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1. We say that g(n) is additive if g(mn)=g(m)+g(n) holds for every coprime
pairs m, n of positive integers . If, moreover, g(p') =g(p)' for every prime power
pa , then g(n) is called strongly additive . By p, pi , p2 , . . ., q, qr , q2 , . . . we denote
prime numbers, c, Cl, c2i . . . are suitable positive constants . F(n) and x(n) denote
the largest and the smallest prime factor of n . The symbol < is used instead of
0 ; ~ { } is the counting function of the set indicated in brackets { . } . For a distri-
bution function H(x) let (p,(T) denote its characteristic function . Let

Q(h) = Q,(li) = sup (H(x+li)-H(x))
x

be the continuity module - concentration - of H. We say that H satisfies a Lip-
schitz condition if Q(h) <h as h-0 .

We assume that g(n) is strongly additive and that

(1.1)	 9' (p) ~~ .
p

	

p

The theorem of Erdős-Wintner [1] guarantees that the function g(n)-An ,
where

(1 .3)

	

A,,= Z	 g(p)
p<n p

has a limit distribution, i .e . the relation

(1 .4)

	

# {n N1 g(n)- A n x} F(x)
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holds at every continuity point of F(x), where F(x) is a distribution function . If,
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1

	

e'T9 (P )
p-I-

P )
.

moreover, Eg(p)lp converges, then the values g(n) have a limit distribution too, i.e .

(1 .5)

	

N # {n NIg(n) < x} - G(x),

at every continuity point of the distribution function G(x) .
We have the relations

(1 .6)

	

(PF(0 = 11 I (1 - 1 ) e-rig(P) + 1 etc `1
P 19íP) '

P

	

P

	

P

From these forms we can see that both F and G can be represented as the distribu-
tion of the sum of infinitely many mutually independent random variables having
purely discrete distributions . By the well-known theorem of P . Uvy [2] G and F
are continuous if
(l .s)

	

l/p

	

where z9 = {pjg(p) 01 .
PEZ9

Furthermore, assuming the validity of (1 .3) we have that F and G are of pure type,
either absolutely continuous or singular (see E . LUKÁCS [3]) . To decide the question
if a distribution function were absolutely continuous or singular seems to be quite
difficult. The first result upon this has been achieved by P. ERDŐS [4] ; namely it
was proved that if g(p)=O(p '), 8 being any positive constant, then G(x) is
singular . Recently JOGESH BABU [5] has proved that G(x) is absolutely continuous
if g(n) is generated by g(p)=(logp)_a (0<a<2) . The main idea of the proof is
that (P G (z) is square-integrable in (--, -), and so by using Plancherel's theory
of Fourier integrals it must have an inverse in L 2(-_, _) that is the density func-
tion of G(x) .

It is known that a distribution function H satisfies Lipschitz condition if J (P, (z) I

is integrable in (--, -), and so it is absolutely continuous . The method of Jogesh
Babu gives that G satisfies Lipschitz condition if g(p)=(logp)-° (0<a<1) .

The aim of this paper is to investigate the singularity or absolute continuouity
of distribution functions for some classes of additive functions .

We shall prove the following theorems .

Theorem 1 . Let g(n) be a strongly additive function,

(1 .9)

	

D (y) _ Z
I g (P)I

P _Y p

and suppose that the inequalities

(1 .10)

	

D(t1) < 1/t,

(1 .11)

	

Ig(Pl)-g(P2)1 - 1/t if P~

	

P2 < tó



i
hold with suitable positive constants A and 6, for every large t . Then

(1 .12)

	

(1090 -1 < QG0/0 << (109 0 -1 (t

where the constants involved by << may depend on g .

This result was achieved by TJAN [7] and P . ERDŐS [8] for log (n)n	 , and for

log 6(n) , resp.
n

Theorem 2. Let g(n) be strongly additive satisfying (1 .1) . Then for the con-
centration Q(h) of F(x) or G(x) (if it exists) we have

(1 .13)

	

Q (4DR) - lo R (R
2),

c being an absolute positive constant, and

(1 .14)

Remarks .
1) This assertion is non-trivial only if DR log R->0 (R--), since Qn(1/t)»1/t

(t--) for every H(x) .

2) If g(p)=(logp) - Y
(y?- 1 constant), then DR=(1+o(1))

(log
R)

v
and so,

1
QG(1/t)»	

tlw
.
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l

	

g,(p)
` iiz

p R P

Theorem 3. If the strongly additive g(n) is generated by g(p)=(logp)-Y, then.

2
(1 .15)

	

tlw << QG(1/t) <<
(log

tOgv
t~

if y 1, while for y =1

(1 .16)

	

1

	

t
<< QG (1/t) << ( oglogt)

s log t

Remarks .

