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I published several papers with similar titles. One of my latest ones [13]
(also see [16] and the yearly meetings at Boca Raton or Baton Rouge)
contains, in the introduction, many references to my previous papers .

I discuss here as much as possible new problems, and present proofs in
only one case. I use the same notation as used in my previous papers . G(' )(n ;1)

denotes an r-graph (uniform hypergraph all of whose edges have size r) of n
vertices and I edges . If r = 2 and there is no danger of confusion . I omit the
upper index r = 2 . K ( r ) (n) denotes the complete hypergraph G ( ' ) (n ; (;)) .

K(a, b) denotes the complete bipartite graph (r = 2) of a white and b black
vertices . K (r )(t) denotes the hypergraph of It vertices x (i ' ) , I < i < t, 1 < j < 1,
and whose (I)tr edges are {x,1t ) , . . . , x~ )} where all the i's and all the j's are
distinct . e(G(in)) is the number of edges of G(m) (graph of m vertices), the
girth is the length of a smallest circuit of the graph .

1

Hajnal, Szemerédi, and I have the following conjecture : There is a function
f (m) tending to infinity so that if G(n) is a graph of n vertices and if every
subgraph G(m)(1 < m < n) of it can be made bipartite by the omission
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of at most f (m) edges, then x(G(n)) < 3 (or, in a slightly weaker form, its
chromatic number is bounded) . It is surprising that we have been able to
make no progress with this extremely plausible conjecture .

It seems very likely that f(m) can be taken as c log m. Gallai [21] con-
structed a four chromatic graph G(n) the smallest odd circuit of which has
length at least I/n, and it is easy to see that every subgraph G(m) of this
graph can be made bipartite by omitting /m edges. Thus _f(m) >_ .,Fm .

Gallai and I conjectured that for every r there is an r-chromatic graph
G(n) the smallest odd circuit of which has length at least n' 1(' -2) . By a
refinement of a method used by Hajnal and myself [17] (using Borsuk's
theorem) Lovász proved this conjecture during this conference. The result
of Lovász will imply that our f (n) (if it exists) must be o(n).

I stated that I can prove that Gallai's theorem [21] is best possible ; that
is, that if G(n) is such that all odd circuits of G(n) are longer than cn'/ 2 then
x(G(n)) < 3 . This is almost certainly correct, but I have not been able to
reconstruct my proof (which very likely was not correct). In fact I cannot
even prove it if cn' 12 is replaced by en.

Another problem of Hajnal, Szemerédi, and me states : Let X(G) = N,. Is it
true that, for every c, G has a subgraph of m vertices which cannot be made
bipartite by the omission of cm edges? On the other hand we believe that for
every E > 0 there is a G with x(G) = N, so that for every m < Ko every sub-
graph of G of m vertices can be made bipartite by the omission of fewer than
m'
` edges .

2

Let I S I = n, A, c S, I A, I = cn, 1 < k < n . Denote by f (n ; c, E) the
largest integer so that there are at least f (n ; c, E) sets, any pair of which have
more than en elements in common . It easily follows from Ramsey's theorem
that, for every i > 0 and sufficiently small E, f (n ; c, E) > Cn'lc`+ ". I would
like to prove
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f (n ; c, E) > Cn'/2

	

(1)

but I cannot even disprove f(n ; c, r.) > qn . (1) would imply that every
G(n, [c,n 2]) has c 2 n'/ z vertices, any pair of which can be joined by vertex
disjoint paths of length at most two . I can prove this with two replaced by
four.

The following question is also of interest . Define a graph of n vertices as
follows : The vertices are the n sets A, . Join two of them if they have fewer
than en elements in common .
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Estimate from above and below the largest possible value of the chro-
matic number of this graph . (1) would clearly follow if the chromatic number
were less than cn l/Z .

The following question can now be posed : Let IS = 2n + k. Define
G(n, k 1) as follows : Its vertices are the ( 2n„ k ) n-tuples of S . Two n-tuples A i
and Aj are joined if IA i n Aj < 1. Estimate or determine h(n ; k, 1) _
x(G(n, k, 1))-

A well-known conjecture of Kneser stated h(n ; k, 0) = k + 2 . This
conjecture was recently proved by Bárány and Lovász .

