ON THE GROWTH OF SOME ADDITIVE FUNCTIONS ON SMALL INTERVALS

P. ERDÖS, member of the Academy and I. KÁTAI (Budapest)

1. The letters c, c_{1}, c_{2}, \ldots denote suitable, $\varepsilon, \varepsilon_{1}, \varepsilon_{2}, \ldots, \delta$ small positive constants. $\varepsilon_{1}, \varepsilon_{2}, \ldots$ will depend on ε. p_{n} denotes the $n^{\text {th }}$ prime number, $p, q, q_{1}, q_{2}, \ldots$ are primes. \sum_{p} denotes a summation over primes indicated. $\pi(x)=\sum_{p \leqq x}^{\sum} 1 . \omega(n)$ denotes the number of distinct prime factors of $n .(a, b)$ and $[a, b]$ denote the greatest common divisor and the least common multiple of a and b, resp. [x] denotes the integer part of x. For the sake of brevity we shall write $x_{i+1}=\log x_{i}$ $(i=0,1,2), x_{0}=x$.

Let

$$
\begin{equation*}
O_{k}(n)=\max _{j=1, \ldots, k} \omega(n+j), \quad o_{k}(n)=\min _{j=1, \ldots, k} \omega(n+j) \tag{1.1}
\end{equation*}
$$

One of us (see [1]) proved the following assertions. For every $\varepsilon>0$, apart from a set of n 's having zero density, the inequalities

$$
O_{k}(n) \leqq(1+\varepsilon) \varrho\left(\frac{\log k}{\log \log n}\right) \log \log n, \quad o_{k}(n) \geqq(1-\varepsilon) \varrho\left(\frac{\log k}{\log \log n}\right) \log \log n
$$

hold for every $k=1,2, \ldots$ Here $\varrho(u)(u \geqq 0)$ is defined as the inverse functjon of $\psi(r)=r \log \frac{z}{e}+1$ defined in $z \geqq 1$, and $\bar{\varrho}(n)(n \geqq 0)$ is the inverse function of the same $\psi(r)$ defined in $0<z \leqq 1$. In the same paper it was conjectured that

$$
\begin{equation*}
O_{k}(n) \geqq_{\prime}^{\prime}(1-\varepsilon) \varrho\left(\frac{\log k}{\log \log n}\right) \log \log n, \tag{1.2}
\end{equation*}
$$

and

$$
o_{k}(n) \leqq(1+\varepsilon) \bar{\varrho}\left(\frac{\log k}{\log \log n}\right) \log \log n,
$$

for every $k \geqq 1$ and for almost all n. The last conjecture is false, since for $k=\log n, o_{k}(n)=0$ would follow, which is impossible. Instead of it we state

$$
\begin{equation*}
o_{k}(n) \leqq\left\{\bar{\varrho}\left(\frac{\log k}{\log \log n}\right)+\varepsilon\right\} \log \log n, \tag{1.3}
\end{equation*}
$$

where $\bar{\varrho}(u)=0$ or $u \geqq 1$.
We shall prove
Theorem 1. For every $\varepsilon>0$ the inequalities (1.2), (1.3) hold for every $k \geqq 1$, apart from a set of n 's having zero density.

Let $g(n)$ be a non-negative strongly additive function, i.e. $g\left(p^{x}\right)=g(p)$ for every prime p. Let

$$
\begin{equation*}
f_{k}(n)=\max _{j=1, \ldots, k} g(n+j) \tag{1.4}
\end{equation*}
$$

It is obvious that $f_{k}(n) \geqq f_{k}(0)$. We are interested in the conditions which imply that

$$
\begin{equation*}
f_{k}(n) \leqq(1+\varepsilon) f_{k}(0) \tag{1.5}
\end{equation*}
$$

holds for every $k>k_{0}$, apart from a set of n 's having upper density at most $\delta\left(\varepsilon, k_{0}\right)$, where $\delta\left(\varepsilon, k_{0}\right) \rightarrow 0$ as $k_{0} \rightarrow \infty$.

This question was considered for some special functions in [2].
Let

$$
g^{+}(p)=\left\{\begin{array}{rll}
g(p), & \text { if } & g(p) \leqq 1 \\
1, & \text { if } & g(p)>1
\end{array}\right.
$$

and $g^{+}(n)$ is defined as a strongly additive function generated by the values $g^{+}(p)$. By using the wellknown Turán-Kubilius inequality

$$
\begin{gathered}
\sum_{n \leqq x}\left(g^{+}(n)-A_{x}\right)^{2} \leqq c \times B_{x} \quad\left(\leqq c \times A_{x}\right) \\
A_{x}=\sum_{p \leqq x} \frac{g^{+}(p)}{p}, \quad B_{x}=\sum_{p \leqq x} \frac{g^{+2}(p)}{p} \quad\left(\leqq A_{x}\right),
\end{gathered}
$$

and that $g(n) \geqq g^{+}(n)$, we immediately have that the convergence of

$$
\sum \frac{g^{+}(p)}{p}
$$

is a necessary condition for the truth of (1.5).
We are unable to decide if

$$
\begin{equation*}
\sum \frac{g(p)}{p}<\infty \tag{1.6}
\end{equation*}
$$

is necessary for (1.5).*
Assume that $g(p)$ tends to zero monotonically as $p \rightarrow \infty$. We shall prove that (1.6) is not sufficient for (1.5). This disproves the conjecture stated in [2], namely that from the convergence of the series $\sum \frac{g^{+}(p)}{p}, \sum_{g(p)>1} \frac{1}{p}>1$ (1.5) would follow. Finally, assuming some regularity conditions on

$$
A(y)=\sum_{p \leqq y} g(p)
$$

we shall show that (1.5) holds.
Let $t(x)$ be a real valued monotonically decreasing function defined for $x \geqq 1$. Let

$$
\begin{equation*}
A(y)=\sum_{p \leq y} t(p) \tag{1.7}
\end{equation*}
$$

[^0]and suppose that
\[

$$
\begin{equation*}
\sum_{p} \frac{t(p)}{p}<\infty \tag{1.8}
\end{equation*}
$$

\]

and that for every positive constant δ

$$
\lim _{y \rightarrow \infty} \frac{A(y)}{y t(\exp (\exp } \frac{\left.\left.\left(y^{\delta}\right)\right)\right)}{}=\infty .
$$

Let $g(n)$ be the strongly additive function defined for primes as $g(p)=t(p)$.
Theorem 2. Assume that the conditions (1.7), (1.8) hold. Let ε be an arbitrary positive constant. Then for every integer k_{0} the inequality

$$
f_{k}(n)<(1+\varepsilon) f_{k}(0)
$$

holds for every $k \geqq k_{0}$ and for all but $\delta\left(k_{0}, \varepsilon\right) x$ integers n in $[1, x]$. Here $\delta\left(k_{0}, \varepsilon\right) \rightarrow 0\left(k_{0} \rightarrow \infty\right)$.

