ~~~~ --+ p is any extension of Ua<,ip S,. 

To see that P works, let X E [XIV. If for some (Y, 0 < cr < cf p, we have 
IX A B,j = g, then there is y E C, such that ,IS,“(X A B,) X (y]] = /J. 
Suppose IX A B,I < p for all or < cf p. Then there is an increasing sequence 
(a(p): @ < cf cl) of ordinals less than cf p such that IA,(B) A Xl 2 p,+. Letf: 
cf p --+ cf JJ be any function which satisfies f(ar@)) = fi (0 < cf p). Choose 
g: cf p -+ K so that, for each p < cf CL, g(cr@)) E Aa and 

IR”X X {cf,g){l 2 limp0 = ~1. 

LEMMA 4.14. Assume X > cf X = cf v, ~1 2 v > cf V, and for all p < A, 
pp < K. Then BP(K, X, p, V) Jails to hold. 

Proof. Let R: K X X + p be a coloring. Express X = uaccih A, as the union 
of a chain of nested sets each of power less than X. Pick ( va: OL < cf V) a sequence 
of cardinals cofinal in V. For each CY < cf X, since if p = IA,/, then p < X, so 
@p < K. So there are fewer than K functions from A, into ~1. Choose a set 
X, C K of power var so that for every x, y E X,, R restricted to {x) X A, and 
R restricted to (yj X A, are the same function. Then X = urr<Of~ X, works 
for R. 

THEOREM 4.15. (GCH). Assume X >= K > p. Then BP(K, X, p, v) holds if and 
only if it is not true that X = K and p 2 v > cf K = cf Y. 
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Proof. If X > K, then BP(K, X, p, V) holds by Lemmas 4.1 and 4.13. So 
suppose X = K. If v > J.J, then by Lemma 4.12, BP(K, K, p, p+) holds, so 
BP(K, K, CL, V) holds. So suppose v 2 p. If cf v # cf K, then an easy induction 
on K using Lemmas 4.6,4.9,4.10, and 4.13 shows BP(K, K, v, v), so BP (K, K, p, v) 

holds. So suppose cf v = cf K. If v = cf K, then by Lemma 4.11, BP(K, K, cf K, 

cf K) holds, so BP(K, K, p, v) holds. The only remaining case is ~1 2 v > cf K = 

cf v, and in this case BP(K, K, g, v) fails by Lemma 4.14. 

LEMMA 4.16. (a) If K > PLX and ~1 2 v 2 cf v = cf X, Uzen not BP(K, X, ~1, v). 
(b) If j.~ iS Sing&Y, p 2 v, Cf ii = Cf p = Cf v, K iS regda?‘, CL& 6’ < K 

whenever u < p, G- < X, then not BP(K, h, g, v). 

Proof. First we prove part (a). Let (TV: (Y < cf Xl be cofinal in X. Let R: 
K X X --+ p be a coloring. For a E K and p E cf h, define g*(p) E r.ep by 
g,(p) (7) = R(a, y). There are fewer than ($)+ functions of the form gal/!?. 
Since K L (&)+, there is ry E K such that for all ,8 < cf X, 

Let Iv@: /3 < cf Xl be cofinal in v if Y is singular; otherwise let vB = 1 for all /?, 
Choose A# C K for each /3 < cf X so that IAs1 = VP and for all zy’ E AB goltlfl = 
gulp. ThenX = lJl~<~rK Ap works. 

Next we prove part (b). The proof is analogous to the proof of part (a). Let 
{oh: Q < cf X) and (7,: LY < cf X) be cofinal in I-( and X respectively. Let 
R: K X X + JJ be a coloring. For each OL E K and p E cf X, define go(@) E (3) (UP) 
by setting gcy@) (y) = R((a, r) if R(cx, y) < ~8, and setting gLI@) (-y) = 0 
otherwise. Since K is regular and for all (T < p, -T < X, we have K > u?, there are 
fewer than K functions of the form galp. Hence there is a! E K such that for all 
p < cf A, 

I(a’ E K: gc+l@ = g&) 1 = K. 

Letting {VS: 0 < cf X) be as in part (a), choose A6 C K for each fi < cf X so 
that lAoI = VB and for all cy’ E Ag, gdl’l/3 = gmlp. Then Ub<el~ AD works. 

LEMMA 4.17. If2” = X+ and IL 5 A+, then BP@+, X, CL, X+). 

Proof. The proof follows from Lemma 14.1 (p. 222) of [4] which says the 
following: 

There is a functionf: [h+12 -+ X+ so that whenever X, Y C Xf with 1x1 = X 
and ] YI = X+, then there is x E X so that the edges between x and members of 
Y receive all X+ colors. 

LEMMA 4.18. Suppose p is singular. 