A further complication can be introduced as follows : Let h,„(n ; k, 1) be
the largest integer for which G(,, k, I) has a subgraph G(m) with x(G(m)) _
h,„(n ; k, 1) . Determine or estimate h,n (n, k, 1) .

The papers of Lovász and Bárány will appear soon .

3

A graph G, is said to be a unique subgraph of G if G, is a uniquely induced
(or spanned) subgraph of G . Entringer and I [7] proved that there is a G(n)
which has more than

2( "' ) exp -(Cn(3/z)+ v)

	

(1)

unique subgraphs. (1) was improved to 2 (,)exp -(cn log n) by Harary and
Schwenk [22] . Finally Brouwer [3] improved (1) to

2( ' ) -cn
n ) e

	

(2)

(2) is not far from being best possible since Pólya proved that the number of
nonisomorphic graphs of n vertices is (1 + o(1))2(2')/n! .

I always assumed that (2) is best possible, except for the value of C, but
during this conference I had a discussion with J . Spencer who thought it
quite possible that there is a graph G(n) which has more than

(3)

unique subgraphs where e > 0 is independent of n. I do not believe this to be
true but could not disprove it and offer 100 dollars for a proof and 25 for a
disproof of (3) .

In trying to decide about (3) perhaps the following idea could be helpful .
I had no time to think it over carefully and have to apologize to the reader if
it turns out to be nonsense : Put t o = n log n/log 2 . Consider the random
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graph G(n; (z) - tJ . Is it true that almost all of them have a positive fraction
of their subgraphs as unique subgraphs? Is there at least one such graph with
this property? More generally, determine or estimate the largest 1„ = 1„(c)

for which there is a G(n ; I„) which has more than c2' ,á unique subgraphs, i .e ., a
positive proportion of the subgraphs is unique .

4

Some problems on random graphs. Is it true that almost all graphs
G(n ; Cn) contain a path of length cn? (c = c(C) > 0 .) I conjectured this in
1974 [15] but Szemerédi strongly disagreed . He believes that for every fixed C
the longest path contained in almost all G(n ; Cn) is o(n) . On second thought
I think Szemerédi may very well be right, but at the moment nothing is
known .

Let G(n ; t„) be a graph ofn vertices and t„ edges . Is it true that for almost all
such graphs the edge connectivity is equal to the minimum degree (or
valency) of the graph? Rényi and I [18] proved this if t„ < zn log n +
cn log log n . In this case the minimum degree is almost surely bounded . But
the conjecture should hold for a much more extended range of t„ and per-
haps in fact for all values of t,, .

The probability method easily gives that for every n > 0, 0 < c < ', and
and n > no(r1, c) there is a G(n ; [n' +`]) which has no triangle and, for every
in > rln, every induced subgraph G(m) satisfies

+`

	

m(1 _ ~1)n'
+,(11 < e(G(m)) < (1 + q)n' +` n
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In other words the graph behaves like a random graph .
Does this remain true for ' < c < 1. It certainly fails for graphs G(n, en') .

See [ 19, 24] .

5

It is well known that every graph with "many" edges contains a large
complete bipartite graph . To fix our ideas consider a G(n ; [n 2/4]) . It is easy
to see that it contains a K(r, s) for s = (1 + o(l ))n/2' as long as r2' <
(1 + o(l))n . Is this result best possible? By a simple computation using the
probability method Simonovits, Lovász, and I showed that this result is
indeed best possible as long as 2' = o(n/(log n)2 ) . In other words we can
prove that there is a G(n ; (n 2/4)) which contains no K(r, (1 + i :)n/2') as
long as 2' < q(r.)n/(log n) 2 .
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What happens if 2' > c(n/(log n)2)? More precisely : Let G(n ; [n 2/4]) be
any graph of n vertices and [n 2/4] edges. For every r satisfying r2' < n
consider the largest s for which our graph contains a complete bipartite
K(r, s) . Put f (G) = maxr s/(n/2r) and let A(n) be the minimum of f (G)
extended over all G(n ; [n 2/4]) . How does A(n) behave? On the one hand it
could be 1 + o(l) and on the other hand it could tend to infinity .