We shall prove these assertions in the following sections.
Now we make the following remark. In [3], Iványi and Kátai proved the existence of a completely additive $f(n)$ not identically zero for which $f(n)=A_{j}$, $n \in\left[N_{j}, N_{j}+\tau\left(N_{j}\right)\right]$ on a suitable set $N_{1}<N_{2}<\ldots$ of integers, where $\tau(N)=$ $=\exp (c \sqrt{(\log N)(\log \log \log N)}), A_{j}$ are arbitrary complex or real values.

Now we prove the following
Theorem 3. Let $\varepsilon>0$ and $x>x_{0}(\varepsilon)$. Then there exists a completely additive function $f(n)$ for which

$$
f(n)=0 \quad \text { in } \quad[N+1, N+\lambda(x)],
$$

where $\frac{x}{2} \leqq N \leqq x$ and

$$
\lambda(x)=\left[\exp \left(\left(\frac{1}{2}-\varepsilon\right) \frac{(\log x)(\log \log \log x)}{\log \log x}\right)\right]
$$

and which takes on a non-zero value in $[1, \sqrt{x}]$.
Remark. Unfortunately we can not prove that there is an $f(n)$ with infinitely many such intervals.

Proof. Denote by $N(x, y)$ the number of integers $n \leqq x$ all prime factors of which are not greater than y. By a theorem of RaNKIN [4]

$$
\begin{equation*}
N(x, y)<x \exp \left(-\frac{\log \log \log y}{\log y} \log x+\log \log y+O\left(\frac{\log \log y}{\log \log \log y}\right)\right) \tag{1.9}
\end{equation*}
$$

Let $k=\lambda(x), x$ large. (1.9) implies

$$
N(x, k)<\left[\frac{x}{2 k}\right] \pi(k)
$$

Thus it is easy to see that there is an interval $[N+1, N+k]$ in $\frac{x}{2} \leqq N<N+k \leqq x$,
for which the number of integers all prime factors of which do not exceed k is smaller than $\pi(k)$. Let $n=A(n) B(n)$, where $A(n)$ is composed of the prime factors $\leqq k$ of n. Let $n+l_{i}(i=1, \ldots, h), h<\pi(k)$ be the n 's in $[N+1, N+k]$ for which $B\left(n+l_{i}\right)=1$.

The additivity leads to the following linear system of equations:

$$
\begin{gather*}
f\left(A\left(n+l_{j}\right)\right)=0 \quad(j=1, \ldots, h) \tag{1.10}\\
f(B(n+r))=-f(A(n+r)) \quad\left(r \neq l_{j}(j=1, \ldots, h)\right), \tag{1.11}
\end{gather*}
$$

where the indeterminates are the values $f(p)$ for primes p contained in $(N+1), \ldots$ $\ldots,(N+k)$. (1.9) is a homogeneous system, the number h of equations is smaller than $\pi(k)$, therefore we can choose values $f\left(p_{1}\right), \ldots, f\left(p_{\pi(k)}\right)$ non-trivially such that (1.10) hold. This holds in the case $h=0$, too. To finish the proof we need to take into account only that $B(n+r)\left(r \neq l_{j}, j=1, \ldots, k\right)$ are mutually coprime, so we can solve (1.11). This completes the proof of Theorem 3.
2. Lemmas. Let k be an integer, \mathscr{P} be a finite set of primes greater than k. Let \mathscr{T}_{r} denote the set of integers of the form $t_{r}=q_{1} q_{2} \ldots q_{r}, \quad q_{i} \in \mathscr{P}, q_{i} \neq q_{j}(i \neq j)$,

$$
\begin{gather*}
P=\sum_{p \in \mathscr{P}} 1 / p, \quad T_{r}=\sum_{t_{r} \in \mathscr{F}_{r}} 1 / t_{r} \tag{2.1}\\
a=\sum_{p \in \mathscr{P}} \frac{1}{p^{2}} \tag{2.2}
\end{gather*}
$$

Let Π_{r} be the number of elements of \mathscr{T}_{r}.
Lemma 1. For every $r \geqq 2$ we have

$$
\begin{equation*}
\frac{p^{r}}{r!}-\frac{a}{2} \frac{p^{r-2}}{(r-2)!} \leqq T_{r} \leqq \frac{p^{r}}{r!} \tag{2.3}
\end{equation*}
$$

Proof. The right hand side of (2.3) is obvious. We prove the left hand side by using induction. The assertion holds for $r=2$, since

$$
T_{2}=\frac{1}{2}\left(P^{2}-a\right)
$$

Observing that

$$
T_{r} P \leqq T_{r+1}(r+1)+\sum_{p \in \mathcal{M}} \frac{1}{p^{2}}\left\{\sum_{\left(t_{r-1}, p\right)=1} \frac{1}{t_{r-1}}\right\} \leqq T_{r+1}(r+1)+a T_{r-1},
$$

we get

$$
T_{r+1} \geqq \frac{T_{r} P}{r+1}-\frac{a}{r+1} T_{r-1},
$$

and by the induction hypothesis

$$
T_{r+1} \geqq\left\{\frac{P^{r}}{r!}-\frac{a}{2} \frac{P^{r-2}}{(r-2)!}\right\} \frac{P}{r+1}-\frac{a}{r+1} \frac{P^{r-1}}{(r-1)!}=\frac{P^{r+1}}{(r+1)!}-\frac{a}{2} \frac{P^{r-1}}{(r-1)!} .
$$

By this Lemma 1 is proved.