1) We guess that QG(1/t)« thv for y>1 but we are unable to prove it .

2) We also guess that G(x) is singular if 0-g(p)-(logp)-Y, y>2. This seems:
not to be known even if g(p)=(logp)-v.

3) By our method we could estimate the concentration for other functions if g(p)>
is monotonic . The following assertion holds . Let t(u) ::-0 to monotonically
decreasing in (1, -), g(p)=t(p) for primes p. Let Y(T), z(i) be defined by the:
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relations t(y(r))= y(r)"'; t(z(r))=11r. Suppose that for large i, y(r)<r',

z(r) ::-e"" (s>0 constant), and that the integral
z(T) cos rt(u)

f	
- du

y(T) u log u
is bounded as -c-- . Then QF(h)<<l/h. These conditions hold if g(p) decreases
regularly and

1P p=g(p)(1-pl =

g2(p) <

	

g(p) _ .
p

	

p

Theorem 4 . There exists a monotonically decreasing function t(u) satisfying
the conditions

t (P)

	

t2
	 ~p) ~ ~

for which the distribution function F(x) of the strongly additive g(n) defined by g(p)=
=t(p) is singular .

2. Proof of Theorems 2 and 4 . We shall prove Theorem 2 for F(x) only . The
proof is almost the same for G(x) .

F(x) can be represented as the distribution function of 0, ; OR= Z ~ p, where
p>R

~p are mutually independent random variables with the distribution

1
p

for the mean value MO, and variance DO, we have
sequently, by the Chebyshev inequality,

P(IOR1 < ADR) - 1

	

1
.

So by

d =

	

g (p)
p<_R p

we have

F(- d + ADR) - F(- d - ADR) = P ( p =	p	 p) (V p -- R) A IOR I - ADR))

(1- 1) 11(1-1/p)»(1-1/A2)
. 1

A2 p-R

	

log R

P (5 p = - g (p)lp) = 1- 1 ,
p

MOR-0, DOR-DR .

8y putting A=2 our assertion follows immediately .

Con-

(R -- 2) .
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To prove Theorem 4 we define our g(p) as follows . Let R, =1, R, + , be defined

by Rc =log log log log log Rc+ ,, ~ c =exp (exp (exp Rj)), g(p)=
1
I if PE[RI , R c+ ,) .

c
Then

Let m run over the square-free integers all prime factor of which is less than R.
By Theorem 2, for fixed m the number of integers n with

c c
n = my -- N, x(m) -- RI , g(v)-(AN-AR) E -

~c ~c
, -

is greater than a constant time of

Summing up for m we have

So the intervals

C
U [g(m)-AR, __,C_,, g(m)-A,,+

il

cover a positive percentage of integers . The whole length of these intervals is less
than c2n(R=)/'~c . This quantity tends to zero as Z->- . By this the theorem is proved .

3. Lemmas . Let Y(A) be an arbitrary set of distinct square free integers m
having the following properties :

(1) A - x(m),

(2) if PI I m„ p a 1 m2i m,"~ m2EY(A), then m, ám2 .
PI pz

Let Q(n) be a multiplicative function such that O-o(p)--1+0(1/ps) (8 ::-0 con-
stant) . Moreover, let

(3 .1)

	

T(A) _

	

°(m) .
m

(3 .2)

c, being an absolute constant .

2

g (p)

	

gz(P) «2log log R

	

1«c+i
Xlp>RI p

	

P>$I P

	

Al

Lemma l . For 2--A we have

N
jj

I
(l-1) .

M p<R

	

p

#jn = mv ~ N~g(n)EU Lg(m)
- ARI -

c , g(m)-ARI+
cl

J
l

l

	

m

	

~l

	

?
J

l

»N 11 (1-1/p) '2~ 1 »N.
p<R I

	

P(m)-R I m

m E Y (A)

	 C'T (A) = A log A '
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Proof. We split the elements of Y(A) according to P(m)E[A2" A2``+1) Let
T,(A) denote the part of the sum (3 .1) corresponding to this interval . From (2)
we have

Th (A) 2" Z	 e (n)
A

	

n

where the sum extends over the square free n with A--z(n)-- :P(n)--A 24+1 . So

	 Q(rn) «

	

i

	

(I Q(P) 1«logA2"+1M

	

A< p=A2"+1

	

p

	

log A

Using this inequality for every h --O we have (3 .2) .

