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Abstract

We consider some unconventional partition problems in which the parts of the partition are
restricted by divisibility conditions, for example, partitions n = a1+ . . . +a k into positive integers
a l , . . ., a k such that al I a2 . . . a k . Some rather weak estimates for the various partition
functions are obtained .

Subject classification (Amer . Math. Soc . (MOS) 1970) : 10 A 45, 10 J 20 .

1. Introduction

In this paper, we shall consider various partition problems in which the parts of the
partitions are restricted by divisibility conditions . Most of our remarks concern the
following two situations :

(i) `Chain partitions', that is partitions n = ai + . . . +ak into positive integers
a 1, . . ., ak such that at I a2 I . . . I ak .

(ii) `Umbrella partitions', that is partitions into positive integers such that every
part divides the largest one . Our aim is to estimate the partition functions which
arise in each case for partitions with distinct parts and for partitions in which
repetitions are allowed .

This work arose from a question of R . W. Robinson about chain partitions with
repetitions which, in turn, came from attempts to count a certain kind of tree . This
particular partition problem is closely connected with m-ary partitions, that is
partitions as sums of powers of a fixed integer m, which are obvious instances
of the types of partitions described above. In another direction, the problem of
representing numbers by umbrella partitions has some connections with the
`practical numbers' of Srinivasan .
We would like to thank Dr . B. Richmond for criticisms which have helped us to

remove some of the obscurities in our original manuscript .
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Throughout the paper, c denotes a generic positive constant, not necessarily the
same at each occurrence, and log and log, denote logarithms to base e and base 2

respectively .

2 . Chain partitions with distinct parts

Let p(n) be the number of partitions n = al+ . . . +ak into distinct positive integers
a; with a1 I a, I . . . I a k and let pl (n) be the number of partitions of this type with
al = 1 . Clearly,

(3)

for n > 27, as required .

We can say rather more about the sum functions of the partition functions p(n)
and p,(n) . Since they behave similarly, by (1), we introduce only

(1)

	

p(n) = p1(n) +p1(n + 1)

and, by considering the partitions of n with a, = 1 and a2 = d and summing over
the possible values of d, we find the recurrence

(2)

	

pl(n) _

	

E pl((n-1)/d) _

	

z

	

p1(d).
din-1, d>1

	

din-1, d<n-1

It is easy to see that p(n) tends to infinity with n, and even a little more .

THEOREM 1 . For n > 6, we have p(n) > log e n. For n > 27, we have p1(n) > j 1092 n,
except when n -1 is prime, in which case p l(n) = 1 .

PROOF . First consider p(n) . For each integer k with 15 2k < n/3, we can choose an
odd integer t satisfying n-2k+1 < 2k t S n and we obtain one of the partitions
counted in p(n) by writing n-2k t in the binary scale, that is using some or all of
the parts 1, 2, 22 ' . . ., 2k, and adding the last part 2k t . If we also count the partition
arising from the binary representation of n, we have

p(n) > 1092 [n/3 ] + 2 > log2 n,

for n > 6 . The same argument shows that the inequalities (3) also hold for p1 (n) for
odd n . Finally, if n is even and n-1 is composite, then n-1 has an odd proper
divisor d> (n-1)t and by (2) and what we have already proved

p1(n) >p1(d) + 1 > 12 1092(n- 1)+ 1 > 3,log2 n,

Pi(x) _

	

pl(n).
1-<n<-x
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By considering the partitions of n with a, = 1 and a2 = d and summing over d,
we get

(4)

	

Pl(x) = E P,((x -1)/d) + 1 .
2_<dSz-1

This functional equation for P,(x) is essentially the same as a functional equation
arising in the theory of `factorisatio numerorum' . (See Kalmár (1931), Hille (1936),
Erdős (1941) and Grosswald (1974) .) Denote by f(n) the number of representations
of n as a product of factors greater than 1 . Here, two representations are considered
identical if and only if they have the same factors in the same order . We define
f(1) = 1 . By arguments like those used above, we get

(5)

	

f(n) = E f(d)
din, d<n

and, for the sum function of the f (n),

(6)

	

F(x) = E f (n) = E F(x/d) + 1 .
1<-n<-x

	

2<_d_<x

Starting from (6), Erdős (1941) gave an elementary proof that F(x)-cxP as
x--goo, where p is the unique positive root of ~(p) = 2. With a few minor modifica-
tions, this method yields the following result for Pl(x) .