We shall use Brun's sieve in the form of Theorem 2.5 in [5], or in the simpler form of [6], Theorem 6.2. Namely we shall use the following result, which we state now as

Lemma 2. Let a_{1}, a_{2}, \ldots be positive integers, \mathscr{R} a finite set of primes, all of them smaller than z. Let

$$
\eta(y, d)=\left|\sum_{\substack{a_{v}=o(d) \\ a_{v} \equiv y}} 1-\frac{\gamma(d)}{d} y\right|,
$$

where $\gamma(d)$ is a multiplicative function on the set of square free numbers all prime factors of which are in \mathscr{R}. Suppose that $\eta(y, d) \leqq \gamma(d)$ for all such d, and $\gamma(p)=$ $=O(1), \gamma(p) \leqq p-1$ for all $p \in \mathscr{R}$. Putting $R=\prod_{p \in \mathscr{P}} p$, for $y \geqq r$ we get

$$
\begin{equation*}
\sum_{\substack{a_{v} \leq y \\\left(a_{v}, R\right)=1}} 1=y \prod_{p \in \mathscr{R}}\left(1-\frac{\gamma(p)}{p}\right)\left\{1+O\left(\exp \left(-\frac{1}{2} \frac{\log y}{\log z}\right)\right)\right\} . \tag{2.4}
\end{equation*}
$$

Let now \mathscr{P} be the set of all primes in (k, r), where $z<x^{1 / 4 r}$. Let \mathscr{A} be the set of integers $n=t_{r} b$, where $t_{r} \in \mathscr{T}_{r},\left(b, \prod_{p \in \mathscr{F}} p\right)=1$. Let

$$
V(n)=\left\{\begin{array}{lll}
1, & \text { if } & n \in \mathscr{A}, \\
0, & \text { if } & n \notin \mathscr{A},
\end{array}\right.
$$

and put

$$
\begin{equation*}
\Sigma^{(0)}=\sum_{n \leqq x} V(n), \quad \Sigma^{(h)}=\sum_{n+h \leqq x} V(n) V(n+h) \quad(h=1, \ldots, k) . \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Gamma_{1}=\prod_{p \in \mathscr{P}}\left(1-\frac{1}{p}\right), \quad \Gamma_{2}=\prod_{p \in \mathscr{P}}\left(1-\frac{2}{p}\right), \tag{2.6}
\end{equation*}
$$

and $\lambda(n)$ a multiplicative function on the square free integers defined for primes p by $\lambda(p)=\left(1-\frac{1}{p}\right)\left(1-\frac{2}{p}\right)^{-1}$.

For the computation of $\sum^{(0)}, \sum^{(h)}$ we shall use the previous lemma. Let $N(y \mid \mathscr{P})$ be the number of $b \leqq y$, which have no prime factors in \mathscr{P}. By (2.4),

$$
N(y \mid \mathscr{P})=y \Gamma_{1}\left\{1+O\left(\exp \left(-\frac{2 r \log y}{\log x}\right)\right)\right\}
$$

since $x / t_{r} \geqq x^{3 / 4}$. Consequently

$$
\begin{equation*}
\Sigma^{(0)}=\sum_{t_{r} \in \bar{J}_{r}} N\left(\left.\frac{x}{t_{r}} \right\rvert\, \mathscr{P}\right)=T_{r} \Gamma_{1} \times\left(1+O\left(e^{-r}\right)\right) \tag{2.7}
\end{equation*}
$$

Consider now $\sum^{(h)}(h \geqq 1)$. First we count the integers $n, n=t_{r}^{(1)} b_{1}, n+h=$ $=t_{r}^{(2)} b_{2} \leqq x$ with fixed $t_{r}^{(1)}, t_{r}^{(2)} \in \mathscr{T}_{r}$. There is a solution only if $\left(t_{r}^{(1)}, t_{r}^{(2)}\right)=1$. The solutions b_{1}, b_{2} of $t_{r}^{(2)} b_{2}-t_{r}^{(1)} b_{1}=h$ are in the progressions $b_{2}=b_{2}^{(0)}+s t_{r}^{(1)}$,
$b_{1}=b_{1}^{(0)}+s t_{r}^{(1)}(s=0,1,2, \ldots)$. Sieving those elements $b_{1} b_{2}$ which have prime factors in \mathscr{P}, we get that $\gamma(p)=2$ if $p \nmid t_{r}^{(1)} t_{r}^{(2)}$, and $\gamma(p)=1$, if $p \mid t_{r}^{(1)} t_{r}^{(2)}$. Thus by Lemma 2,

$$
\begin{align*}
& \Sigma^{(h)}=x \Gamma_{2}\left(1+O\left(\bar{e}^{r}\right)\right) A, \tag{2.8}\\
& A=\sum_{\left(t_{r}^{(1)}, t_{r}^{(2)}\right)=1} \frac{\lambda\left(t_{r}^{(1)} t_{r}^{(2)}\right)}{t_{r}^{(1)} t_{r}^{(2)}} .
\end{align*}
$$

Since $t_{r}^{(1)} t_{r}^{(2)}=t_{2 r}$ has $\binom{2 r}{r}$ solutions for fixed $t_{2 r}$ we have

$$
A=\binom{2 r}{r} \sum \frac{\lambda\left(t_{2 r}\right)}{t_{2 r}}
$$

Let $h(d)$ be the Moebius transform of $\lambda(d)$. Then $h(p)=\frac{1}{p-2}, h(d)$ is multiplicative, and we have

$$
T_{2 r} \leqq \sum \frac{\lambda\left(t_{2 r}\right)}{t_{2 r}} \leqq T_{2 r}+\sum_{v=1}^{2 r}\left\{\sum_{\delta \in S_{v}} \frac{h(\delta)}{\delta}\right\} T_{2 r-v}
$$

Taking into account that

$$
\sum_{\delta \in \Psi_{v}} \frac{h(\delta)}{\delta} \leqq \frac{1}{v!}\left\{\sum_{p>k} \frac{1}{p(p-2)}\right\}^{v} \leqq \frac{1}{v!}\left(\frac{c}{k \log k}\right)^{v},
$$

from Lemma 1 we get

$$
\sum \frac{\lambda\left(t_{2 r}\right)}{t_{2 r}} \leqq \frac{p^{2 r}}{(2 r)!} \exp \left(\frac{2 r c}{P k \log k}\right)
$$