Remark. Since T(1)-I+T(2), therefore by Lemma 1, T(1) is bounded .
We shall use the following Esseen type inequality due to A . S. FAINLEis [6]

which we quote as

Lemma 2. For an arbitrary distribution function H(x) we have

(3.3)

	

Qn (h) -- C sup I f (Px (i) d r .
r=113 t o

Lemma 3. Let y~:-0 be fixed,
cos i (log P) _y

1/

	

pila~p~ei v
Then S is bounded as i-->- .

is bounded as c-•- . Indeed,
eTl/y

E- f Cos2(log u)_Y du
X10

	

u log u

that

So it

Proof. First of all we shall prove that

_

	

cos i (log n) YE

	

n log nTlo~n~ eT1/v

To estimate the integral we substitute y=Tjlog u)", and we get immediately

eil/v COS C (log u)-y
aló

	

duu log u

« o1

	

i

	

i
,1„ n log n ((log n)1' (log (n-I I» )

T«	i1o(log z)i+v .

1 z/(ioiog~)y cos
Y f

	

y1/Y dy = 0(1)
.

i

is enough to prove that S-E=0(1) as c--- .



Since

where
N,

L(N,, N2) _

	

(A (n)-1) COS i (log n) - Y .
n=N,

By using partial summation,
NZ-1

L(N1 , N 2) = d N~(N2) cos i (logN2 ) - v+

	

dNI(n) cos	
z

v -cos(log n)

	

(log (n+ 1)) Y ) '
Hence, by (3.6) we get

N

	

N,-1
L(NI N.)<<	(1+

	

Cos
T -cos

	

~ .' 2

	

(log Ní)10

	

N,

	

(log n) ,

	

(log (n+ 1))v
Since i/(log n)v is monotonic and cosine satisfies Lipschitz condition, the last sum
is majorated by

log N, log N2
Consequently,

2*
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Let ilo-M-e""; N,=M+jN 3/4 (j=o, 1, . . ., [Ml/4]) , N= M3/4' N2 =N,+N,
and consider the quantity

cos (log p)-y -

	

Cos i (log n) - y
S N1 , N2 =

(

	

) N,~ p-N_

	

P

	

N,~n<N2

	

n log n

To estimate it we use the prime number theorem for short intervals in the form

(3.5)

	

dN,(t1) =
n~

(A(n)-1) << (log N,)10
(N1 u N2) .

1

	

1

	

log x+ l

	

2(n-N,)
N1 log N, n log n

	

x2 (1og x) 2 dx - N2 log N,

for N,-n--N2 , therefore
1L N N2)1

(3 .6)

	

S(N1 , N2) <<

	

]/p2 { N
2
2+ .	1'

	

'
N,~ p<N2

	

N1

	

N1 log 1V1

1

	

M3/2M1/4

	

1
0-J 1/4 S(N,, N2) <<

M =̀P-2M P2
+ M 2 +(log M)11+

M -1/4

+ (IOgM)10 llog M log 2M1

By putting M=2"i10 , h=o, 1, 2, . . ., upto M--e""'
By this Lemma 3 has been proved .

4. Proof of Theorem 3. Let
(

	

eh(togp)-v- 1
w (r) =1T 11+

	

Pp

we have S-E=0(1) .
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be the characteristic function of the limit distribution of g(n) defined by g(p)=

=(loge) - Y. First we observe that
eiti(logP)-Y- 1

(4 .1)

	

log (p(z)j - Re

	

+0(1) .
Pie

	

P
Lemma 3 and the relation

gives that
1

	

2tiz(1og P) - v
(4 .2)

	

log I(p(i)~

	

loge+0(1)+Re
Y

	

P =10

	

P

Consequently, f I co (i) <

	

for y < 1 . Let y 1 . From (4 .2) we have
0

(4 .3)

	

1 (P (i) « 'r

	

(i)
where

(1+ e ;i('0BP) - y
1~ (T) _ H

	

-P~R1,2

	

p

Let ~/r (i) = tCr r (i) • 2 (a), where

4'1 - Pc(1[ R)1 , 4~2 - (logR)li - Rl/2

(4 .4)

So we have

(4.5)

where

(4 .6)

2R

First we estimate B2 (R) . We have

02(z)= 1+

where the summation is extended for the square-free m.'s satisfying (log R)4-:
.x(m)-P(m)-R1'4 . We have

BAR) « R+ 1 min (R,
g(1

) )
m

1 nin R,	
1

M

	

m

	

mn

	

~g(m)-g(n)j)'

n runs over the same set as m.
Let

(4.7)

1Z - = log log Y+®(1)
P=v P

f 1 co(T)1 di «
R1 y

(B, (R) + B2 (R»,
R

2R
Bj (R) = f 1tp j (i)~ 2 * (j = 1, 2) .

R

eisg (m)

M '

K(11R) = sup

	

Z

	

1/m .
x g(m) E Lx, x+1/R)

R'- i - 2R .