(a) If K is regular mzd for all p < p, px < K, then for all v > cf p with 

cf v = cf p, not BP(K, X, ,u, v). 
(b) If K 2 v > ,u and cf v > (cf /A)~, then not BP (K, A, p, v). 

(c) Suppose p 2 X 2 cf p, v 2 cf p and either 
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(ii) X = p, pa 5 p for all p < p and CT < X, Y < p, and cf v # cf 12. 
Then BP(p+, X, p, Y) if and only if BP(p+, cf ~.r, IL, v). 

Proof. First we prove part (a). Let R: K X h --+ p be a coloring. Divide 
p = Uuccip A, into the disjoint union of cf p sets each of power less than cc. Let 

(VU: CY < cf ~1 be a sequence of cardinals cofinal in v. Define 8: K X X -+ cf p 
by a(x, y) = cr where R(x, y) C A,. Since (cf P)~ < K, we can find U G K, a 
set of power K, and S: X -+ cf cc, a function, so that for all x E U and y c X, 
a(x, y) = S(y). Now S induces a partition of X, X = Ua<cf,,Bn. For each 
x f U, let R,: X ---f ~1 be defined by R,(y) = R(x, y). For u E U, the function 
R, maps Uas= Bb into UB~~A~. There are at most px < K functions from 
U6r.nB~ into UB_IJB where p = jUaolA~j < p. So for each a! < cf ~1, choose 
X, C Use that for all zk, u’ E X,, 

Then X = UrrceipXa works for R. 
Next we prove part (b). Let R: K X h + p be a coloring. Let (pa: (Y < cf cl) be 

cofinal in II, and for cy E K, define g,: h 4 cf p by g,(B) = least y such that 
R(cu, 0) < pLy. Choose X E [K]~ so that for all LY, P E X, the functions g, and go 
are equal, g, = ga. Then X works. 

Next we prove part (c) (i). Lemma 4.1 guarantees that if BP(p+, cf p, p, v), 
then BP(p+, X, p, v). So assume BP (IL+, X, pr Y) holds, and let R: p+ X X + p 
attest to the fact. Let (cl*: (Y < cf p) be cofinal in p. Define &: PI+ X X + cf JL 
by J?((x, y) = the least y with R(x, y) < p,. Since (cf p)” s g < p+, there is a 
set U C p1+ of cardinality CL+, and a function f: X -1 cf p so that for all u E U, 
for all y E X, B(u, y) = f(y). Then f induces a partition of X = Uaccirr L, 
wheref”L, = ICY]. Let 

Since for all LY < cf P, the set (La)p,(a) has power I~~(a~]lL*I 5 p, the set I has 
power 5 CL. Define S: U X cf p -+ I by 

S(x, a) = h E -)IL,(ol), 

where h(y) = R(x, y). Now S works. For suppose X E [Uly. Let y E X be 
such that R”X X Iy] has cardinality at least min (II, v). Now y E L, for 
some cr, so S’X X (01) has cardinality at least min (p, v). 

Finally we prove part (c) (G). As in the previous part, only one direction 
presents any difficulty to prove. Here X = I-L. So suppose BP(p+, p, ~.r, v) holds, 
and let R: g+ X p 4 p be a witness. Define S on W+ X cf ~1 by 

S(x, y) = h E (fly) (Py) 

where h(r) = R(x, y) if R(x, y) < p, and h(r) = 0 otherwise. Then S is a 
coloring showing BP(p+, cf cc, CL, Y). For if X E [p+ly, then there is y < X such 
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that /{R&y): a! c Xl] = v. Since cf v # cf I*, there is 0 such that j {R(cr, y) < 
~8: a E XII = vandr < p,+ Butthen I(S(cr,fi):ol c XII = V. 

LEMMA 4.19. (TRANSVERSAL LEMMA) Let {A i: i E I} be a family of disjoint 
sets. Let T be a set qf transversals of { Ai: i E I) such thnt for every X E [T]? there 
is i E I such that [(t n Ai: t E X)j 2 p = min(p, v), Let C C UiG.IIAf]s~ be 
such that for all i E I, for all x E [AJP, there is y E C with Ix n yI = p. Then 

BP(lTl, ICI, ~3 ~1. 
Proof. For each y E C, let fu: y -+ g be a one-to-one function. Let R: 

T X C -+ p be any function with R(t, y) = .f,(lt-) whenever t A y = {x) # 0. 
Then R attests to BP (l7J, ICI, p, Y). F or suppose X +$ [TIP. Find i E I so that 

I(t n At: t E X)1 2 p. 

Choose y E C so that 

I~x E y: x E tnAi}l >= P. 

Then IR”X X {y) j 2 min (p, Y). 

