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For a finite graph G = (V_E)', the point covering number a o(G) and the line
covering number a,(G) are defined as follows (e .g., [3]) :

a0(G) = min{ IX I : X'9- V and every e e E contains some x e X},
a, (G) = minj, Y : Y E-: E and every v e V is contained in some . y

We shall assuine G has no isolated points so that these quantities art, well defined .
During his talk at this meeting, F . Harary mentioned the following two conjectures
of J . Kabell and himself [1] :

(i) min a o(G)a,(G) = n - 1 ;
G

(nt'
(ii) max ao(G)a,((G) = (n -- 1)

	

+
y-2-~

where G ranges over all graphs with n points . He further noted that equality holds in
61 for- the star K,,,_, and in (ii) for the complete graph K,, .

In this note we settle these conjectures . In particular, we show that (i) is true, and
,ii), while not completely true, is nearly true . The smallest countterexampl . to (ii) is
the graph 2K3 consisting of two disjoint triangles . Note that

a0(2K3),xt(2K3) = 16, ao(K6)o:,(K6) = 15 .

imvover (1!) k valid it n ±3 odd o ..' : G is reclinred to be connected! . "Vc nlst : consider'
the corresponding questions for hypergraplis .

1'Hti~xent 1 . For any graph G with n > 3 :
ri') rx„sGix .fG) ~- n - 1, with equality only for G

__ 1
for n od(1 .

for ar evan .
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Equality in (ü') holds only for K„ when n is odd or n = 4 and only for K, + Kb ,
with a, b odd and a + b = n, when n is even and at least 6 .

Proof. First note that

a,(G) ?
2

	

(1)

since each edge of G covers just two points of G . Now, assume ao(G)a l(G) S n -I . If
ao(G) -> 2, then, by (1), a o(G)a,(G) > n, which contradicts the hypothesis . Hence, we
must have a„(G) = 1, i .e ., all edges of G contain a common point . This is exactly the
definition of K t ,,,_, ; since

ao(K1,p-i) a(K, . .-t)= n - 1

then (i') is proved.
To prove (ü'), assume that G satisfies

zn
- Z- n odd,

aokG)a I (G) >-

	

(2)
2 --4

._ n even .

Ut E' _ {e,, e 2 , . . ., ex1 denote a maximum set e disjoint edges of G . Thus, by a
theorem of Gallai [2],

r~ ,(G) = ?a - x

Also, a o (G) <- 2x, since the 2x endpoints of the c E forth a covering of all the edges
of G (by the maximality of E') . Thus

ao(G)a,(G) < 2a(n -- x) .

	

(4)

Note also that 2x <_ n must always hold .
First, suppose n is odd . The right-hand s?dt of (4) is maximized only by choosing

x = (n - 1)/2 or x = (n + 1)/2 and the larger value is forbidder. by the previous
remark . For x -_ (n - 1)/2, (4) implies

(n+ I,

By (3), a,(G) = n - x - i

	

1)/2 and so ao(G) = n - 1 . However, this implies
G = K . . Since

fn 4-

	

n2 --1
an(Kn)a,(K,1 = (n - 1)I

2
--) _ ---2

then (ü') is proved for n odd

	

\\

.
Now, suppose n >- 6 is even. If we try to use the value x = n/2, then because

ao(G) < n -- l, we have

a o(G)a I (G) 5 (n -- 1)(n x) _ (n - ),n, < n-

(3 )
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since n 6. Thus, the maximum possible value of the right-hand side of (4) occurs for
the (unique) value x = (n/2) - 1 and yields

ao(G)ai(G) <_ 2
2
- I)(2 + 1) = nz 2

_
4I)(2

z
and so,

	

ao(G)a 1(G) = n_2 4

	

(5)

Therefore,

n
a,(G)=n-x=2+1,

z
ao(G) _

	

xo(C, v {x,}) < n - 3

(6)
ao(G)=n-2

Write ei = {ai, bi}, I <'i < (n/2) - 1 and let the remaining two points of G be
denoted by x, and x 2 .

(a) {x ,, x 2 f is not an edge of G by the maximality assumption on E' .
(b) Every a i and every b ; is connected to at least one of the xk's . For if a,, say, is

not connected to x, or x 2 , then V - fa,, x,, x 2 } covers all edges of G and has only
n - 3 points, which contradicts (6) .

(c) {n i , x k } is an edge of G if and only if fb,, xk} is an edge of G . For supp++se not,
e .g ., {a,, .x,} e E, {b,, x,} 0 E. By (b), {b,, x 2 } e E ; thus,

E' - {a,, b,} v {a,, x,} i.) {b,, x 2 }

is a set of n/2 disjoint edges of G, which contradicts the maximalíty of E' .
(d) x, is connected to fa,, b;} if and only if x 2 is not connected to fa i , bi; . For

suppose x, and x 2 are both connected to fa i , b i } . Then justt as in (c), we can replace
{ai, b i } by two disjoint edges, forming n/2 disjoint edges in G .