Furthermore Lemma 1 implies that

$$
T_{2 r} \geqq\left(1-\frac{4 a r}{P}\right) \frac{P^{2 r}}{(2 r)!},
$$

and so

$$
A=\left(\frac{P^{r}}{r!}\right)^{2}\left(1+O\left(\frac{r}{P k \log k}\right)\right)
$$

if

$$
\begin{equation*}
\frac{r}{P k \log k}=O(1) \tag{2.9}
\end{equation*}
$$

We have

$$
\log \Gamma_{2}=2 \log \Gamma_{1}+O(a), \quad \log \Gamma_{1}=-P+O(a)
$$

whence

$$
\Gamma_{1}=e^{-p}(1+O(a)), \quad \Gamma_{2}=e^{-2 p}(1+O(a))
$$

Consequently

$$
\begin{align*}
& \Sigma^{(0)}=x e^{-p} \frac{P^{r}}{r!^{2}}\left(1+O\left(e^{-r}\right)+O\left(\left(\frac{r}{P}+1\right) \frac{1}{k \log k}\right)\right) \tag{2.10}\\
& \Sigma^{(h)}=x e^{-2 p} \frac{P^{2}}{r!}\left(1+O\left(e^{-r}\right)+O\left(\left(\frac{r}{P}+1\right) \frac{1}{k \log k}\right)\right)
\end{align*}
$$

if (2.5) holds.

Let

$$
\begin{gather*}
F_{k}(n)=\sum_{i=1}^{k} V(n+i), \quad \Lambda=k e^{-p} \frac{p^{r}}{r!} \tag{2.12}\\
E=\sum_{n \leqq x}\left(F_{k}(n)-\Lambda\right)^{2} \tag{2.13}
\end{gather*}
$$

We have

$$
E=\sum_{n \leqq x} F_{k}^{2}(n)-2 \Lambda \sum_{n \leqq x} F_{k}(n)+\Lambda^{2} x,
$$

and observe that

$$
\begin{gathered}
\sum_{n \leqq x} F_{k}(n)=k \sum^{(0)}+O\left(k^{2}\right) \\
\sum_{n \leqq x} F_{k}^{2}(n)=k \sum^{(0)}+\sum_{h=1}^{k} 2(k-h) \sum^{(k)}+O\left(k^{3}\right) .
\end{gathered}
$$

Collecting our results we get
Lemma 3. If (2.9) holds, then

$$
\begin{equation*}
E=O\left(x\left(\Lambda^{2}+\Lambda\right)\left(e^{-r}+\frac{r+P}{P k \log k}\right)+k^{3}+k^{2} \Lambda\right) \tag{2.14}
\end{equation*}
$$

Let now \mathscr{P} be an arbitrary set of primes, $P=\sum_{p \in \mathscr{P}} 1 / p$,

$$
\begin{gather*}
\omega(n \mid \mathscr{P})=\sum_{\substack{p \mid n \\
p \in \mathscr{P}}} 1, \quad p \in \mathscr{P} \tag{2.15}\\
O_{k}(n)=\max _{j=1, \ldots, k} \omega(n+j \mid \mathscr{P}), \quad o_{k}(n)=\min _{j=1, \ldots, k} \omega(n+j \mid \mathscr{P}) \tag{2.16}
\end{gather*}
$$

Let $D_{k}(x, L \mid \mathscr{P})$ be the number of $n \leqq x$ for which $O_{k}(n \mid \mathscr{P}) \geqq L$. It is obvious that

$$
D_{k}(x, L \mid \mathscr{P}) \leqq z^{-L} \sum_{n \leqq x} z^{O_{k}(n \mid \mathscr{F})} \leqq z^{-L} k \sum_{n \leqq x+k} z^{\omega(n \mid \mathscr{P})},
$$

for $z \geqq 1$. Observing that

$$
\sum_{n \leqq x+k} z^{\omega(n \mid \mathcal{P})} \leqq(x+k) \prod_{p \in \mathscr{P}}\left(1+\frac{z-1}{p}\right)<(x+k) \exp (z P)
$$

by substituting $z=L / p$, we get immediately
Lemma 4. If $1 \leqq k \leqq x, L \geqq P$, then

$$
\begin{equation*}
D_{k}(x, L \mid \mathscr{P}) \leqq 2 x \exp \left(\log k-L \log \frac{L}{P e}\right) \tag{2.17}
\end{equation*}
$$

3. Proof of Theorem 1. First we prove (1.2). Let B be a suitable large constant depending on ε. First we shall prove (1.2) for

$$
\begin{equation*}
k \geqq \exp \left((\log \log n)^{B}\right) \tag{3.1}
\end{equation*}
$$

Indeed, if we define t_{k} to be the largest integer l so that the product of the first l primes is smaller than k, then we get $O_{k}(n) \geqq O_{k}(0)=t_{k}$. From the prime number theorem we get

$$
\log k \sim \sum_{j=1}^{t_{k}} \log p_{j} \sim p_{t_{k}} \sim t_{k} \log t_{k}
$$

whence

$$
t_{k} \sim \frac{\log k}{\log \log k} \quad(k \rightarrow \infty) .
$$

Furthermore, as it is easy to show, $\varrho(u) \sim \frac{u}{\log u}(u \rightarrow \infty)$, whence

$$
\varrho\left(\frac{\log k}{\log \log n}\right) \log \log n \geqq\left(1-\frac{\varepsilon}{2}\right) \frac{\log k}{\log \log k},
$$

if B is large enough. Thus (1.2) holds if (3.1) satisfies.
Let B be fixed, x large, and put

$$
\begin{equation*}
\alpha=\frac{\log k}{x_{2}} . \tag{3.2}
\end{equation*}
$$

Observing that $\varrho(\lambda) \sim 1+\sqrt{2 \lambda} \quad(\lambda \sim 0)$, therefore by choosing ε_{1} to satisfy $\left(1+2 \sqrt{\varepsilon_{1}}\right)\left(1-\frac{\varepsilon}{2}\right)<1$, we get $\left(1-\frac{\varepsilon}{2}\right) \varrho\left(\varepsilon_{1}\right)<1$. We can choose $\varepsilon_{1}=\frac{\varepsilon^{2}}{16}$. By using Hardy-Ramanujan's wellknown theorem that $\omega(n) \sim \log \log n$ for almost all n, we get (1.2) in $0 \leqq \alpha \leqq \varepsilon_{1}$.