One could further ask : Colour the edges of K(n) by two colours, and let
K(r, s) be the largest monochromatic bipartite graph for r2' < n . Define
f;(G) and A, as before . Conceivably A, > A . It even could be that A -> l,
A, -> cc. For 2' = o(n/(log n)2 ), s < (1 + o(1))n/2' holds here too .

Similarly problems can be posed for G(n ; cn'), c 4, but these can easily
be formulated by the interested reader .

Every G(n ; [n 2/4]) contains a K(r, r) for r2' < rn (i .e., if r <
(1 - a)log n/log 2) and the probability method gives that it does not have to
contain a K(l, l) for I > (2 + r)log n/log 2 . The exact order of magnitude
will probably be difficult to determine . Exactly the same question occurs if
we colour a K(n) by two colours and ask for the largest monochromatic
K(l, l) . This difficulty is of course familiar in Ramsey theory .

See [23] .

6

It is well known that for n > no (s, t) every G(3)(n ; [en']) contains a
K 3 (t, t, t) . Is it true that a G (3)(3n ; n 3 + 1) contains a G (3) (9 ; 28) ?In particular
does it contain a KA3, 3, 3) and one more triple`? (This conjecture is stated
incorrectly in [13, p . I I] .)

Very little is known about extremal problems on r-graphs (uniform
hypergraphs where the edges have size r). Turán's classical problem of
determining ,f(n ; K (3)(4)) is of course still open . I recently offered 500
dollars in Turán's memory for the determination of (or an asymptotic
formula for) f (n ; K (3)(4)) . As far as I know f (n ; G ( ' ) (4 ; 3)) is also not yet
known. The largest G 3(n) without a G~ 3) (4 ; 3) I can construct it as follows : Put
n = a + b + c with a, b, c being as nearly equal as possible . Consider a
K3 (a,b,c)andputa-a,+az + a3 ,b-b,+bz +b3 ,c-c,+cz + c' 3
and iterate the preceding process . This gives a

1 3
G (11 ; (1 + 0(1))

24
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which contains no G (3) (4 ; 3) and which may be extremal .
Here I restate an old problem of mine which I consider very attractive .

Let G1 `(n,), 11 ; -> ~c, be a sequence of r-graphs of n ; vertices . We say that the
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family has subgraphs of edge density >a if, for infinitely many n;, G(n ;) has
a subgraph G(m), m; --> oo, so that G(m) has at least (a + 0(1))(„N) edges .
The theorem of Stone and myself implies that every G«~(n ; (n 2 /2)(1 -
(1/1) + F)) contains a subgraph of density 1 - [1/(1 + 1)], and it is easy to see
that this is best possible . If a is the largest such number then the G(m) are
called a family of subgraphs of maximal density .

Thus for r = 2 the possible maximal densities of subgraphs are of the
form 1 - (1/1), 1 < 1 < oo . Now I conjecture that for r > 2 there are also
only a denumerable number of possible values for the maximal densities a .
I offer 500 dollars for the determination of these values for all r > 2-or also
for a refutation of my conjecture .

The simplest unsolved problem here is as follows : Prove that there is an
absolute constant c > 0 so that for every e > 0 if

G(3)(n" [27 (1
+ F)])

is a family of 3-graphs there is a family of subgraphs of edge density greater
than 9 + c. I offer 250 dollars for a proof or disproof of this conjecture .
Probably (n 3/27)(1 + F) can in fact be replaced by (n 3/27) + n3- "n where
rl„-+Oasn-> oo .

Similar unsolved problems on the possible maximal densities arise in
multigraphs and digraphs as stated in a paper of Brown et al . [4] .