LEMMA 4.20. (TREE EQUIVALENCE). Assume pX = max (p, X) and K = (&)f. 
Then BP(K, X, p, Y) if and only if there is a 5 p-branching tree T of height X and 
a set B of branches of length X such that II?/ = K and for all B’ E [BIV, there is 
some a: < X such that (t E T: level (t) = cr and t occurs in some element of IS’\ 
has cardinal&y 2 min (p, v). 

Proof. (J) Suppose R: K X X -+ p witnesses BP(K, X, p, v). For each 
a c K, let Ii,: x +p be defined by R,(P) = R(a, p), Let T = {RalP: (Y E K, 
fi E hj, ordered by inclusion. Then T is 5 p-branching and of height X. Let 

B = ({RJa: P E Xl: (Y E K). B is certainly a family of K branches of length X. 
If B’ E [BIV, then X = {a: (R,Ifl: /3 E X) E B’] has power at least u. Find 
y E X so that JR”X X {y{ / 2 min (p, v). Choose /3 2 y. Then 

IiRalb: a E Xl I L min (P, v), 

so 

(t E T: level (t) = B and t occurs in some element of 23’1 

has cardinality 2 min (cl, v). So B works. 
(*) We use Lemma 4.19. The ath level of the tree is A,. Each branch is a 

transversal. All we need exhibit is C of cardinality X. If ~1 2 X, then 

I-41 S 1% 5 PX- = P, 

so that 

C = {Aa: a E A). 

Suppose p < X. Let p = min (p, v). Then 

I[A,]pl 5 IacLIp = I*lfil’~ 5 d = X, 
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so let 

C = Ua~JdaP. 

LEMMA 4.21. (GCH) Assume p& < p” = K, v < K, cf v # cf x and cf v- # cf A. 
Then BP(K, X, p, v) holds. 

Proof. Our first proof used a theorem of E. C. 3,lilner [6] which characterizes 
the cardinals possible for families of almost disjoint transversals. We give a 
direct proof. 

We wish to apply Lemma 4.20. Let the tree T be the set Uor<x~pc(, ordered by 
inclusion, and let the set of branches be 

B = (IflO: P E Xl: f E +.icll. 

Everything is clear except the assertion about B’ E [B] Ye Let 

F = (f E Q: {fib: /3 E X] E B’J = {U b: b E B’]. 

Then II?‘1 = jF(. F or each f, g E F with f # g, let Ocf, g) be the least y with 
f(r) # g(y). Note that if 6 2 Ocf, g), thenf(6) # g(6). If v < cf X, then 

a = sup{O~,g~:f,gE FandfZgl 

shows B’ satisfies the conditions of Lemma 4.20. Thus we may assume 
v 2 cf X. Since cf v # cf X, this inequality must be strict, namely we are - 
assuming v > cf X. Let A C X be a cofinal set of power cf X. Let 

B” = ((f/a: a: E A): f E F]. 

Since each branch {fl CX: 01 t h} of T is uniquely determined by {flcz: (Y E A], 
we know that lB”I = IB’/ = V. For each (Y E x let 

ha = Iifla: f E Fll. 

Since T is a tree, a: < 8 implies X, 5 x@. If some X, = v, we are done, SO suppose 
not, that is, suppose X, < v for all a! E A. Since cf v # cf X, sup X, < v. NOW 

v = IB’I = jB”l 5 naEA X, S (sup X,)c’x = max ((cf X)+, (sup A,)+). 

Since we have assumed cf X < v and (sup X,) < v, we may conclude that 

v = max ((cf X)+, (sup A,)+). 

Since v = (cf X)+ is ruled out by the hypothesis cf v- # cf X, we must have 
Y = (sup A,)+. Also cf (sup X,) # cf X. Hence there are IY < X and p so that 
for all /3 >= cy, X19 = p. So v = pf and pcfA = v. So cf p < cf X < p. Let T’ be the 
tree 

Iflbf~ Fad@ E Al 

ordered by inclusion. Then 

IT’1 = Iv {Iflb:.f E FI: P E All = ZaGa X, = P. 
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Enumerate the elements of T’ in order type p, T’ = (TV: t < pj , Now B” is 
a set of branches through T’, so for each b E B”, let Ea be the least f < p such 
that b fJ {t,: 7 < [) is cofinal in b. Since IB”] = v = p+ > p, we can find [ so 
that 

I{b E B”: fa = 611 = v. 

But since 21t1 5 p < Y and lB”j = V, there must be b and b’ in B” such that 
b # b’; but b and b’ have identical cofinal subsets, a contradiction. 

THEOREM 4.22. (GCH). Assume K > X, p, K 5 px (so K = max (p+, h’)). 

(a) Assume & >= K. 