Assume that

$$
\begin{equation*}
\varepsilon_{1} x_{2} \leqq \log k \leqq x_{2}^{B} \tag{3.3}
\end{equation*}
$$

Let r be an integer for which

$$
\begin{equation*}
r=\Delta x_{2}+O(1), \quad \Delta=\left(1-\varepsilon_{2}\right) \varrho(\alpha) \tag{3.4}
\end{equation*}
$$

ε_{2} being a small positive constant.
Let \mathscr{P} be the set of primes in $\left(k, x^{1 / 4 r}\right)$ and $N_{k, r}(x)$ denote the number of $n \leqq x$ for which $O_{k}(n)<r$. For these numbers $F_{k}(n)=0$, and by Lemma 4

$$
\begin{equation*}
N_{k, r}(x) \leqq \frac{E}{\Lambda^{2}} \leqq O\left(x\left(1+\frac{1}{\Lambda}\right)\left(e^{-r}+\frac{r+P}{P k \log k}\right)+\frac{k^{3}+k^{2} \Lambda}{\Lambda^{2}}\right) \tag{3.5}
\end{equation*}
$$

From (3.3), (3.4) we have

$$
\begin{gathered}
\alpha \leqq x_{2}^{B-1}, \quad \Delta \leqq c x_{2}^{B-1}, \quad \log r=O\left(x_{3}\right) \\
P=x_{2}+O\left(x_{3}\right) \\
\frac{r+P}{P k \log k} \ll \frac{(\Delta+1) x_{2}}{x_{2} e^{\alpha x_{2} \alpha x_{2}}}=O\left(x_{1}^{-\alpha / 2}\right)
\end{gathered}
$$

By using Stirling formula,

$$
\log \Lambda=\log k-P-r \log \frac{r}{P e}+O(\log r)=(\alpha-\psi(\Delta)) x_{2}+O\left(x_{3}\right) .
$$

Since

$$
\psi(\Delta)=\left(1-\varepsilon_{2}\right) \psi(\varrho)+\varepsilon_{2}+\left(1-\varepsilon_{2}\right) \varrho \log \left(1-\varepsilon_{2}\right)
$$

and $\psi(\varrho)=\alpha$, therefore by using that $\varrho(\lambda) \sim 1+\sqrt{2 \lambda}(\lambda \sim 0)$, we get $\alpha-\psi(4) \geqq$ $\geqq \varepsilon_{2}^{2} / 2$, if $\alpha \geqq 4 \varepsilon_{2}^{2}, \varepsilon_{2}$ being small. Choosing $\varepsilon_{2} \leqq \sqrt{2 \varepsilon_{1}}$, we get that $\Lambda \geqq 1$ for all large x and for all α in (3.3).

Since $e^{-r} \ll e^{-\Delta x_{2}}$, we obtain that

$$
\begin{equation*}
N_{k, r}(x) \leqq c_{2} x\left\{e^{-\Delta x_{2}}+e^{-\alpha x_{2} / 2}\right\}+O\left(x^{1 / 2}\right) . \tag{3.6}
\end{equation*}
$$

Let now $\alpha_{j}=j \varepsilon_{1}, k_{j}=\left[e^{\alpha_{j} x_{2}}\right], j=1, \ldots, T$, and $T-1$ is the largest integer for which $\alpha_{T-1} \leqq x_{2}^{B-1}$. Thus $T=O\left(\frac{1}{\varepsilon_{1}} x_{2}^{B-1}\right)$, and from (3.6)

$$
\begin{equation*}
\sum_{i=1}^{T} N_{k_{i}, r}(x) \ll x e^{-\frac{\varepsilon_{1}}{3} x_{2}} . \tag{3.7}
\end{equation*}
$$

Hence it follows that for all but $O\left(x x_{1}^{-\frac{\varepsilon_{1}}{3}}\right)$ integers n in $\left[\frac{x}{2}, x\right]$

$$
\begin{equation*}
O_{k_{i}}(n)>\left(1-\frac{\varepsilon}{2}\right) \varrho\left(\frac{\log k_{i}}{x_{2}}\right) x_{2} \quad(i=1, \ldots, T) . \tag{3.8}
\end{equation*}
$$

Let $k \in\left[k_{i}, k_{i+1}\right)$ and suppose that (3.8) holds for an n. Since $O_{k}(n) \geqq O_{k_{i}}(n)$ and $\varrho(\alpha)<\left(1+c_{3} \varepsilon_{1}\right) \varrho\left(\alpha_{i}\right)$, therefore

$$
O_{k}(n)>\left(1-\frac{2 \varepsilon}{3}\right) \varrho(\alpha) \log \log n .
$$

Since $\log \log n$ increases very slowly therefore

$$
O_{k}(n)>(1-\varepsilon) \varrho\left(\frac{\log k}{\log \log n}\right) \log \log n
$$

holds for all but $O\left(x x_{1}^{-\frac{\varepsilon_{1}}{3}}\right)$ integers $n \in\left[\frac{x}{2}, x\right]$. This assertion holds for $x \geqq X_{0}$. Choosing now $x=2^{\nu} X_{0}(v=0,1, \ldots)$ and using our result, we obtain (1.2).

The proof of (1.3) is very similar. Since $\bar{\varrho}(\lambda) \sim 1-\sqrt{2 \lambda}(\lambda \sim 0)$, therefore (1.3) is obvious if $\alpha \leqq \frac{\varepsilon^{2}}{3}$.

