ON THE PRIME FACTORS OF $\binom{\mathrm{n}}{\mathrm{k}}$ AND OF CONSECUTIVE INTEGERS

P. Erdos and A. Sárközy

1. First we introduce some notations.
c_{1}, c_{2}, \ldots denote positive absolute constants. The number of elements of the finite set S is denoted by $|S|$. We write $e^{x}=\exp x$. We denote the $i^{\text {th }}$ prime number by $p_{i} . v(n)$ denotes the number of distinct prime factors of $n . m_{k}$ is the smallest integer m for which

$$
\nu\left(\binom{m}{k}\right)>k .
$$

$P(n)$ is the greatest, $p(n)$ the smallest prime factor of $n . n_{k}$ is the smallest integer n for which

$$
P(n+i)>k \text { for all } 1 \leq i \leq k .
$$

In [3], Erdös, Gupta, and Khare proved that

$$
\begin{equation*}
\mathrm{m}_{\mathrm{k}}>\mathrm{c}_{1} \mathrm{k}^{2} \log \mathrm{k} \tag{1}
\end{equation*}
$$

We prove

THEOREM 1. For $\mathrm{k}>\mathrm{k}_{0}$ we have

$$
\begin{equation*}
m_{k}>c_{2} k^{2}(\log k)^{4 / 3}(\log \log k)^{-4 / 3}(\log \log \log k)^{-1 / 3} . \tag{2}
\end{equation*}
$$

It seems certain that $m_{k}>k^{2+c}$. It follows from results of Selfridge and the first author [4] that, by an averaging process, $m_{k}<k^{e+\varepsilon}$. The exact determination of, or even good inequalities for, m_{k} seems very difficult.

Denote by m_{k}^{\prime} the least integer such that for every $m \geq m_{k}^{\prime}$

$$
v\left(\binom{m}{k}\right) \geq k
$$

Szemerédi and the first author proved in [5] that $m_{k}^{\prime}<(e+\varepsilon)^{k}$ for every $\varepsilon>0$ if $k>k_{0}$. Very likely $m_{k}^{\prime}<k^{c}$ but we could not even prove $m_{k}^{\prime}<(e-E)^{k}$. Schinzel conjectured that $v\left(\binom{m}{k}\right)=k$ holds for
infinitely many values of m. This is almost certainly true, but will be hopelessly difficult to prove. Let $g(n)$ be the smallest integer $t \geq 1$ (if it exists) for which $n-t$ has more than one prime factor greater than t (or the same definition for $n+t$); surely $g(n)$ exists for both definitions but it is not known (see [4]).

In a previous paper [2, p.273], P. Erdos outlined the proof of

$$
\begin{equation*}
\mathrm{n}_{\mathrm{k}}<\mathrm{k}^{\log \mathrm{k} / \log \log \mathrm{k}} . \tag{3}
\end{equation*}
$$

No reasonable lower bound for n_{k} was known. We prove
THEOREM 2. If $\mathrm{k}>\mathrm{k}_{0}$, then $\mathrm{n}_{\mathrm{k}}>\mathrm{k}^{5 / 2} / 16$.
It seems certain that for $k>k_{0}(t), n_{k}>k^{t}$ and, in fact, perhaps the upper bound (3) is close to the "truth".

Some other related problems and results can be found in [1].
2. Proof of Theorem 1.

We need two lemmas.

LEMMA 1. If $\mathrm{x} \geq 0, \mathrm{y} \geq 2$ and d is a positive integer, then the number of solutions of

$$
p-q=d, x<p \leq x+y,
$$

where p, q are prime numbers, is less than

$$
c_{3}{ }_{p / d}\left(1+\frac{1}{p}\right) \frac{y}{\log ^{2} y}<c_{4} \log \log (d+2) \frac{y}{\log ^{2} y} .
$$

This lemma can be proved by Brun's sieve (see e.g. [6] or [7]).

LEMMA 2. Let $\mathrm{N} \geq 2$ be a positive integer and $\mathrm{s}_{1}<\mathrm{s}_{2}<\ldots<\mathrm{s}_{\mathrm{N}}$ be any integers. Put $\mathrm{s}_{\mathrm{N}} \mathrm{s}_{1}=\mathrm{S}$ and, for fixed d , denote the number of solutions of

$$
s_{x}-s_{y}=d
$$

by $\mathrm{F}(\mathrm{d})$. Then there exists a positive integer D such that

$$
\mathrm{D} \leq \frac{4 \mathrm{~S}}{\mathrm{~N}} \text { and } \mathrm{F}(\mathrm{D}) \geq \frac{\mathrm{N}^{2}}{48 \mathrm{~S}}
$$

Proof of Lemma 2.

$$
\text { For } j=1,2, \ldots,[N / 4]+1, \text { let } I_{j}=\left[s_{1}+(j-1) y, s_{1}+j y\right] .
$$

Then

$$
s_{1}+\left(\left|\frac{s}{y}\right|+1\right) y>s_{1}+\frac{s}{y} y=s_{1}+S=s_{N},
$$

and thus

$$
\bigcup_{j=1}^{[S / y]+1} I_{j} \supset\left[s_{1}, s_{N}\right] ;
$$

hence
(4)

$$
\begin{aligned}
\sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j} \geq 2}} N_{j} & =\sum_{1 \leq j \leq[N / 4]+1} N_{j}-\sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j}=1}} N_{j} \\
& =N-([N / 4]+1) \geq N-\frac{N}{2}=\frac{N}{2}
\end{aligned}
$$

since

$$
\left[\frac{N}{4}\right]+1 \leq \frac{N}{4}+\frac{N}{4}=\frac{N}{2} \quad \text { for } \quad N \geq 4
$$

and

$$
\left[\frac{N}{4}\right]+1 \leq \frac{N}{2}
$$

holds also for $\mathrm{N}=2,3$.
Let $N_{j} \geq 2$ for some j and define z by $s_{z} \notin I_{j}, s_{z+1} \in I_{j}$. Then for all the $\binom{N_{j}}{2}$ pairs, $1 \leq x<y \leq N_{j}$, we have