THEOREM 2 . Let p be the unique positive root of ~(p) = 2, where ~(s) is the Riemann
zeta function. Then P,(x)-cxP as x->.oo .

For the factorization problem, the standard machinery of analytic number
theory is also available . Indeed, from (5), f(n) has the generating Dirichlet series

W f (n) __ 1
1 ns

	

2-~(s)

and so, by the Wiener-Ikehara Tauberian theorem,

F(x)

	

P (P) + Q,(xP
-8)

as x-)~ oo, for every e > 0 . (See Hille (1936).) For our partition problem, we have not
been able to evaluate the constant c in Theorem 2, but we can still show that

(7)

	

Pl(x) = cxP + Q2 (XP- 8)

as x-* oo, for every s > 0 . The assertion (7) is clearly true if lim sup p1 (n)lnP- 8 > 0.
On the other hand, if pl(n) S c(e)0- 8, for some positive constant c(E), and we

12



322

	

P. Erdős and J. H . Loxton

	

[4]

introduce the Dirichlet series

pi(n)
(S) _ y pl(n

s
1)

n=1 n

	

n=i

	

n

then 9(s)-~(s) is regular in res> p-E and, from (2), we obtain the equation
9(s)+O(s) _ ~(s) 9(s), that is

~o(s) _ {~p(s) - «s)}/{2 - ~(s) }.

Thus 9(s) has a meromorphic continuation to the half plane re s > p- E and it is an
almost periodic function of im s in this region since both the factors on the right in
the above equation have this property. Next, {2-~(s)} - t has a simple pole at
s = p and, by Theorem 2, p(s) has some sort of singularity at s = p, so P(s) must
have a simple pole at s = p and, by almost periodicity, it has poles in every vertical
strip p - 8 < re s < p (0 < 8 < E) . Consequently, the assertion (7) holds in this case
as well .

We are unable to obtain accurate upper and lower estimates for the functions
p(n) and pl ( n) beyond the results of Theorems 1 and 2 . Computations of these
functions for n < 10 000 suggest that the upper bound p(n) < c(E)nP-1 +E might be
true for every s > 0 . If so, this would be in marked contrast to the behaviour of the
factorization function f (n) for which it is known that lim sup f (n)/nP-E > 0 for every
E>0. (See Hille (1936) and Erdős (1941).) In view of the naiveté of Theorem 1,
it seems likely that p(n)/logn-->oo as n co, but the rather limited experimental data
mentioned above do not convincingly confirm or contradict this .

In this connection, it may be observed that if the numbers n and 2n+ 1 are both
prime, then p(2n+ 1) = p(n) + 1 and, indeed, if the numbers n j = 2i(n+ 1)-1
(0 < j < k) are all prime, then p(nk) = p(n)+k. So the problem of estimating p(n)
from below is inextricably bound up with the problem of estimating the least
composite number in a sequence of the shape mj = 2im -1 (j > 0) . We cannot
prove very much about these sequences unconditionally . However, if we assume
the truth of Artin's conjecture that the number of primes less than x for which 2 is
a primitive root is asymptotically e-lx1logx as x-->oo, then we can show that the
least composite m; is less than me+i+E for large m and any s > 0. For, we can choose
a prime p < (c+ E) log m such that p,rm and 2 is a primitive root mod p and we
observe that one term in every p consecutive terms of the sequence {mj} is a
multiple of p . Indeed, Hooley has shown under hypotheses similar to those which
he used to prove Artin's conjecture that almost all the terms in a sequence of this
type are composite. (See Hooley (1976), Chapters 3 and 7 .) These conditional
results do not seem to give any improvement on Theorem 1 . We can show un-
conditionally only that the least composite number mj = 2i m-1 is less than
2mi4 m, providing m > 6 . For, ifp is an odd prime divisor of m - 21 for some 1, then
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mk(p-1)-1 is composite whenever k>1/(p-1) because

mk(p-1)-1 = 2k(p-1)-1 m- 1- 2 k(p -1) - 1 ===0 (mod p) .