Let x be fixed. We observe that the set of m's standing in the right hand side satisfies



and so

K(l/R) «
log log R
(log R)4 .

Furthermore, the contribution of the pairs m,n for which Ig(m)-g(n)I-R 2

majorated by

Since

we have

ml m2
Pr P2

I~~(r)I-

2Rf I (p(z)I dr << R"I" (log log R)2 .
R

Applying this inequality for R=T/2 1 (1z=1, 2, . . .) we get

From Lemma 2 our theorem immediately follows .

50 Proof of Theorem L First we prove the second inequality in (1 .12) . Let

( 1 ; Y) _ Z~ g (P)
PA p=v

Since from (1 .10)
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the conditions of Lemma 1 with A=(log R 4, o-1 . Indeed, if Ig(m r)-g(m2)I-1/R,
P11 r4i , P2/m2 , then

g(ml ) - g(M2 )

	

~g(PI) - g(PA - 19(mí) - 9(m2)1Pi

	

P2

So we have

1

	

1
- 1 -11R > 0,

(109 Pi) Y (109 P2) Y I

R2
j

2
(1 + 1/P) 2 « logR)2 .

p-R
Consequently

R(4 . 8)

	

B2(R)«R+~ 1 (	 {

	

1/m})+
n n o=i`R3 .~+ 1

	

r

	

j+1
19(rn) - 9(n)1 E [j/R'R 1

+	 R (

	

Y

	

1/m) « R.
osj RI,J

	

1

	

r
T 19(m)' E [j]R,

jRr

jJ (l+ 1/p)«log 1og R, therefore BI(R)«(loglog R) 2 R . So
p~(1oaR)'

(log log T)2
T

	

-1/Y1

	

I(p(c)I d~
T i

	

(log log T) 2 log T
a

Ig( t2A) ` jVB( t 2A)
n_N

	

t 2

if

if

y

	

1,

y=1 .

is



304

	

P. Erdős, t . Kátai

we have

(5 .1)

	

# {n -_ N; l g(n ; t")l _- 1/1) =I .
For a natural number n let e(n) denote the product of those prime factors

of n that are less than 't" ; let f(n)=n/e(n). From (5.1) we - get that with the ex-
ception of at most N/t integers if n-N and g(n)E[x, x+l/t], then g(e(n))E[x-1/t,
x+l/t] . Let x and t be fixed, and al<a2< . . .<a, be the sequence of those square-
free integers all prime divisors of which is less than t" and g(a)E[x-1/t, x+l/t],
Let E(a,) be the number of those n--N for which a j I e(n) and (aj , e(n))=aj holds .
By using the Eratosthenian sieve we have

(5.2)

	

E(aj) -- 1+0(1)
No (aj)

]I (I- l )
(N -

a j

	

P ~t2A

	

p

where O(m)= PH l 11/p . Sine
P
jj (I - l/p) « (log t) -1,

we have

(5.3)

	

Qc(1/t) « 1 + I sup

	

Q(ai)
t

	

log t x y(a;)E[x-1/ +,/t7

	

aj

It has only remained to prove that

(5.4)

	

Ux,t =

	

z

	

Q(a') « 1
9(aj ) E[,, x+1/,,

	

a j

uniformly for xE(--, -) as t-- .
We write every aj as my where P(m)-_t ó , x(v) _- t ó , or v=l. So

Ux,r =
v
~ e(v) J

	

e m)9(m) E[x- 9(v), x+llt-9(v)) m

The set of m's satisfies the conditions of Lemma 1 (see (1 .11)) so the inner
sum is bounded, and we have

U,' <<

	

(1+ 0(1) 1 «l .
_ 5

	

pp

We shall prove that

and by this the proof will be finished .

G(I/t)-G(-1/t) -
log t (t - ~),
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Let P= jj p . It is obvious that
P~te1

n~N,(n,P)=11=((1+o(1))Npff
(1-1/p)-	igt (N

c2 is an absolute constant . Furthermore,

'Z

	

Ig(n)I

	

Z

	

1 - c3 N jj (1-

	

lg(q)l
n-N,(n>P)=1

	

c
4>~

g(q)
gmS N,(m,P)=1

	

P=tei

	

4-

	

q

By choosing c,=2A, from (1 .9) we have

'Z 1- t

	

Z Ig(n)I -- IN ff (1- 1 l }~.~ 100

	

c4 N

n~N,(n,P)=1

	

n-N,(n.P)=1

	

-

	

Plr

	

p pP

	

tlogt'
J4(n)j--I1t

This and (5.5) gives that

F(1/t)-F(-1/t)

By this the proof of our theorem is finished .
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