$$
1 \leq s_{z+y}-s_{z+x} \leq s_{z}+N_{j}-s_{z+1} \leq 4 S / N .
$$

Thus, with respect to (4) and using Cauchy's inequality, we obtain that

$$
\begin{aligned}
& \sum_{1 \leq d \leq 4 S / N} F(d) \geq \sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j} \geq 2}}\binom{N_{j}}{2} \\
& =\sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j} \geq 2}} N_{j} \frac{N_{j}-1}{2} \geq \sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j} \geq 2}} N_{j} \frac{N_{j} / 2}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} \sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j} \geq 2}} N_{j}^{2} \geq \frac{1}{4}\left(\sum_{\substack{1 \leq j \leq[N / 4]+1 \\
N_{j} \geq 2}} N_{j}\right)^{2} \sum_{1 \leq j \leq[N / 4]+1} 1 \\
& \geq \frac{1}{4}\left(\frac{N}{2}\right)^{2} / \sum_{1 \leq j \leq[N / 4]+1} 1
\end{aligned}
$$

hence

$$
\max _{1 \leq \mathrm{d} \leq 4 \mathrm{~S} / \mathrm{N}} \mathrm{~F}(\mathrm{~d}) \geq \frac{\sum_{1 \leq \mathrm{d} \leq 4 \mathrm{~S} / \mathrm{N}} \mathrm{~F}(\mathrm{~d})}{\sum_{1 \leq \mathrm{d} \leq 4 \mathrm{~S} / \mathrm{N}} 1} \geq \frac{\mathrm{N} / 12}{4 \mathrm{~S} / \mathrm{N}}=\frac{\mathrm{N}^{2}}{48 \mathrm{~S}}
$$

which completes the proof of the lemma.
In order to prove Theorem 1, it suffices to show that if ε is sufficiently small then the assumptions

$$
\begin{equation*}
v\left(\binom{\mathrm{~m}}{\mathrm{k}}\right)>\mathrm{k} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
m \geq \varepsilon k^{2}(\log k)^{4 / 3}(\log \log k)^{-4 / 3}(\log \log \log k)^{-1 / 3} \tag{6}
\end{equation*}
$$

lead to a contradiction for all $k \geq k_{0}(\varepsilon)$. By (1) we may assume that

$$
\begin{equation*}
m>c_{1} k^{2} \log k \tag{7}
\end{equation*}
$$

also holds.

$$
\text { For all } 0 \leq i \leq k-1 \text {, we write }
$$

$$
m-i=a_{i} b_{i}
$$

where $P\left(a_{i}\right) \leq k$ and $p\left(b_{i}\right)>k \quad$ (if, for example, all the prime factors of $m-i$ are less than or equal to k then we write $b_{i}=1$). Furthermore, let S_{1} denote the set consisting of the integers $0 \leq i \leq k-1$ such that

$$
P(m-i)<\frac{k \log k}{\log \log k}
$$

and let $S_{2}=\{0,1, \ldots, k-1\}-S_{1}$ (i.e. i $\in S_{2}$ if and only if $\left|\mid 0 \leq i \leq k-1\right.$ and $\left.P(m-i)>k \log k(\log \log k)^{-1}\right)$.

First we give a lower estimate for $\prod_{i \in S_{2}} a_{i} \cdot\binom{m}{k}$ is an integer; thus

$$
k!\mid m(m-1) \ldots(m-k+1)=\prod_{i=0}^{k-1} a_{i} \prod_{i=0}^{k-1} b_{i},
$$

and, obviously, $\left(\begin{array}{c}k!, \begin{array}{l}k-1 \\ i=0\end{array} b_{i}\end{array}\right)=1$. Thus we have $k!\mid \prod_{i=0}^{k-1} a_{i}$
and hence by Stirling's formula,

$$
\begin{equation*}
\prod_{i=0}^{k} a_{i} \geq k!>\left(\frac{k}{3}\right)^{k} \tag{8}
\end{equation*}
$$

(for sufficiently large k).
From (5), we have

$$
\begin{align*}
& k<\nu\left(\binom{m}{k}\right) \leq(\nu(m(m-1) \ldots(m-k+1)) \tag{9}\\
& =\quad \sum_{p \leq k} 1+\sum_{k<p \leq k} \sum_{(\log k \log k)^{-1}} \\
& \mathrm{p}|\mathrm{~m}(\mathrm{~m}-1) \ldots(\mathrm{m}-\mathrm{k}+1) \quad \mathrm{p}| \mathrm{m}(\mathrm{~m}-1) \ldots(\mathrm{m}-\mathrm{k}+1) \\
& +\sum_{k \underset{p \log k(\log \log k)^{-1}<p}{ } 1 .} \sum_{\substack{ \\
\log (m-k+1)}}
\end{align*}
$$

Here the first term is less than or equal to $\pi(k)$. Furthermore, if $k \log k(\log \log k)^{-1}<p$ and $p \mid m(m-1) \ldots(m-k+1)$ then $p \mid m-i$ for some $i \in S_{2}$, and by (6), we have

$$
\begin{aligned}
\frac{m-i}{p} & \leq \frac{m}{k \log k(\log \log k)^{-1}} \\
& \leq \frac{\varepsilon k^{2}(\log k)^{4 / 3}(\log \log k)^{-4 / 3}(\log \log \log k)^{-1 / 3}}{k \log k(\log \log k)^{-1}} \\
& =\varepsilon k(\log k)^{1 / 3}(\log \log k)^{-1 / 3}(\log \log \log k)^{-1 / 3} \\
& <k \log k(\log \log k)^{-1} .
\end{aligned}
$$

Thus for all i $\in S_{2}$, $m-i$ has only one prime factor greater than $\mathrm{k} \log \mathrm{k}(\log \log \mathrm{k})^{-1}$. This implies that the third term in (9) is less than or equal to $\left|S_{2}\right|$. Finally, we write

$$
\sum_{\substack{k<p \leq k \log k \\ p \mid m(m-1) \ldots(m-k+1)}} \log _{\substack{\log k)^{-1}}} 1=R .
$$

We obtain from (9) that

$$
k \leq \pi(k)+R+\left|S_{2}\right| ;
$$

hence

$$
\begin{equation*}
R \geq\left(k-\left|S_{2}\right|\right)-\pi(k)=\left|S_{1}\right|-\pi(k) . \tag{10}
\end{equation*}
$$