Let \mathscr{P} be the set of primes in $\left(k, x^{1 / 4}\right)$,

$$
\alpha=\frac{\log k}{x_{2}}, \quad \frac{\varepsilon^{2}}{3} \leqq \alpha \leqq 1,
$$

r be an integer for which $r=H x_{2}+O(1), H=\bar{\varrho}(\alpha)+\varepsilon_{3}$.
Let $B_{k, r}(x)$ be the number of $n \leqq x$, for which $o_{k}(n \mid \mathscr{P})>r$. For these n 's $F_{k}(n)=0$, and by Lemma 4 we get

$$
\begin{equation*}
B_{k, r}(x) \leqq c_{3} x\left(1+\frac{1}{\Lambda}\right)\left(e^{-r}+\frac{1}{k \log k}\right)+c_{4} \frac{k^{3}+k^{2} \Lambda}{\Lambda^{2}} . \tag{3.9}
\end{equation*}
$$

From Stirling formula

$$
\log \Lambda=\log \left(k e^{-p} \frac{P^{r}}{r!}\right)=\left(\alpha-1-H \log \frac{H}{e}\right) x_{2}+O\left(x_{3}\right)=(\alpha-\psi(H)) x_{2}+O\left(x_{3}\right) .
$$

Since $-\psi^{\prime}(z)=-\log z$ is decreasing,

$$
\psi(\bar{\varrho})-\psi(H)=\int_{\bar{\varrho}}^{H}-\log z d z \geqq(H-\bar{\varrho}) \log \frac{1}{H}=\varepsilon_{3} \log \frac{1}{H},
$$

consequently

$$
\alpha-\psi(H)=\psi(\bar{\varrho})-\psi(H) \geqq \varepsilon_{3}^{2} \quad \text { in } \quad \alpha \in\left[-\frac{\varepsilon^{2}}{3}, 1\right],
$$

if ε_{3} is sufficiently small.
Thus $\Lambda \geqq 1$, and

$$
\begin{equation*}
B_{k, r}(x) \leqq c_{5} x\left(e^{-r}+k^{-1}\right) . \tag{3.10}
\end{equation*}
$$

Let \mathscr{P}_{1} and \mathscr{P}_{2} be the set of primes in the intervals $[1, k],\left[x^{1 / 4 r}, x\right]$, respectively, and

$$
P_{1}=\sum_{p<k} 1 / p=\log \log k+O(1), \quad P_{2}=\sum_{x^{1 / 4 r}<p \leqq x} 1 / p \log 4 r+O(1)
$$

Applying Lemma 4 by

$$
(L=) L_{1}=\frac{4 \log k}{\log \log k},
$$

we get

$$
\begin{equation*}
B_{k}\left(x, L_{1} \mid \mathscr{P}_{1}\right) \leqq x / k^{3} . \tag{3.11}
\end{equation*}
$$

Observing that $\log k=\alpha x_{2} \geqq \frac{\varepsilon^{2}}{3} x_{2}$, and $P_{2}=O\left(x_{3}\right)$, by choosing $L=L_{1}$, we get

$$
\begin{equation*}
B_{k}\left(x, L_{1} \mid \mathscr{P}_{2}\right) \leqq c(\varepsilon) \frac{x}{k^{3}} \tag{3.12}
\end{equation*}
$$

Since

$$
o_{k}(n) \leqq o_{k}(n \mid \mathscr{P})+O_{k}\left(n \mid \mathscr{P}_{1}\right)+O_{k}\left(n \mid \mathscr{P}_{2}\right),
$$

from (3.10), (3.11), (3.12) we have that for large x

$$
\begin{equation*}
o_{k}(n) \leqq r+2 L_{1} \leqq\left(\bar{\varrho}(\alpha)+2 \varepsilon_{3}\right) x_{2}, \tag{3.13}
\end{equation*}
$$

apart from at most

$$
\begin{equation*}
c_{1}(\varepsilon) x\left\{e^{-\left(\bar{\varphi}(\alpha)+\varepsilon_{3}\right) x_{2}}+e^{-\alpha x_{2} / 2}\right\} \tag{3.14}
\end{equation*}
$$

n in $[1, x]$.
Let $\alpha_{t}=t \frac{\varepsilon^{2}}{12}(t=1, \ldots, T), T=\left[\frac{12}{\varepsilon^{2}}\right]+1, k_{t}=\left[x_{1}^{\alpha_{t}}\right]$. From (3.13) and (3.14) we deduce that

$$
\begin{equation*}
o_{k_{j}}(n) \leqq\left(\bar{\varrho}\left(\alpha_{j}\right)+2 \varepsilon_{3}\right) x_{2} \quad(j=1, \ldots, T) \tag{3.15}
\end{equation*}
$$

holds for all but $c_{2}(\varepsilon) x e^{-\varepsilon_{3} x_{2}} n$ in [1, x], assuming that ε_{3} is sufficiently small.

[^1](3.15) easily implies that
\[

$$
\begin{equation*}
o_{k}(n) \leqq\left(\bar{\varrho}\left(\alpha_{j}\right)+\frac{3 \varepsilon}{4}\right) x_{2} \tag{3.16}
\end{equation*}
$$

\]

for every $k \in\left[k_{1}, k_{T}\right]$. This is an immediate consequence of the fact that $0 \leqq \bar{\varrho}\left(\alpha_{j}\right)-$ $-\bar{\varrho}\left(\alpha_{j+1}\right)<\frac{\varepsilon}{4}$. Indeed, since $\psi^{\prime}(2)=\log z,-\bar{\varrho}^{\prime}$ is increasing, we get

$$
\bar{\varrho}\left(\alpha_{j}\right)-\bar{\varrho}\left(\alpha_{j+1}\right) \leqq-\bar{\varrho}^{\prime}\left(\alpha_{1}\right) \frac{\varepsilon^{2}}{12}=-\frac{1}{\log \bar{\varrho}\left(\alpha_{1}\right)} \frac{\varepsilon^{2}}{12} \sim-\frac{1}{\log \left(1-\sqrt{2 \alpha_{1}}\right)} \frac{\varepsilon^{2}}{12}<\frac{\varepsilon}{4} .
$$

Putting $\log \log n$ instead of x_{2} in (3.16), we get that

$$
\begin{equation*}
o_{k}(n) \leqq\left\{\bar{\varrho}\left(\frac{\log k}{\log \log n}\right)+\varepsilon\right\} \log \log n \tag{3.17}
\end{equation*}
$$

holds for all but $c_{2}(\varepsilon) x e^{-\varepsilon_{3} x_{2}} n$ in $\left[\frac{x}{2}, x\right]$.
Choosing a large X_{0} and putting $x=2^{v} X_{0}(v=0,1, \ldots)$ we get (1.3) immediately. Theorem 1 is proved.
4. A counter example. Now we give a non-negative strongly additive $g(n)$ for which $g(p)$ is monotonic, $\sum \frac{g(p)}{p}<\infty$, and (1.5) does not hold.