Let G( ' )(n) be an r-graph . Its edge graph is the ordinary graph (i .e., r = 2)
whose vertices are the vertices of our G(')( n). Two vertices in the edge graph
are joined by an edge if they are contained in one of the r-tuples of G( ' ) ( n) .
Simonovits and I observed that the edge graph of a G ( ' ) (n ; [(1 + F)(;)n'/1'])
contains a K ip+ I (t) for every n > n o(t). The edge graph of K,'([n/1]) shows that
this result is esseptially best possible .

See [1, 2, 5, 11, 20] .

7

In a previous paper [14] I stated the following problem : "A problem in
set theory led R . O. Davies and myself to the following question : Denote by
f (n, k) the largest integer so that if there are given in k-dimensional space n
points which do not contain the vertices of an isosceles triangle, then they
determine at least f (n, k) distinct distances . Determine or estimate f (n, k) .
In particular is it true that

lim 'f(n'
k)
= oo

n- m n
(1)
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(1) is unproved even for k = 1 . Straus observed that if 2' >- n then f(n, k) _
n - 1 ."

I perhaps should have given some explanation why (1) is difficult even for
k = 1 . Observe that lim„ . J '(n, 1)ln = oo implies Roth's theorem : r 3 = o(n),
where r 3(n) is the smallest integer so that if 1 < a, < . . . < ak < n, k > r 3(n)
then the a's contain an arithmetic progression (i .e ., an isosceles triangle) . The
converse does not seem to be true, i .e ., r 3 (n)ln -, 0 does not imply (1) .

Is it true that if a,, . . . , a„, is a set of integers which does not contain an
arithmetic progression of three terms then for m > mo(c) there are more than
cm distinct integers of the form a ; - a j ? This is a special case of (1) if k = 1 .
At the moment I do not see how to prove this but perhaps it will not be very
hard .

The following further questions are perhaps of some interest : Let there
be given n points in k-dimensional space . Assume that every set of four of
them determine at least five different distances . Is it then true that the n points
determine at least ck n' distinct distances . This is trivial for k = 1 since if four
points on the line determine five distances three of the points must form an
arithmetic progression and the fourth point is in general position . From this
remark it easily follows that if there are n points on the line and any four
determine at least five distances then the n points determine at least (n'/2) -
cn distances . For k > 1 I do not know what happens, but again I am not sure
if the question is really difficult .

Let X,, . . ., X„ be n points in k-dimensional space. Denote by
Ak(X ,, . . . , X„) the number of distinct distances the n points determine . What
is the set of possible values of A k (X 1 , . . . , X„)? 1 previously considered the
smallest possible value of A,(X	Xn) and, for k > 1, this is no doubt
a very difficult question, but perhaps it is possible to make some nontrivial
statement about the possible set of values of Ak(X ,, . . . , Xn), e .g ., perhaps in a
certain range it can take all values .

8

Let G be a graph of m edges . Denote by f(m) the largest integer so that G
always contains a bipartite graph of f (m) edges. Edwards [6] and I proved
that f (m) > ( m/2) + c-111M and that in general this result is best possible .

Edwards in fact determined f (m) explicitly.
Assume now that G has m edges and girth r (i .e., the smallest circuit of G

has r edges). Denote by f,(m) the largest integer so that G always contains a
bipartite graph of f,(m) edges . Lovász and I proved that

2 + e, M , - ` r < f,(m) <
2
+ c, M ,

159
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where c,' and c," are greater than z and less than one and tend to one as r
tends to infinity.

It seems certain that there is an absolute constant c, so that

+ m`,- „ < Jr(m) < 2 +

	

(2)

but at the moment we cannot prove (2) . If (2) holds then the next step would
be to get an asymptotic formula for f,(m) - (m/2) .

Now we outline the proof of (1) . The upper bound follows by the proba-
bility method and we do not give it here (an outline has already been published
in Hungarian) since it is fairly standard. We prove the lower bound in some
detail but for simplicity assume r = 4 (i .e., G has m edges and no triangle). The
proof of the general case is not really different . We need two lemmas .

Lemma 1 Let G have m edges and chromatic number k where k = 2r or
2r - 1 . Then G contains a bipartite subgraph of at least m(r/2r - 1) edges .

If m = (z) then K(s) shows that the lemma is best possible .