Obviously, we have

$$
s_{m}\left|S_{1}\right| / \underset{i=\pi(k)+R}{\substack{\pi \\ i=\pi(k)+1}} p_{i}
$$

By the prime number theorem, we have $p_{i} \sim 1 \log i$. Furthermore, by the prime number theorem and the definition of R,

$$
R \leq \pi\left(k \log k(\log \log k)^{-1}\right)<k
$$

(for large k). Thus by (10) and using the prime number theorem and Stirling's formula, we obtain, for sufficiently large k and $\left|s_{1}\right|>c_{8}$, that

$$
\begin{align*}
& \underset{i=\pi(k)+1}{\pi(k)+R} p_{i}>\prod_{i=\pi(k)+1}^{\pi(k)+R} \tag{12}\\
& \geq \prod_{i=\pi(k)+1}^{\pi(k)+R}\left(1-\frac{1}{11}\right) i \log i \\
& \\
& \\
& \\
&\left.i=\frac{1}{11}\right) i \log (\pi(k)+1)
\end{align*}
$$

$$
\begin{aligned}
& >{\underset{i=\pi}{\pi(k)+1}}_{\pi(k)+R}\left(1-\frac{1}{10}\right) i \log k=\left(\frac{9}{10}\right)^{R}(\log k)^{R} \frac{(\pi(k)+R)!}{(\pi(k))!} \\
& >\left(\frac{9}{10}\right)^{k}(\log k)^{\left|S_{1}\right|-\pi(k)} \frac{\left|S_{1}\right|!}{\pi(k)^{\pi(k)}} \\
& >\left(\frac{9}{10}\right)^{k}(\log k)^{\left|S_{1}\right|}(\pi(k) \log k)^{-\pi(k)} \frac{\left|S_{1}\right|^{\left|S_{1}\right|}}{\left|S_{1}\right|} \\
& >\left(\frac{9}{10}\right)^{k}\left(\left|S_{1}\right| \log k\right)^{\left|S_{1}\right|} e^{-\pi(k) \log (\pi(k) \log k)_{3}^{-k}} \\
& >\left(\frac{9}{10}\right)^{k}\left(\left|S_{1}\right| \log k\right)^{\left|S_{1}\right|} e^{-2 k} 3^{-k} \\
& >\left(\frac{9}{10}\right)^{k}\left(\left|S_{1}\right| \log k\right)^{\left|S_{1}\right|} 9_{9}^{-k} 3^{-k}=30^{-k}\left(\left|S_{1}\right| \log k\right)
\end{aligned}
$$

(11) and (12) yield that, for $\left|\mathrm{S}_{1}\right|>\mathrm{c}_{8}$,

$$
\begin{equation*}
\prod_{i \in S_{1}} a_{i}<\frac{\left|S_{1}\right|}{30^{-k}\left(\left|S_{1}\right| \log k\right)}\left|S_{1}\right|=k^{\left|S_{1}\right|} 30^{k}\left(\frac{m}{\mathrm{~S}_{1} \mid \mathrm{k} \log \mathrm{k}}\right)^{\left|\mathrm{S}_{1}\right|} \tag{13}
\end{equation*}
$$

By (10) and the prime number theorem, we have

$$
\begin{align*}
\left|S_{1}\right| & \leq R+\pi(k)=\sum_{\substack{k<p \leq k \cdot \log k\left(\log \log k^{-1} \\
p \mid m(m-1) \ldots(m-k+1)\right.}} 1+\pi(k) \tag{14}\\
& \leq \sum_{k<p \leq k \log k(\log \log k)^{-1} 1+\pi(k)} \\
& =\left(\pi\left(k \log k(\log \log k)^{-1}\right)-\pi(k)\right)+\pi(k) \\
& =\pi\left(k \log k(\log \log k)^{-1}\right)<2 k(\log \log k)^{-1} .
\end{align*}
$$

If $a>0$ then an easy discussion shows that the function $f(x)=(a / x)^{x}$ is increasing in the interval $0<x<a / e$. If we put $a=m /(k \log k)$ and $x=\left|S_{1}\right|$ then from (7) and (14) we have

$$
\frac{a}{e}=\frac{m}{e k \log k}>\frac{c_{1} k^{2} \log k}{e k \log k}=\frac{r_{1}}{e} k>2 k(\log \log k)^{-1}>\left|S_{1}\right|=x
$$

for sufficiently large k. Thus, for large k and $\left|S_{1}\right|>c_{8}$,
and (14) yield that

$$
\begin{align*}
\prod_{i \in S_{1}} a_{i} & <k^{\left|S_{1}\right|} 30^{k}\left(\frac{m}{\left|S_{1}\right| k \log k}\right)^{\left|S_{1}\right|} \tag{15}\\
& <k^{\left|S_{1}\right|} 30^{k}\left(\frac{m}{2 k(\log \log k)^{-1} k \log k}\right)^{2 k(\log \log k)^{-1}} \\
& <k^{\left|S_{1}\right|} 30^{k}\left(\frac{m}{k^{2} \log k(\log \log k)^{-1}}\right)^{2 k(\log \log k)^{-1}} .
\end{align*}
$$