For i = 1, 2, let C i denote the set of points v such that {x,, v) is an edge of G .
(e) If v, e C,, v 2 c C 2 then t v, v 2} is not an edge of G . Suppose not, i .e ., suppose

{v,, v 2 } is an edge of G. Let w,, w 2 be the vertices adjacent to v,, u z in E' . If the edges
of E' containing v, and v 2 are removed from E' and the edges {x,, w l ), lx,, w 2 } and
f r ,, v 2} are added, then we have a set of n/2 disjoint edges in G, which is impossible .

Thus, G consists of two connected components C, v fx,} and Cz

	

1X21-
(f) If x i is connected to {a,, b;} and (ak , bk} then both points in {a,, b,} are

connected to both points in {ak , b k ) . For suppose (without loss of generality) that
{a,, ak ) is not an edge of G . Then

a o(C ; v

	

I C i ( - I

where I C i I denotes the number of points in C i . But this implies

which contradicts (6) .
Therefore, we conclude that G is made up of two components which are (disjoint)

complete graphs . each of odd order . It is easily checked that in this case

112xo(G)aI(G) =

	

"
4

and (ü') holds for even n > 6 .



For the final case n = 4, the bound in (4) (choosing x = 2) implies
ao(G)a,(G) 5 S . It is easily seen that this implies a o(G)a,(G) < 6, which can only
occur when ao(G) = 3, a l (G) = 2, i .e ., G must be K, . This completes the proof of the
theorem. Fl

We note here that if we require that G be connected, then it can be shown, using
similar arguments, that the original conjecture (ü) is valid with K„ always being the
unique graph achieving max ao(G)a,(G) .

AN EXTENSION To HYP£RGRAPHS

We now consider an r-uniform hypergraph H = (V, E), where, as usual, E con-
sists of certain r-element subsets of V for some fixed r >- 2 . We define ao(H) and a,(H)
in the obvious way, i .e., ao(H) denotes the minimum number of points of H hitting all
edges of H and a,(H) denotes the minimum number of edges ofH hitting all points of
H. Also, we assume H has no isolated points .

THEOREM 2 . For any r-uniform hypergraph H on n points,

r -1 <_ ao(H)al(H) S
4(r

r
1) n

2

Proof: Observe that a,(H) > n/r . Hence, if a o(H) > 2 then

ao(H)a,(H) > 2 •
n > n - 1
r

	

r-1

On the other hand, if ao(H) = l then all edges e e E contain a common point, and so

al(H) > -n -
-
-
-

i
-

r- 1

ao(H)a1(H),,
nn .- 1Y. (

(7)

which is the left-hand side of (7) .
To prove the right-hand side of (7), let fi' {e,, , . ., e A } denote a maximum set of

disjoint edges of E. Then

a,(H) < x

	

n -- r.x _ n -- (r - I )x

	

(fl)

since the n - rx points not in E' can be covered by at most n - rx additional edges,
also,

ao(H) rx

	

(9)

since by the maximality of E, the rx points of E' hit every edge of E; therefore,

ao(H)a I (H) < rx(n - (r - 1)x)

The right-hand side of (10) is maximized by taking

n
x - 2(r - 1)



which yields

ao(H)a 1 (H) <_	r _ nz
4(r - 1)

This completes the proof of (7) and the theorem is proved . Q

The lower bound in THEOREM 2 can be achieved whenever n - l(mod r - 1) by
taking V to be {0, l, 2, . . ., n - 1) and E _ {e 1 , e 2 , . . ., e,„_ 1j , ( _ 1) ) given by

e; _ {0) v {(r - 1)(i - 1) + 1, (r - 1)(i -- 1) + 2, . . ., (r - 1)i)

for

	

<n - i .

We have not analyzed the fine structure of the exact upper bound for ao(H)a 1 (H).
The bound of THEOREM. 2 is asymptotically best possible. This can be seen by con-
sidering the hypergraph H o formed as shown in the figure . The top part of H o

.~,

r- ~

	

n points

consists of a complete r-uniform hypergraph on r/(2r - 2) • n points (i .e ., all r-
element subsets are edges) . In addition, there are n(r - 2)/(2r - 2) additional edges,
each formed by adjoining a new point x i to a fixed (r - 1)-element subset X above .
Thus,

r . n Points2^^

r
ao(Ho) ~r r n

- 21

a 1 (Ho)
y n

and so,

	

ao(Ho)a 1(Ho ) 4(r r 1) n`

1t would be interesting to characterize those hypergraphs H which achieve the maxi-
mum and minimum values of to(H)a,(H).

The authors wish to thank S . B. Maurer for the careful reading he gave to an
earlier version of this note .
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