Since G has chromatic number k one can decompose its vertex set into k
independent subsets Si , 1 < i < k. Decompose the index set {i : 1 < i < k} in
all possible ways into two disjoint sets A,,, B,,, A„ _ [k/2], B„ _ [(k + 1)/2] .
The number of these decompositions clearly equals ( Ek/z1 ) . Consider all the
(tkiz1) bipartite subgraphs of G,,, 1 < u < (tkl2l), where in G„ a vertex is white
if it belongs to an S„ i c A,,, and is black otherwise . Every edge of G clearly
occurs in exactly 2(~k ;z~ _ z) of the bipartite graphs G,, . Thus if e(G„) denotes the
number of edges of G„ we have

~e(G„)=2m
k-2

([k/2] - 1

or ifk=2ror2r- 1

max e(G„) >- m •
2([k/2] ? 1) = mu

	

2r .̀ 1

PAUL ERDOS

which proves the lemma .

	

∎

Lemma 2 Let G have m edges and no triangle . Then its chromatic number
is less than

(rn log log
m)1/3

= t .cr
log m
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Graver and Yackel proved that a graph of chromatic number t„, has at
least

cz tm 2 log tm
log log t,„

vertices . Clearly each vertex can be assumed to have valency (or degree) at
least t,,, . Thus a t .-chromatic graph has at least

C'	 tn,3 log 1,

log log t,„

edges, which proves our lemma .

	

∎

The lemma is not very far from being best possible . I showed that there is a
graph of m edges which has no triangle and whose chromatic number is
greater than m'i 3 /log m.

Lemmas 1 and 2 immediately give that
'

J4(m) > m + cm213
tog m

	

i3

2

	

log log m

which completes the proof of our theorem . The proof if r > 4 is clearly almost
identical .

The upper bound given by the probability method for .f4(m) is very much
worse than mzi3 we have no guess for the correct exponent .

See [9, 10] .

9

In 1972 Faber, Lovász, and I stated the following conjecture : Let
A, I = n, 1 < k < n . Assume that any two of these sets have at most one
element in common . Is it then true that one can colour the elements of
U"k-, A, by n colours so that every set contains elements of all colours?

I consider this conjecture very attractive also it does not seem to be
easy and I offer 250 dollars for a proof or disproof .

Several mathematicians reformulated the conjecture as follows : Define
G(A	A„) as follows : The vertices are the elements of U"-, A ; . Two
vertices are joined if they belong to the same A; . Prove ;t~(G(A,, . . . , A ) = n .
A theorem of de Bruijn and myself implies that it contains no K„ + , .

One advantage of this definition is that one can easily ask new questions .
Let h(m) be the smallest integer for which there is a set system A,, . . . , A,,(m)
(I A i I = n, I A ; n Aj J < 1) for which y(A,, . . . , A, )) = m.

Many further generalisations are possible, e.g ., I A; n Aj < 1 can be
replaced by I A i n A j I < l . Also I A ; n A j I < 1 can be further strengthened in

161
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various ways . We could assume, say, that among any three sets A i , A j , A, at
least two are disjoint, etc.

One more new problem : In all the cases I know G(A t , . . . , A h( ..) ) contains
a K(m). That this must be the case is not hard to show for fixed n and m
sufficiently large . Is it true for every n and m?

See [5a] .

10

Tutte (and later independently Ungár, Zykov, and Mycielski) was the
first to construct graphs of arbitrarily large chromatic number having no
triangles . Then I [15] and later Lovász proved that for every r there is a
graph of girth r and chromatic number k .

Now Hajnal and I asked: Is there an A(k, r) so that every G with x(G) _>
A(k, r) contains a subgraph of girth r and chromatic number V Rödl recently
proved that A(k, 4) exists for every k, but his upper bound for A(k, 4) is
probably very poor. I think A(k, 4) < ck is true . It would be very interesting if
one could prove that A(k, r) exists for every k and r and if we could obtain
some knowledge of the order of magnitude of A(k, r), e .g., is it true that
limk-~ [A(k, r + I)/A(k, r)] = co?
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