For large k, this holds also for $0 \leq\left|S_{1}\right| \leq c_{8}$ since in this case, from (6) and (7) we have

$$
\begin{aligned}
& \left.k^{\mid S_{1}}\right|_{30^{k}}\left(\frac{m}{k^{2} \log k(\log \log k)^{-1}}\right)^{2 k(\log \log k)^{-1}} \\
& >30^{k}\left(\frac{c_{1} k^{2} \log k}{k^{2} \log k(\log \log k)^{-1}}\right)^{2 k(\log \log k)^{-1}}
\end{aligned}
$$

while

$$
\prod_{i \in S_{1}} a_{i}<\prod_{i \in S_{1}} m=m^{\left|S_{1}\right|}<\left(k^{3}\right)^{\left|S_{1}\right|} \leq k^{3 c_{8}}<30^{k}
$$

for sufficiently large k.
(8) and (15) yield that
(16)

$$
\begin{aligned}
\prod_{i \in S_{2}} a_{i} & =\prod_{i=0}^{k-1} a_{i}\left(\prod_{i \in S_{1}} a_{i}\right)^{-1} \\
& >\left(\frac{k}{3}\right)^{k}\left(k^{\left|S_{1}\right|} 30^{k}\left(\frac{m}{k^{2} \log k(\log \log k)^{-1}}\right)^{\left.2 k(\log \log k)^{-1}\right)^{-1}}\right. \\
& =k^{k-\left|S_{1}\right|}{ }_{90^{-k}}\left(\frac{m}{k^{2} \log k(\log \log k)^{-1}}\right)^{-2 k(\log \log k)^{-1}} \\
& =k^{\left|S_{2}\right|} 90^{-k}\left(\frac{m}{k^{2} \log k(\log \log k)^{-1}}\right)^{-2 k(\log \log k)^{-1}} .
\end{aligned}
$$

Let S_{3} denote the set consisting of the integers i satisfying $0 \leq i \leq k-1, \quad i \in S_{2}$, and $a_{i} \leq 10^{-6} k$. Then we have
(17)

$$
\begin{aligned}
& \prod_{i \in S_{2}} a_{i}=\prod_{i \in S_{2}, i \nless S_{3}}^{\Pi} a_{i} \prod_{i \in S_{3}} a_{i} \\
& \leq \prod_{i \in S_{2}, i \nless S_{3}} 10^{-6} k \prod_{i \in S_{3}} \frac{m-i}{b_{i}} \\
& \leq \prod_{i \in S_{2}, i \nless S_{3}} 10^{-6} k \prod_{i \in S_{3}} k \frac{m}{k P(m-i)} \\
& \leq k^{\left|S_{2}\right|} \underset{i \in S_{2}, i \nless S_{3}}{\pi} 10^{-6} \underset{i \in S_{3}}{\pi} \frac{m}{k^{2} \log k(\log \log k)^{-1}} \\
& =k^{\left|S_{2}\right|}\left(10^{-6}\right)^{\left|S_{2}\right|-T}\left(\frac{m}{k^{2} \log k(\log \log \mathrm{k})^{-1}}\right)^{T} \\
& \leq k^{\left|S_{2}\right|}\left(10^{-6}\right)^{k-T}\left(\frac{m}{k^{2} \log k} \frac{\mathrm{~m}}{(\log \log k)^{-1}}\right)^{T},
\end{aligned}
$$

where

$$
T=\sum_{i \in S_{3}} 1
$$

(16) and (17) yield that

$$
\begin{aligned}
\mathrm{k}^{\left|\mathrm{S}_{2}\right|} 90^{-\mathrm{k}} & \left(\frac{\mathrm{~m}}{\mathrm{k}^{2} \log \mathrm{k}(\log \log \mathrm{k})^{-1}}\right)^{-2 \mathrm{k}(\log \log \mathrm{k})^{-1}} \\
& <\mathrm{k}^{\left|\mathrm{S}_{2}\right|}\left(10^{-6}\right)^{\mathrm{k}-\mathrm{T}}\left(\frac{\mathrm{~m}}{\mathrm{k}^{2} \log \mathrm{k}(\log \log \mathrm{k})^{-1}}\right)^{\mathrm{T}}
\end{aligned}
$$

hence

$$
\begin{equation*}
\left(10^{6}\right)^{\mathrm{k}-\mathrm{T}} 90^{-\mathrm{k}}<\left(\frac{\mathrm{m}}{\mathrm{k}^{2} \log \mathrm{k}(\log \log \mathrm{k})^{-1}}\right)^{\mathrm{T}+2 \mathrm{k}(\log \log \mathrm{k})^{-1}} \tag{18}
\end{equation*}
$$

We are going to show that this inequality implies that

$$
\begin{equation*}
T>k(\log \log k)^{-1} \tag{19}
\end{equation*}
$$

If $T \geq k / 2$ then this inequality holds trivially for large k; thus we may assume that $T<k / 2$. Then we obtain from (18) that

$$
\begin{aligned}
\left(\frac{m}{k^{2} \log k(\log \log k)^{-1}}\right)^{\mathrm{T}+2 \mathrm{k}(\log \log \mathrm{k})^{-1}} \\
\quad>\left(10^{6}\right)^{\mathrm{k}-\mathrm{k} / 2} 90^{-k}>10^{3 \mathrm{k}} 10^{-2 \mathrm{k}}=10^{\mathrm{k}}
\end{aligned}
$$

Thus, from (6), we have

$$
\mathrm{T}+2 \mathrm{k}(\log \log \mathrm{k})^{-1}>\frac{\mathrm{k} \log 10}{\log \frac{\mathrm{~m}}{\mathrm{k}^{2} \log \mathrm{k}(\log \log k)^{-1}}}
$$

k $\log 10$
$\log \frac{\varepsilon k^{2}(\log k)^{4 / 3}(\log \log k)^{-4 / 3}(\log \log \log k)^{-1 / 3}}{k^{2} \log k(\log \log k)^{-1}}$
k $\log 10$
$\log \left(\varepsilon(\log k)^{1 / 3}(\log \log k)^{-1 / 3}(\log \log \log k)^{-1 / 3}\right)$
$>\frac{\mathrm{k} \log 10}{\log (\log \mathrm{k})^{1 / 3}}=\frac{3 \mathrm{k} \log 10}{\log \log \mathrm{k}}>3 \mathrm{k}(\log \log \mathrm{k})^{-1}$
for sufficiently large k, which yields (19).
By the definition of a_{i}, we have $a_{i} \mid m-i$. If $i \in S_{3}$, then $a_{i}>10^{-6} \mathrm{k}$ also holds. But, if $\mathrm{a}>10^{-6} \mathrm{k}$, then a may have at most

$$
\left|\frac{k}{a}\right|+1 \leq \frac{k}{a}+1<10^{6}+1<2 \cdot 10^{6}
$$

multiples amongst the numbers $m, m-1, \ldots, m-k+1$. Thus, for fixed a,

$$
a_{i}=a, \quad 1 \in S_{3},
$$

has less than $2 \cdot 10^{6}$ solutions. From (19), this implies that the number of the distinct a_{i} 's with $i \in S_{3}$ is greater than

$$
\frac{\sum_{i \in S_{3}} 1}{2 \cdot 10^{6}}=\frac{T}{2 \cdot 10^{6}}>k\left(2 \cdot 10^{6} \log \log k\right)^{-1}
$$