(;) Ijc x >= /J Und v = K t/Zen BP(K, A, /J, v). 

(ii) i=f X 2 p and cf Y = cf p then not BP(K, X, p, v). 
(Z) in all other case6, BP(K, h, p, V) if and only ;j BP(K, cf cc, g, v). 

(b) Assume pE < K. 

(i) if cf v # cf X and either (v = K a.nd p 5 X) or (Y < K and cf v- # cf X), 
then B!?(K, X, p, v). 

(ii) qcf V = cf Xorifcf V # cf x, Y = KandX < ~,thennotBP(K,X,~,v). 
(iii) otherwise, i.e., if cf v Z cf X, v < K and cf v’- = cf X, then assuming 

1’ = X,, BP(K, X, 1, V} holds. 

Prooj. (a) xote that $ 2 K implies K = pf and X 2 (cf p)+ so p is singular. 
(;) holds by Lemma 4.17. 

(ii) holds by Lemma 4.16 (b). 
If v 2 cf ~1 then (iii) holds by Lemma 4.18(c). If v < cf ~1 then 

BP(K, cf p, p, V) holds by Lemma 4.21. See case (b) (;) below. (Note that this 
case is reduced to part (b).) 

(b) If $ < K, then either K = pf and X = cf ~.r, or K = A+. 

(i) Suppose cf Y # cf X, v = K, and p 4 X. Then BP(K, X, p, v) by Lemma 
4.17. Now suppose cf v # cf X, v < K, cf v- # cf X. Then BP(K, X, p, v) by 
Lemma 4.21. 

(ii) Assume cf v = cf X. Then not BP(K, X, p, v) by Lemma 4.16(a). 
Assume cf v # cf X, v = K, X < p, (so X = cf p). Then not BP(K, X, p, v) by 
Lemma 4.18 (b). 

(ii;) The result if V = L follows from unpublished work of Prikry [7]. 
It may also be derived from the gap-l two-cardinal theorem in L. using the 

methods of Litman [Theorem 3.4 of 21. 

Theorem 2 completes our discussion of the BP property under GCH. For 
if K = p then BP(K, X, II, v) by Lemma 4.2. So assume K > Jo. If K > j.?, then 
Lemma 4.3 either settles the problem or reduces it to the remaining cases. So 
assume K 5 $. If K 5 X, then Theorem 4.15 applies, and if K > 1, then 
Theorem 4.22. 
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Unfortunately, in Theorem 4.15(b) (ii;), all we can say under GCH is that 
BP is equivalent to the proposition about trees given in Lemma 4.20. The 
situation of Theorem 4.15 (b) (iii) can occur in two ways: Let p be singular, 
v < p, cf Y # cf p, cf Y- = cf p. Then the open questions are BP(p+, cf II, ~.r, Y) 
and BP(rjr+, IL, p, v), where p < p is arbitrary. 

Next we observe that BP either holds or fails for both situations together. 

LEMMA 4.23. (GCH) Suppose P is singular, Y < p, cf p # cf u und cf V- = 
cf cc. Then BP&+, cf ~1, ~1, V) i=f and onZy if BI’(g+, p, p, Y) where p < p is 
arbitrary. 

Prooj. Assume BP(p+, cf /.i, )I, v). By Theorem 4.15, BP(p, p, p, V) holds, SO 

by Lemma 4.5, BP(p+, II, p, v). Now assume BP(p+, ~.r, p, v). Then 
BP(p+, p, p, v), so by Lemma 4.18(c), BP(@, cf ~.r, )L, v). 

5. In this section, we use the equivalence of CP(K, p, V) with BP(K, K, p, v) 

and CP#(K, p, v) with BP#(K, K, ~1, Y) together with the results of the previous 
sections to draw some conclusions about Cl’ and CP#. 

LEhfKk 5.1. (u) IfK 2 p Cd p is 7egda?‘, &n CP(K, p, p). 

(b) If K > P, then CP(K, fi, PC(+). 

Proof. For (a), use Lemmas 2.1 and 4.11. For (b), use Lemmas 2.1 and 4.12. 

THEOREM 5.2. (GCH) For all K, p, Y with ri 2 p, K 2 v, the relation CP (K, p, Y) 

fails to hold ij and only if 

K>p)=V>CfV=CfK. 

Proof. Cse Lemma 2.1 and Theorem 4.15 if K > p. If K = CL, then any one- 
to-one coloring works. 

THEORE~I 5.3. (GCH) For all K, p, v with K 2 p 2 Y, the relation CP#j’uils to 
hold if and only ij 

K>ji~V~CfK. 

Proof. If K = JL, then any one-to-one coloring works. If K > p, then use 
Lemma 2.3 and Theorem 3.23. 
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