Now, if m > 12 and mo = m-1 is prime, it can be seen that one of the numbers
m-2, m-4, m-8 has an odd prime divisor less than ml4 and so we have a
composite mj less than 2-/4m, as asserted .

We remark on another connection between chain partitions and the factorization
problem . Let p(m,n) be the number of partitions n = a1 + . . .+ak into distinct
positive integers aj with a1 I a2 l . . . I ak Im and letp1 (m, n) be the number of partitions
of this type with a1 = 1. As before,

p(m, n) = p1 (m, n) +p,(m, n + 1) .

To each factorization d = a1 a 2 . . . a k into factors greater than 1, we make correspond
the partition n=1+a1 + a1 a2+ . . .+a,a2 . . .ak . On counting the number of
partitions and factorizations which arise as d runs through all the divisors of m
less than m, we get the equation

m-1
E Pi(m, n) = E f(d) =f(m) .
n=1

	

dlm, d<m

This suggests the related question of estimating how many numbers n with
1 S n S m can be represented by a partition n = a,+ . . . +ak into distinct positive
integers aj with a1 la2 l . . . ja k 1m . Clearly, the number of representable numbers is
less than m unless m is a power of 2 . Moreover, if m = P1P2 . . . ph is the product
ofh primes, not necessarily distinct, then there are at least 2h representable numbers,
namely the numbers 80+ £iPi+ E2PlP2+ • • • + Eh-lPiP2 • • • Ph-1 (E,1 = 0 or 1) .
However, if m is the product of the first h primes, say, we cannot decide whether
there are as many ms representable numbers for some 8 > 0 .

3. Chain partitions with repetitions

Let q(n) be the number of partitions n = a1 + . . . +ak into positive integers a; with
a1 I a2 l . . . I ak , repetitions being allowed . Arguing as before, we find

(8)

	

q(n) = Eq((n-d)/d) = Eq(d-1),
dln

	

din

with the convention that q(0) = 1 . Included among the partitions counted in q(n)
are the binary partitions of n, that is the partitions of n as sums of powers of 2 ; we
denote the number of these by b(n) . The function b(n) satisfies the recurrence

(9)

	

b(2n + 1) = b(2n), b(2n) = b(2n -1) + b(n) (n > 1),
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and we have

For B(x), de Bruijn (1948) has proved the extremely precise asymptotic result

2
(10) log B(x) = 21og2 (log logx) + (2 +1og2 + og2 logx

-(1+lolog22)loglogx+U(logx
lologx)+0(1)
log 2

as x->-oo, where U(t) is a certain periodic function with period 1 . In fact, he gives
the periodic function U(t) explicitly by its Fourier series and further analyses the
structure of the o(1) term . Our aim in this section is the following estimate for the
sum function

which parallels the above result for B(x), except that we cannot give the
oscillatory term explicitly.

THEOREM 3 . We have

1

	

x 2

	

1

	

1

	

log log 2
log Q(x) = 21og 2 (log log

X)2 +
(2+ log 2 + log 2

log x

- (1+ lológ 2
	 2)

log log x+ V
(logx1lgog log x)

+0(1)

as x->oo, where V(t) is a certain periodic function with period 1 .

The proof of Theorem 3 is rather long and we proceed by means of a number of
lemmas. We begin with a first approximation to Theorem 3 which shows that at
least b(n) accounts for a positive proportion of the partitions of q(n) .

LEMMA 1 . We have b(n) 5 q(n) S cb(n) .