By the definitions of the sets S_{2} and S_{3}, $i \in S_{3}\left(c S_{2}\right)$ implies that

$$
\mathrm{k} \log \mathrm{k}(\log \log \mathrm{k})^{-1}<\mathrm{P}(\mathrm{~m}-\mathrm{i}) \leq \mathrm{b}_{\mathrm{i}} ;
$$

hence, from (6),

$$
\begin{align*}
\left(10^{-6} k\right. & <) a_{i}=\frac{m-i}{b_{i}} \leq \frac{m}{k \log k(\log \log k)^{-1}} \tag{20}\\
& \leq \frac{\varepsilon k^{2}(\log k)^{4 / 3}(\log \log k)^{-4 / 3}(\log \log \log k)^{-1 / 3}}{k \log k(\log \log k)^{-1}} \\
& =\varepsilon k(\log k)^{1 / 3}(\log \log k)^{-1 / 3}(\log \log \log k)^{-1 / 3} .
\end{align*}
$$

Let us write

$$
\mathrm{t}=\mathrm{k}(\log \mathrm{k})^{-5 / 3}(\log \log \mathrm{k})^{2 / 3}(\log \log \log \mathrm{k})^{2 / 3}
$$

and for all

$$
i \leq j \leq\left|\frac{\varepsilon k(\log k)^{1 / 3}(\log \log k)^{-1 / 3}(\log \log \log k)^{-1 / 3}}{t}\right|+1,
$$

let us form the interval $I_{j}=((j-1) t, j t]$. By (20), these intervals cover all the a_{i} 's (with $i \in S_{3}$), and the number of these intervals is

$$
\begin{aligned}
& {\left[\frac{\varepsilon k(\log k)^{1 / 3}(\log \log k)^{-1 / 3}(\log \log \log k)^{-1 / 3}}{t}\right]+1 } \\
= & {\left[\frac{\varepsilon k(\log k)^{1 / 3}(\log \log k)^{-1 / 3}(\log \log \log k)^{-1 / 3}}{k(\log k)^{-5 / 3}(\log \log k)^{2 / 3}(\log \log \log k)^{2 / 3}}\right]+1 } \\
< & \varepsilon(\log k)^{2}(\log \log k)^{-1}(\log \log \log k)^{-1}+1 \\
< & 2 \varepsilon(\log k)^{2}(\log \log k)^{-1}(\log \log \log k)^{-1}
\end{aligned}
$$

(for large k). Thus the matchbox principle yields that there exists an interval I_{j} which contains more than

$$
\begin{aligned}
& \frac{k\left(2 \cdot 10^{6} \log \log k\right)^{-1}}{2 E(\log k)^{2}(\log \log k)^{-1}(\log \log \log k)^{-1}} \\
& =\left(4 \cdot 10^{6}\right)^{-1} \varepsilon^{-1} k(\log k)^{-2} \log \log \log k
\end{aligned}
$$

distinct a_{i} 's. In other words, there exist indices $i_{1}, i_{2}, \ldots, i_{N}$ satisfying $i_{\ell} \in S_{3}$ for $i \leq \ell \leq N$,

$$
(j-1) t<a_{i_{1}}<a_{i_{2}}<\ldots<a_{i_{N}} \leq j t
$$

and

$$
\begin{equation*}
N>\left(4 \cdot 10^{6}\right)^{-1} \varepsilon^{-1} k(\log k)^{-2} \log \log \log k . \tag{22}
\end{equation*}
$$

Let us apply Lemma 2 with the set $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{N}}$ in place of the set $s_{1}, s_{2}, \ldots, s_{N}$. (By (21), $N \geq 2$ holds trivially.) Then from (21), we have

$$
\begin{aligned}
S=s_{N}-s_{1} & =a_{i_{N}}{ }^{-a_{i_{1}}} \\
<t & =k(\log k)^{-5 / 3}(\log \log k)^{2 / 3}(\log \log \log k)^{2 / 3} .
\end{aligned}
$$

Thus, from (22), we obtain that there exists an integer

$$
\begin{align*}
D & \leq \frac{4 \mathrm{~S}}{\mathrm{~N}}<\frac{4 \mathrm{k}(\log) \mathrm{k})^{-5 / 3}(\log \log \mathrm{k})^{2 / 3}(\log \log \log \mathrm{k})^{2 / 3}}{\left(4 \cdot 10^{6}\right)^{-1} \varepsilon^{-1} \mathrm{k}(\log \mathrm{k})^{-2} \log \log \log \mathrm{k}} \tag{23}\\
& =16 \cdot 10^{6} \varepsilon(\log \mathrm{k})^{1 / 3}(\log \log \mathrm{k})^{2 / 3}(\log \log \log \mathrm{k})^{-1 / 3}
\end{align*}
$$

for which

$$
\begin{equation*}
a_{i_{x}}-a_{i_{y}}=D \tag{24}
\end{equation*}
$$

has at least

$$
\begin{align*}
F(D) \geq \frac{N^{2}}{48 S} & >\frac{\left(4 \cdot 10^{6}\right)^{-2} E^{-2} k^{2}(\log k)^{-4}(\log \log \log k)^{2}}{48 k(\log k)^{-5 / 3}(\log \log k)^{2 / 3}(\log \log \log k)^{2 / 3}} \tag{25}\\
& >10^{-15} E^{-2} k(\log k)^{-7 / 3}(\log \log k)^{-2 / 3}(\log \log \log k)^{4 / 3}
\end{align*}
$$

solutions.
By the definition of the set $S_{3}, i_{\ell} \in S_{3}$ implies, from (6), that for large k

$$
\begin{aligned}
\mathrm{b}_{i_{\ell}} & =\frac{m-1}{\mathrm{a}_{\ell}}<\frac{m}{10_{\ell} 0_{k}} \\
& \leq 10^{6} \varepsilon \mathrm{k}(\log \mathrm{k})^{4 / 3}(\log \log \mathrm{k})^{-4 / 3}(\log \log \log \mathrm{k})^{-1 / 3} \\
& <\mathrm{k}(\log \mathrm{k})^{4 / 3}
\end{aligned}
$$

and, on the other hand,

$$
\begin{equation*}
b_{i_{\ell}} \geq P\left(m-i_{\ell}\right)>k \log k(\log \log k)^{-1} \tag{26}
\end{equation*}
$$