Let $R_{1}=1, R_{s+1}=\exp \left(\exp \left(R_{s}\right)\right), J_{s}=\left[R_{s}, R_{s+1}\right)$. We define g for primes p as follows:

$$
g(p)=\frac{1}{R_{s} s^{2}} \quad\left(p \in J_{s}\right), s=1,2, \ldots
$$

Sincc

$$
\sum_{A<p<B} \frac{1}{p}=\log \frac{\log B}{\log A}+O\left(\frac{1}{\log A}\right)
$$

therefore

$$
\sum_{p} \frac{g(p)}{p}=\sum_{s=1}^{\infty} \frac{1}{R_{s} s^{2}}\left\{\sum_{p \in J_{s}} \frac{1}{p}\right\} \ll \sum \frac{1}{s^{2}}=O(1) .
$$

Let μ be a large integer, \mathscr{P} be the set of all primes in $\left(k, R_{\mu+2}\right.$]. Let

$$
r=2 R_{\mu+1}^{2}, \quad \log k=(2+\tau) R_{\mu+1}^{2} \log R_{\mu+1}, \quad \frac{\mathrm{I}}{4} \leqq \tau \leqq \frac{1}{2} .
$$

Let $x \geqq R_{\mu+5}$.
Now we use Lemma 3. Its conditions are fulfilled. By an easy computation we get

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ F_{k}(n)=0}} 1 \leqq x e^{-R_{\mu+1}^{2}} \tag{4.1}
\end{equation*}
$$

for large μ.

Let δ be small, μ be so large that $\delta>e^{-R_{\mu+1}^{2}}$. Then for all but $\delta x n$ in $[1, x]$ $F_{k}(n) \neq 0$. For such an n for at least one $j, 1 \leqq j \leqq k, n+j$ has at least r prime factors in $\left[1, R_{\mu+2}\right)$, and so

$$
g(n+j) \geqq \frac{r}{R_{\mu+1}(\mu+1)^{2}} .
$$

Consequently

$$
\begin{equation*}
f_{k}(n) \geqq \frac{r}{R_{\mu+1}(\mu+1)^{2}}=\frac{2 R_{\mu+1}}{(\mu+1)^{2}} \tag{4.2}
\end{equation*}
$$

Consider now $f_{k}(0)$. Let t_{k} be defined as above, i.e. $p_{1} \ldots p_{t_{k}} \leqq k \leqq p_{1} \ldots p_{t_{k}} p_{t_{k}+1}$. It is obvious that $f_{k}(0)=g\left(t_{k}\right)$. From the prime number theorem we get

$$
\log k \sim p_{t_{k}} \sim t_{k} \log t_{k} \quad(\mu \rightarrow \infty) .
$$

Let

$$
A_{s}=\prod_{p \in J_{s}} p \quad(s=1, \ldots, \mu), \quad B=\prod_{R_{\mu+1} \leqq p \leqq p_{t_{k}}} p
$$

Then

$$
g\left(A_{s}\right)=\frac{1}{R_{s} s^{2}}\left\{\pi\left(R_{s+1}\right)-\pi\left(R_{s}\right)\right\}
$$

and so

$$
\sum_{s=1}^{\mu} g\left(A_{s}\right) \leqq 2 \sum_{s=1}^{\mu} \frac{R_{s+1}}{R_{s} s^{2}} \leqq \frac{3 R_{\mu+1}}{R_{\mu} \mu^{2}}
$$

Furthermore, for an arbitrary but fixed $\varepsilon>0$

$$
\begin{aligned}
& g(B)=\frac{1}{R_{\mu+1}(\mu+1)^{2}}\left\{\pi\left(p_{t_{k}}\right)-\pi\left(R_{\mu+1}\right)\right\} \leqq \frac{t_{k}}{R_{\mu+1}(\mu+1)^{2}} \leqq \\
& \leqq(1+\varepsilon) \frac{\log k}{(\log \log k) R_{\mu+1}(\mu+1)^{2}} \leqq(1+\varepsilon)\left(1+\frac{\tau}{2}\right) \frac{R_{\mu+1}}{(\mu+1)^{2}},
\end{aligned}
$$

if μ is sufficiently large. Consequently for large μ

$$
f_{k}(0)<1,6 \frac{R_{\mu+1}}{(\mu+1)^{2}}, \quad \text { and } \quad f_{k}(m)>2 \frac{R_{\mu+1}}{(\mu+1)^{2}}
$$

for all but δx of n 's in $[1, x]$.
5. Proof of Theorem 2. Suppose that the conditions (1.7), (1.8) are fulfilled. If $A(y)$ is bounded then the assertion is almost obvious. Indeed, if $A(\infty)=B$, then $\sup g(n)=B$, i.e. $f_{k}(n) \leqq B$. Furthermore $f_{k}(0) \rightarrow B$, and so $f_{k}(n)-f_{k}(0)<\varepsilon f_{k}(0)$ for every n, if k is large enough.

Suppose now that $A(y) \rightarrow \infty(y \rightarrow \infty)$. Observe that the prime number theorem easily implies

$$
\begin{equation*}
f_{k}(0)=(1+o(1)) A(\log k) \quad k(\rightarrow \infty) . \tag{5.1}
\end{equation*}
$$

Furthermore from $t(y) \rightarrow 0(y \rightarrow \infty)$ we obtain

$$
\begin{equation*}
f_{2 k}(0)=f_{k}(0)+o(1)=(1+o(1)) f_{k}(0) \tag{5.2}
\end{equation*}
$$

Hence
(5.3)

$$
f_{k}(0) \leqq f_{k}(n) \leqq f_{k+x}(0) \leqq f_{2 k}(0) \leqq(1+\varepsilon) f_{k}(0),
$$

if $k>x, n \leqq x, k$ is large.
Now we assume that $k \leqq x$. Let δ be small,

$$
H=\exp \left(\exp \left((\log k)^{\delta}\right)\right)
$$

and

$$
\begin{aligned}
& g_{1}(p)=\left\{\begin{array}{lll}
g(p), & \text { if } & p \leqq H \\
0, & \text { if } & p>H
\end{array}\right. \\
& g_{2}(p)=\left\{\begin{array}{lll}
0, & \text { if } & p \leqq H \\
g(p), & \text { if } & p>H
\end{array}\right.
\end{aligned}
$$

and $g_{1}(n), g_{2}(n)$ are the corresponding additive functions. Let

It is obvious that

$$
f_{k}^{(i)}(n)=\max _{j=1, \ldots, k} g_{i}(n+j) \quad(i=1,2)
$$

Let $\theta=1+2 \delta$,

$$
f_{k}(n) \leqq f_{k}^{(1)}(n)+f_{k}^{(2)}(n) .
$$

$$
r=\left[\theta \cdot \frac{\log k}{\log \log k}\right]
$$

Let $C_{r}(x)$ be the number of those $n \leqq x$ that have at least r prime divisors in $[1, H]$. It is obvious that

$$
C_{r}(x) \leqq \sum_{t_{r}}\left[\frac{x}{t_{r}}\right] \leqq \frac{x P^{r}}{r!}, \quad P=\sum_{p \leqq H} \frac{1}{p} .
$$