PROOF . To prove the second inequality, we use (8) and induction . From (9), b(n)
is increasing, so by (9) again, we have

B(x) _

	

b(n) = b(2[x]) .
0-<n-<x

Q(x) _

	

q(n),
OSnSx

Eb(d-1),<b(n-1)+ E b (n =b(n)+
E

	

)-
b n

din

	

d!n, d>_2 (d)

	

din, d>_3 (d
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Write b(n/d) = b(n) w(n, d) . From (10), after a little calculation, we obtain

log d . log n (log d)2 log d . loglog n(12) log w(n, d) - log 2 + 2 log 2 +

	

log 2

+ (Ijog lologg2)
log d+ 0(l),

as n-->oo . Let 8 be a positive number so small that the number q defined by

= 3 -(1+S) log2
4

	

log 3

is also positive . For the rest of the argument, we assume that n is a positive integer
chosen sufficiently large so that all the inequalities are valid . If d,< ná, then from (12),

log d . log n 3 'qlog w(n, d) < -	log 2

	

(4 2)'

by our choice of n, and so

log 3 . log n 3_

	

i s
aln, sá

\ntw(n, d) < exp~ -	
log 2

	

(4 q)
- n

Again, if d>nl, then

and so

Hence, from (I1),

as required .

Now let N be a positive integer and define a sequence {aN(n)} by

aN(n) = q(n) (0 -< n < 2N)
and

log w(n, d) < -
(log d)22

2 <
(log n )2

g

	

g 2

2

	

,
w(n,d)<exp~- (log n) +logn } <n_i_s

dln, d>,,,t

	

81og 22

E b(d-1) < b(n) {I + O(n-i-s)}
d~n

and, finally, by (8) and a simple induction, we have

q(n) < b(n) f j { 1 + O(m-i-s)} < cb(n),
m-<n

aN(2n+ 1) = aN(2n), aN(2n) = a .(2n - 1) + av(n) (n > N) .
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We show next in Lemma 2 that, for large N, aN (n) is a good approximation to q(n) .
Then, to complete the proof of Theorem 3, we use a Tauberian theorem of Ingham
(1941) to show that the sum function of a,,Jn) has the behaviour specified for Q(x)

in the theorem. A similar application of Ingham's Tauberian theorem was made by
Pennington (1953) in discussing the binary partition function .

LEMMA 2. Given E > 0, there is a positive number N l(e) such that

aw(n) < q(n) < (1 + e) a x(n)

for all n, whenever N>,N&) .

PROOF . By (8) and (9) and Lemma 1, we have

b(n) < aN(n) < q(n) < cb(n) .

So, by the argument used in the proof of Lemma 1, if 8 > 0 is sufficiently small,
we have

which gives the lemma .

The generating function of the b(n) is
w

	

W

f(z)= Eb(n) zn= 11(1-z2k)-i ( 1z1<1) .
n=o

	

k=o

We set F(s) =f(e11) for re s > 0. The following formula for F(s) is due to de Bruijn
(1948) .

LEMMA 3 . Let 0 < B < ,n-/2 and let 0(9) be the sector I arg s I < 8. Then

logF(s) =
(log S)2_

21ogs+ W(-íóg2)+O(1sI ),

as s->- 0, uniformly in 0(B) . Here, W(t) is a certain periodic function ofperiod 1 and
W(-logs/log2) is bounded in A(B) .

Now, we introduce the functions

q(n) 5 aN(n) 11 { 1 + O(m-1- s)},
2N-<m-<n

d%

	

k
gn(z) = E z2kn jI (1-z 2 ')_1 ( I z I < 1 ; n = 1, 2, . . .)

k=0

	

j=0

and we set Gjs) = gn(es) for re s > 0 .
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LEMMA 4 . Let 0 < B < a/2 and let 0(O) be as in Lemma 3 . For each fixed n, we have

Gn(s) - F(s) exp {W.(- log s/log 2)},

as s-a0, uniformly in 0(O) . Here, W.(t) is a periodic function of period 1 and
Wn(-logs/log2) is bounded in 0(O) .