By the definition of $b_{i_{\ell}}$, we have $p\left(b_{i_{\ell}}\right)>k$; thus these inequalities imply that $\mathrm{b}_{\mathrm{i}_{\ell}}=\mathrm{q}_{\ell}$ must be a prime number. Then $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{N}}$ are distinct since by (26), $q_{\ell}>k \log k(\log \log k)^{-1} \quad($ for all $\ell)$. Thus q_{ℓ} may have at most one multiple amongst the numbers $m, m-1, \ldots, m-k+1$. Furthermore, we have

$$
q_{\ell}=\frac{m-i_{\ell}}{a_{i_{\ell}}}<\frac{m}{(j-1) t}
$$

(it can be shown easily that $j>1$) and

$$
q_{\ell}=\frac{m-i_{\ell}}{a_{i_{\ell}}}=\frac{m}{a_{i_{\ell}}}-\frac{i_{\ell}}{a_{i_{\ell}}}>\frac{m}{j t}-\frac{k}{10^{-6} k_{k}}=\frac{m}{j t}-10^{6} .
$$

Thus all the primes q_{ℓ} belong to the interval

$$
\begin{equation*}
I=\left(\frac{m}{j t}-10^{6}, \frac{m}{(j-1) t}\right) . \tag{27}
\end{equation*}
$$

From $a_{i_{\ell}}>10^{-6} k,(5)$, and the definition of t, the length of this interval is
(28)

$$
\begin{aligned}
|I| & =\frac{m}{(j-1) t}-\left(\frac{m}{j t}-10^{6}\right)=\frac{m}{(j-1) j t}+10^{6} \\
& <\frac{m t}{(j t-t) j t}<\frac{m t}{\left(a_{i_{l}}-t\right) a}<\frac{m t}{\left(10^{-6} k-t\right) 10^{-6} k}<2 \cdot 10^{-12} m t k^{-2} \\
< & 2 \cdot 10^{-12}{ }_{\varepsilon k}{ }^{2}(\log k)^{4 / 3}(\log \log k)^{-4 / 3}(\log \log \log k)^{-1 / 3} \\
& \cdot k(\log k)^{-5 / 3}(\log \log k)^{2 / 3}(\log \log \log k)^{2 / 3} k^{-2} \\
= & 2 \cdot 10^{-12} \varepsilon k(\log k)^{-1 / 3}(\log \log k)^{-2 / 3}(\log \log \log k)^{1 / 3} .
\end{aligned}
$$

Furthermore, if $a_{i_{x}}$ and a_{i} satisfy (24) then we have

$$
\begin{aligned}
q_{y}-q_{x} & =\frac{m-i_{y}}{a_{i_{y}}}-\frac{m-i_{x}}{a_{i_{x}}}=m \frac{a_{i_{x}} a^{-a_{i}}}{a_{i_{x}} a_{i_{y}}}+\frac{i_{x}}{a_{i_{x}}}-\frac{i_{y}}{a_{i_{y}}} \\
& =\frac{m D}{a_{i_{y}}\left(a_{i}+D\right)}+\frac{i_{x}}{a_{i_{x}}}-\frac{i_{y}}{a_{i}} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|\left(q_{y}-q_{x}\right)-\frac{m D}{a_{i_{y}}\left(a_{i_{y}}+D\right)}\right| \leq \frac{i_{y}}{a_{i_{x}}}+\frac{i_{y}}{a_{i_{y}}} \leq 2 \cdot \frac{k}{10^{-6} k_{k}}=2 \cdot 10^{6} \tag{29}
\end{equation*}
$$

On the other hand, by (6) and (23), we have

$$
\begin{align*}
& \left|\frac{m D}{\left.a_{i_{y}\left(a_{i}\right.}+D\right)}-\frac{m D}{j t(j t+D)}\right|=m D \frac{\left|\left((j t)^{2}-\left(a_{i}\right)^{2}\right)+D\left(j t-a_{i_{y}}\right)\right|}{a_{i_{y}}\left(a_{i_{y}}+D\right) j t(J t+D)} \tag{30}\\
& =m D \frac{\left|j t-a_{i_{y}}\right| j t+a_{i_{y}}+D}{a_{i_{y}}\left(a_{i_{y}}+D\right) j t(j t+D)}=\frac{m D\left|j t-a_{i_{y}}\right|\left(j t+a_{i_{x}}\right)}{a_{i_{y}} a_{i_{x}}{ }^{j t(j t+D)}} \\
& <\frac{m D \cdot t \cdot 2 j t}{a_{i_{y}} a_{i}{ }^{j t} a_{i_{x}}}<\frac{2 m D t}{\left(10^{-6} k\right)^{3}}=2 \cdot 10^{18} \mathrm{mDtk}^{-3} \\
& <2 \cdot 10^{18} \varepsilon \mathrm{k}^{2}(\log \mathrm{k})^{4 / 3}(\log \log \mathrm{k})^{-4 / 3}(\log \log \log \mathrm{k})^{-1 / 3} \\
& \cdot 16 \cdot 10^{6} \varepsilon(\log \mathrm{k})^{1 / 3}(\log \log \mathrm{k})^{2 / 3}(\log \log \log \mathrm{k})^{-1 / 3} \\
& \cdot \mathrm{k}(\log \mathrm{k})^{-5 / 3}(\log \log \mathrm{k})^{2 / 3}(\log \log \log \mathrm{k})^{2 / 3} \mathrm{k}^{-3} \\
& =32 \cdot 10^{24} \varepsilon^{2} \text {. }
\end{align*}
$$