We have

$$
k C_{r}(x) \leqq x \exp \left(\log k-r \log \frac{r}{P e}+O(\log r)\right)
$$

and by

$$
P=(\log k)^{\delta}+O(1)
$$

we get

$$
\log k-r \log \frac{r}{P e}+O(\log r) \leqq-\frac{\delta}{4} \log k
$$

i.e.

$$
\begin{equation*}
k C_{r}(x) \leqq \frac{x}{k^{\delta / 4}} . \tag{5.4}
\end{equation*}
$$

If the integers $n+j(j=1, \ldots, r)$ have no r distinct prime factors from [1, H], then

$$
f_{k}^{(1)}(n) \leqq g\left(p_{1} \ldots p_{r-1}\right) \leqq(1+3 \delta) A(\log k)
$$

Thus we proved that

$$
f_{k}^{(1)}(n)<(1+3 \delta) A(\log k)
$$

for all but $x / k^{\delta / 4}$ integers $n \in[1, x]$.

Let now η be a small positive constant, $\Delta=\eta A(\log k)$. We put $z=e^{u}(u \geqq 0)$,

$$
D(x, z)=\sum_{n \leqq x} z^{g_{2}(n)}
$$

The function $z^{g_{2}(n)}$ is multiplicative, and its Moebius transform $l(n)$ is defined for prime powers as

$$
l(p)= \begin{cases}e^{u g(p)}-1, & p>H \\ 0, & p<H\end{cases}
$$

$l\left(p^{\alpha}\right)=0(\alpha \geqq 2)$.
Consequently

$$
D(x, z)=\sum_{d \leqq x} l(d)\left[\frac{x}{d}\right] \leqq \prod_{H<p \leqq x}\left(1+\frac{e^{u g(p)}-1}{p}\right)
$$

Let $u=\frac{1}{2 t(H)}$. Then from $e^{u g(p)}-1<2 u g(p)$ it follows that

$$
D(x, z) \leqq x \exp \left(2 u \sum_{H<p<x} \frac{t(p)}{p}\right)
$$

Let $B(x, \eta, k)$ denote the number of those $n \leqq x$, for which $f_{2}(n) \geqq \Delta$. We obtain

$$
B(x, \eta, k) \leqq k \sum_{n \leqq x} z^{g_{2}(n)-\Delta u} \leqq x \exp \left(-\Delta u+2 u \sum_{H<p<x} \frac{t(p)}{p}+\log k\right) .
$$

From (1.9) we have

$$
-\Delta u+2 u \sum_{H<p<x} \frac{t(p)}{p}+\log k<-3 \log k
$$

for large k, i.e.

$$
B(x, \eta, k) \leqq \frac{x}{k^{3}}
$$

Consequently

$$
f_{k}(n)<(1+3 \delta+\eta) A(\log k)
$$

for all but $\left(\frac{1}{k^{\delta / 4}}+\frac{1}{k^{3}}\right) x$ integers n in $[1, x]$, for every large k. Let $3 \delta+\eta<\frac{\varepsilon}{4}$. From (5.1) we get

$$
\begin{equation*}
f_{k}(n)<\left(1+\frac{\varepsilon}{2}\right) f_{k}(0) \tag{5.6}
\end{equation*}
$$

if $k \geqq c(\varepsilon)$.
We choose $(k=) k_{v}=2^{v} k_{0}(v=0,1,2, \ldots)$. Then

$$
\begin{equation*}
f_{k_{v}}(n)<\left(1+\frac{\varepsilon}{2}\right) f_{k}(0) \quad(v=0,1,2, \ldots) \tag{5.7}
\end{equation*}
$$

allowing at most

$$
2 x \sum_{v=1}^{\infty} k_{v}^{-\delta / 4} \leqq \frac{c x}{k_{0}^{\delta / 4}}
$$

integers n in $[1, x]$. Suppose that (5.7) holds for an n. If $k \geqq k_{0} k \in\left[k_{v}, k_{v+1}\right)$, then from

$$
f_{k}(n) \leqq f_{k_{v+1}}(n) \leqq\left(1+\frac{\varepsilon}{2}\right) f_{k_{v+1}}(0)<\left(1+\frac{\varepsilon}{2}\right)\left(1+\frac{\varepsilon}{4}\right) f_{k}(0),
$$

the inequality

$$
f_{k}(n)<(1+\varepsilon) f_{k}(0)
$$

follows for every $k \geqq k_{0}$, which completes the proof of Theorem 2.

References

[1] I. Kátal, Local growth of the number of prime divisors of consecutive integers, Publ. Math. Debrecen, 18 (1971), 171-175.
[2] I. Kátai, Maximum of number-theoretical functions in short intervals, Annales Univ. Sci. Budapest, Sectio. Math., 18 (1975), 69-74.
[3] A. Iványi and I. Kátai, On monotonic additive functions, Acta Math. Acad. Sci. Hungar., 24 (1973), 203-208.
[4] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc., 13 (1938), 242-247.
[5] H. Halberstam and H. E. Richert, Sieve methods, Academic Press (London, 1974).
[6] H.-E. Richert, Selberg's sieve, Problems in analytical number theory, Mir(Moscow, 1975).
(Received June 29, 1977)
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
1053 BUDAPEST, REÁLTANODA U. 13-15.
EÖTVÖS LORÁND UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
1088 BUDAPEST, MÚZEUM KRT. 6-8.

[^0]: * Remark. We decided this question affirmatively. We shall publish this in a forthcoming paper in this journal.

[^1]: Acta Mathematica Academiae Scientiarum Hungaricae 33, 1979