PROOF. Let p be the unique root of pn = 1- p 2 with 0 < p < 1 ; p has the asymptotic
expansion

(13)

	

p= 1 _ log n +loglogn
+0(1)

n

	

n

	

(n)

Suppose 0 < x < 1 and choose m to be the integer satisfying x2m 5 p < x 2° ' - 1 . Finally,
define y by py = x21 . Thus, I < y < 2 and logy/log 2 is the fractional part of
(log log x-1 -log log p-1 )/log 2 . We can now write

00
9n(X) =

f(X) { E P
2_knyH(1-p2-1y)+ E P2kny (1- P2iy ) -1 }

f(P ) k=1

	

j=1

	

k=O

	

j=0

AX)

	

ny/2
pnv

	

p2ny

APY)
. . .+p

	

+I-py+ (
1-Py)(1-ply)+

. . . ,

where the terms shown are, in fact, the biggest terms of the series . In the first tail
the common ratios of consecutive terms are

p2-k-my(l - p2-ky)
< 1- py/2 = O(logn)-n'

by (13), and in the second tail, they are

p 2kny <	 P2ny = (I -p2)2ó - O(logn)
1 -

p2k+lny I - p4y

	

I - pl y

	

n

so the series is dominated in both directions by a geometric series with common
ratio O(logn/n) . Further, by (13) and Lemma 3,

v
1

	

n 2

	

1 logy
logf (p ) = 21og 2 (loglog n) + (2 log-2 )

log n

+ (log2
2+1logy

og2)loglogn+O(1),

as n oo, uniformly in y in the interval 1 <, y S 2 . This proves the assertions of the
lemma for real s and they follow for complex s since all the functions involved are
regular in A(O) .
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The generating function of the aN (n) is

where

.0

	

.0

	

k
fV(z)_

	

aN(n)Zn =

	

hN(Z2~

	

Z2 -1 (IZI<1),
n=N

	

k=0

	

j 0

2N-1
hN(Z) = E {4(n)-4(n-1)}Zn+q(N-1)ZN .

n=N

This can be most easily seen by observing that fN(z) is the unique solution of the
functional equationfN(Z 2) _ (1-z)fN(z)-hN(Z) which is regular at the origin and
vanishes there. We write FN(s) = fN(e-3) for re s > 0 . By Lemma 4,

(14)

	

FN(s) - F(s)exp {XN(- logs/log 2)},

as s-,- 0, uniformly in the sector 0(0), for each 0 with 0 < 0 < 7r/2 and for each
fixed N. Again, XN (t) is a periodic function with period 1 and XN(-logs/log2) is
bounded in 0(0) . Set

AN(x) = E aN(n) .
NSn-x

We follow Pennington (1953) in applying a Tauberian theorem of Ingham to the
transform

FN(s)
= J

oe-3x dA N(x) .
0

Indeed, by (14) and Lemma 3, the functions F(s) and FN(s) have the same asymptotic
behaviour as s-+0, so the details of the Tauberian argument for FN(s) are exactly
the same as those for F(s) given in Pennington (1953), pp. 540-544. Consequently,
logAN(x) has the same asymptotic behaviour as log B(x) for large x, that is logAN(x)
has the shape specified in Theorem 3 . The theorem follows from this remark and
Lemma 2. For, given e > 0, we can choose N so large that log Q(x) is approximated
to within e/2 by log AN(x) for all large x. Hence log Q(x) satisfies the estimate of
Theorem 3 with error at most e, say, for all large x and this gives the required result .

Our methods could be used to give bounds for the oscillation of Q(x)IB(x) for
large x, but we have not been able to decide whether or not Q(x)IB(x) approaches
a limit as x->-oo .
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4. Umbrella partitions with distinct parts

Let r(n) be the number of partitions of n into distinct positive integers such that
each part divides the largest one . As usual, we do not distinguish between partitions
differing only in the order of their terms. We write

(15)

	

D(n) = max d(m),
1-<m-<n

where d(m) denotes the number of positive divisors of the integer m . The next
theorem gives an estimate for r(n) .

THEOREM 4. We have log log r(n) - log 2 . log n/log log n as n -> co . More precisely,
log r(n) - log 2 . D(n) as n co .

PROOF. The second statement implies the first by the well-known estimate for the
maximum order of d(n). (See, for example, Hardy and Wright (1968), Theorem
317 .)