For small ε, (29) and (30) yield that

$$
\begin{aligned}
\left|\left(q_{y}-q_{x}\right)-\frac{m D}{j t(j t+D)}\right| & \leq\left|\left(q_{y}-q_{x}\right)-\frac{m D}{a_{i_{y}}\left(a_{i_{y}}+D\right)}\right|+\left|\frac{m D}{a_{i i_{y}}\left(a_{i}+D\right)}-\frac{m D}{j t(j t+D)}\right| \\
& <2 \cdot 10^{6}+32 \cdot 10^{24} \varepsilon^{2}<3 \cdot 10^{6} .
\end{aligned}
$$

Thus for all the $F(D)$ solutions x, y of (24), $q_{y}-q_{x}$ is in the interval

$$
\frac{m D}{j t(j t+D)}-3 \cdot 10^{6}<q_{y}-q_{x}<\frac{m D}{j t(j t+d)}+3 \cdot 10^{6} .
$$

The length of this interval is $6 \cdot 10^{6}$; thus, by the matchbox principle, there exists an integer d such that (from (6) and (23))

$$
\begin{align*}
\mathrm{d}< & \frac{\mathrm{mD}}{j \mathrm{jt}(\mathrm{jt+d})}+3 \cdot 10^{6}<\frac{\mathrm{mD}}{\left(10^{-6} \mathrm{k}\right)^{2}}+3 \cdot 10^{6} \tag{31}\\
< & 10^{12}{ }_{\varepsilon \mathrm{k}^{2}(\log \mathrm{k})^{4 / 3}(\log \log \mathrm{k})^{-4 / 3}(\log \log \log \mathrm{k})^{-1 / 3}} \\
& \cdot 16 \cdot 10^{6} \varepsilon(\log \mathrm{k})^{1 / 3}(\log \log \mathrm{k})^{2 / 3}(\log \log \log \mathrm{k})^{-1 / 3} \cdot \mathrm{k}^{-2} \\
= & \left.16 \cdot 10^{18} \varepsilon^{2}(\log \mathrm{k})^{5 / 3} \log \log \mathrm{k}\right)^{-2 / 3}(\log \log \log \mathrm{k})^{-2 / 3}
\end{align*}
$$

and, denoting the number of solutions of

$$
\begin{equation*}
q_{x}-q_{y}=d, \quad q_{x} \in I, \quad q_{y} \in I \tag{32}
\end{equation*}
$$

by $G(d)$, we have from (25)

$$
\begin{align*}
G(d) & \geq \frac{F(D)}{6 \cdot 10^{6}+1} \tag{33}\\
& >\frac{10^{-15} \varepsilon^{-2} k(\log k)^{-7 / 3}(\log 1 \log k)^{-2 / 3}(\log \log \log k)^{4 / 3}}{6 \cdot 10^{6}+1} \\
& >10^{22} \varepsilon^{-2} k(\log k)^{-7 / 3}(\log \log k)^{-2 / 3}(\log \log \log k)^{4 / 3} .
\end{align*}
$$

On the other hand, by (28), Lemma 1 yields that the number of solutions of (32) is
(34) $\quad G(d)<c_{4} \log \log (d+2) \frac{|I|}{\log ^{2}|I|}$
$<c_{4} \log \log \left(16 \cdot 10^{18} \varepsilon^{2}(\log k)^{5 / 3}(\log \log \mathrm{k})^{-2 / 3}(\log \log \log \mathrm{k})^{-2 / 3}+2\right)$
$\cdot \frac{2 \cdot 10^{-12} \varepsilon k(\log k)^{-1 / 3}(\log \log k)^{-2 / 3}(\log \log \log k)^{1 / 3}}{\log ^{2}\left(2 \cdot 10^{-12} \varepsilon k(\log k)^{-1 / 3}(\log \log k)^{-2 / 3}(\log \log \log k)^{1 / 3}\right)}$
$<2 c_{4} \log \log \log \mathrm{k} \frac{2 \cdot 10^{12} \varepsilon \mathrm{k}(\log \mathrm{k})^{-1 / 3}(\log \log \mathrm{k})^{-2 / 3}(\log \log \log \mathrm{k})^{1 / 3}}{2^{-1} \log { }^{2} \mathrm{k}}$
$=8 \cdot 10^{-12} \varepsilon_{4} \mathrm{k}(\log \mathrm{k})^{-7 / 3}(\log \log \mathrm{k})^{-2 / 3}(\log \log \log \mathrm{k})^{4 / 3}$.
(33) and (34) yield that

$$
\begin{aligned}
& 10^{-22} \varepsilon^{-2} \mathrm{k}(\log \mathrm{k})^{-7 / 3}(\log \log \mathrm{k})^{-2 / 3}(\log \log \log \mathrm{k})^{4 / 3} \\
& \quad<8 \cdot 10^{-12} \varepsilon c_{4} \mathrm{k}(\log \mathrm{k})^{-7 / 3}(\log \log \mathrm{k})^{-2 / 3}(\log \log \log \mathrm{k})^{4 / 3}
\end{aligned}
$$

hence

$$
8^{-1} 10^{-10} c_{4}^{-1}<\varepsilon^{3}
$$

But for sufficiently small ε, this inequality cannot hold, and this contradiction proves Theorem 1. (In fact, as this inequality shows, Theorem 1 holds, for example, with $c_{2}=10^{-4} c_{4}^{-1 / 3}$.)
3. Proof of Theorem 2.