We show first that 1092r(n)~{1+o(1)}D(n) . Indeed, each partition of r(n) with
largest part m corresponds to some subset of the divisors of m which make up the
terms of the partition . Since there are at most n choices for the largest part m, this
gives r(n) < 2D(n) n, as asserted .

It remains to show that 1092r(n)>,{1+o(1)}D(n), and for this we need some of
the properties of the highly composite numbers of Ramanujan (1915) . A positive
integer n is called highly composite if d(m) < d(n) for every positive integer m less
than n. Now, given a positive integer n, let m be the largest highly composite number
not exceeding n/2 . By Ramanujan (1915), Section 28, we have m-n/2 and
d(m)-D(n) as n co. Moreover, from Sections 8 and 23 of Ramanujan's paper,
m = 21x3,6 5y . . . with a > P >, y >, . . . and a- log log n/log 2 (log log log n)t. We choose
a sequence d, = 1 < d2 < . . . < dk = m of divisors of m with d; S 2dj_1(2 < j < k) and
with k as small as possible . Clearly, this can be done with k < c log n . Now, let
D, < D2 < . . . be the consecutive divisors of m excluding the d ; and choose r so that

D1+D2+ . . .+D,,<m<D1+D2+ . . .+Dr+1 •

We assert that r - d(m), for the number 2-KM with K = [(log log m)i] has
{1+o(1)}d(m) divisors whose sum is less than m . With this construction, we can
write n = m + s + t where s is a sum of the Dl's and t is a sum of the dl's, giving a
partition of the required sort for n . There are in all 2r choices for s, so we have

as required .
r(n) i 2(1+oU»d(m) i 2(1+o(1»D(n)~
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By analogy with the concluding remarks of Section 2, we can ask what positive
integers m enable us to represent all numbers n with I ,< n < m by an umbrella
partition with largest part dividing m . These are the `practical numbers' of
Srinivasan . Sierpinski (1955) showed that m is a practical number if and only if it
has the prime factorization m = 201opilp- . . .ph3 where p l <p2 < . . . <Ph are odd
primes, N, al , . . ., «h are positive integers and p;+l < 1 +Q(2ftpalpU2 . . .p ) for
0 < j < h-1 . (Here, o(n) denotes, as usual, the sum of the positive divisors of n .)
Consequently, the practical numbers have zero density . We can prove the stronger
assertion that the density of integers m for which a given integer n is the sum of
distinct divisors of m tends to 0 as n->oo . The proof is omitted .

5. Umbrella partitions with repetitions

Finally, we consider the partition function s(n) which is the number of partitions
of n into positive integers in which each part divides the largest part and repetitions
are allowed . We obtain an estimate similar to the one in Section 4 .

THEOREM 5 . We have log logs(n)-log2 .logn/log log n as n->00 . More precisely,
log s(n)- 2D(n)logn as n->oo, where D(n) is defined by (15) .

PROOF . Let s(m, n) be the number of partitions of n with largest part m and with
all parts dividing m. If d divides m, then d occurs at most nld times in any partition
ofs(m, n) and, moreover, any choice for the divisors d with each occurring at most
n/d times gives a partition of s(m, nd(m)). Hence

From this,

s(m, n) < 11 Qn/d] + 1) < s(m, nd(m)) .
d1m

s(n)
- ls(m,

n)

	

1 aj? \d+ 1)
n<

	

n
m1)d(m)ev(m)/nY1

	

<n(}+o(D)D(n) ,
1

because, for any E > 0, the terms of the sum with m < nl- E are absorbed in the o(1)
error term . On the other hand,

atm)
s(m, nd(m)) > ar, d =

(;,n,)
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and so

n

	

n
s(n) >, Z s(m, [n/d(m)])> 5 ([n/d(m)]/ml)d(m) >n{1+oa ) 1D (n)

M=1

	

m=1

because, from Section 28 of Ramanujan (1915), there is a term of the sum with
m = D(n) and m = {I +o(1)}n . This proves the theorem .
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