We have to prove that if $k>k_{0}$ and

$$
\begin{equation*}
0 \leq n \leq k^{5 / 2} / 16, \tag{35}
\end{equation*}
$$

then there exists an integer u such that

$$
\begin{equation*}
\mathrm{n}<\mathrm{u} \leq \mathrm{n}+\mathrm{k} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
P(u) \leq k . \tag{37}
\end{equation*}
$$

We are going to show that there exists an integer u satisfying (36) and of the form

$$
\mathrm{u}=\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3},
$$

where the integers d_{i} satisfy

$$
\begin{equation*}
0<d_{i} \leq k \text { for } i=1,2,3 . \tag{38}
\end{equation*}
$$

Obviously, an integer u of this form also satisfies (37).
Let us define the positive integers x and z by

$$
z=\left[k^{1 / 2} / 3\right]
$$

and

$$
x=\left[(n / z)^{1 / 2}\right]+1 .
$$

Then

$$
x^{2}>\left((n / z)^{1 / 2}\right)^{2}=n / z ;
$$

hence

$$
\begin{equation*}
x^{2}-\frac{n}{z}>0 . \tag{39}
\end{equation*}
$$

Let us define the non-negative integer y by

$$
\begin{equation*}
y<\left(x^{2}-\frac{n}{z}\right)^{1 / 2} \leq y+1 . \tag{40}
\end{equation*}
$$

Finally, let

$$
\begin{aligned}
& d_{1}=z, \\
& d_{2}=x-y,
\end{aligned}
$$

and

$$
d_{3}=x+y
$$

Then $\mathrm{d}_{1}>0$ and $\mathrm{d}_{3}>0$ hold trivially while $\mathrm{d}_{2}>0$ will follow from $\mathrm{d}_{1}>0, \mathrm{~d}_{3}>0$ and $\mathrm{u}=\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3}>\mathrm{n}$. Furthermore, $d_{1}=z=\left[k^{1 / 2} / 3\right]<k$ holds trivially. Finally, in view of (35) and (39), we have

$$
\begin{aligned}
d_{2} & =x-y \leq x+y=d_{3}<\left(x+x^{2}-\frac{n}{z}\right)^{1 / 2} \\
& <(n / z)^{1 / 2}+1+\left(\left((n / z)^{1 / 2}+1\right)^{2}-\frac{n}{z}\right)^{1 / 2} \\
& =(n / z)^{1 / 2}+1+\left(2(n / z)^{1 / 2}+1\right)^{1 / 2} \\
& <\left(\frac{\mathrm{k}^{5 / 2}}{16\left[k^{1 / 2} / 3\right]}\right)^{1 / 2}+1+\left(2\left(\frac{\mathrm{k}^{5 / 2}}{16\left[k^{1 / 2} / 3\right]}\right)^{1 / 2}+1\right)^{1 / 2} \\
& =(1+o(1)) 3^{1 / 2} 4^{-1} k+1+0\left(k^{1 / 2}\right)=(1+o(1)) 3^{1 / 2} 4^{-1} k
\end{aligned}
$$

for $k \rightarrow+\infty$. Here $3^{1 / 2} 4^{-1}<1$; thus also $d_{2} \leq d_{3}<k$ holds for large k which completes the proof of (38) (provided that $u>n$).

By (40), we have
(41) $u=d_{1} d_{2} d_{3}=z(x-y)(x+y)=z\left(x^{2}-y^{2}\right)>z\left(x^{2}-\left(x^{2}-\frac{n}{z}\right)^{1 / 2}\right)^{2}=z \cdot \frac{n}{z}=n$.

Finally, by (40),

$$
x^{2}-\frac{n}{z} \leq(y+1)^{2}
$$

hence

$$
z\left(x^{2}-(y+1)^{2}\right) \leq n .
$$

Thus, from (35), we have

$$
\begin{align*}
\mathrm{u} & =\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3}=\mathrm{z}(\mathrm{x}-\mathrm{y})(\mathrm{x}+\mathrm{y})=\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \tag{42}\\
& =\mathrm{n}+\left(\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)-\mathrm{n}\right) \leq \mathrm{n}+\left(\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)-\mathrm{z}\left(\mathrm{x}^{2}-(\mathrm{y}+1)^{2}\right)\right. \\
& =\mathrm{n}+(2 \mathrm{y}+1) \mathrm{z}<\mathrm{n}+\left(2\left(\mathrm{x}^{2}-\frac{\mathrm{n}}{\mathrm{z}}\right)^{1 / 2}+1\right) \mathrm{z} \\
& <\mathrm{n}+\left(2\left(\left((\mathrm{n} / \mathrm{z})^{1 / 2}+1\right)^{2}-\frac{\mathrm{n}}{\mathrm{z}}\right)^{1 / 2}+1\right) \mathrm{z} \\
& =\mathrm{n}+\left(2\left(2(\mathrm{n} / \mathrm{z})^{1 / 2}+1\right)^{1 / 2}+1\right) \mathrm{z} \\
& =\mathrm{n}+\left(2\left(2\left(\frac{\mathrm{n}}{\left[\mathrm{k}^{1 / 2} / 3\right]}\right)^{1 / 2}+1\right)^{1 / 2}+1\right) \frac{\mathrm{k}^{1 / 2}}{3} \\
& <\mathrm{n}+\left(2\left(2\left(\frac{\mathrm{k}^{5 / 2} / 16}{k^{1 / 2} / 4}\right)^{1 / 2}+1\right)^{1 / 2}+1\right) \frac{\mathrm{k}^{1 / 2}}{3} \\
& =\mathrm{n}+\left(2(\mathrm{k}+1)^{1 / 2}+1\right) \frac{\mathrm{k}^{1 / 2}}{3}<\mathrm{n}+3 \mathrm{k}^{1 / 2} \cdot \frac{\mathrm{k}^{1 / 2}}{3}=\mathrm{n}+\mathrm{k}
\end{align*}
$$

for sufficiently large k.
(41) and (42) yield (36) and this completes the proof of Theorem 2.
[1] P. Erdös, Uber die Anzahl der Primfaktoren von $\binom{n}{k}$, Archiv der Math. 24 (1973), 53-56.
[2] P. Erdös, Problems and results on consecutive integers, Publ. Math. Debrecen. 23 (1976), 271-282.
[3] P. Erdös, H. Gupta and S. P. Khare, On the number of distinct prime factors of $\binom{\mathrm{n}}{\mathrm{k}}$, Utilitas Math. 10 (1976), 51-60.
[4] P. Erdös and J. Selfridge, Some problems on the prime factors of consecutive integers, Illinois J. Math. 11 (1967), 428-430.
[5] P. Erdös and E. Szemerédi, Problem 192, Mat. Lapok 25 (1974), 182-183.
[6] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London - New York - San Francisco, 1974.
[7] H. Halberstam and K. F. Roth, Sequences, VoZ. I, Oxford, Clarendon Press, 1966.

Mathematical Institute
Hungarian Academy of Sciences
Budapest

