Strong Independence of Graphcopy Functions

PAUL ERDÖS, LÁSZLÓ LOVÁSZ, and
JOEL SPENCER

Let H be a finite graph on v vertices. We define a function c_{H}, with domain the set of all finite graphs, by letting $c_{H}(G)$ denote the fraction of subgraphs of G on v vertices isomorphic to H. Our primary aim is to investigate the behavior of the functions c_{H} with respect to each other. We show that the c_{H}, where H is restricted to be connected, are independent in a strong sense. We also show that, in an asymptotic sense, the c_{H}, H disconnected, may be expressed in terms of the c_{H}, H connected.

In 1932, Whitney [1] proved that the functions c_{H}, H connected, were algebraically independent. Our results may be considered an extension of this work.

Notations and Conventions

All graphs G shall be finite, without loops of multiple edges. \mathscr{G} denotes the family of all finite graphs. $V(G), E(G)$ denote the vertex and edge sets of G.

For purposes of counting all graphs may be considered labelled. A map

$$
\psi: V(H) \rightarrow V(G)
$$

is called a homomorphism if $\{x, y\} \in E(H)$ implies $\left\{\psi_{x}, \psi_{y}\right\} \in E(G)$. If furthermore $x \neq y$ implies $\psi_{x} \neq \psi_{y}$ then ψ is a monomorphism. For $W \subseteq V(G)$, the restriction of G to W, denoted by $\left.G\right|_{W}$, is that graph with vertex set W and $\{x, y\} \in E\left(\left.G\right|_{W}\right)$ iff $\{x, y\} \in E(G), x, y \in W$. Let I_{s}, K_{s} denote the empty and complete graphs respectively on s elements.

Let $H, G \in \mathscr{G},|V(H)|=t,|V(G)|=n$. Define

$$
\begin{aligned}
A_{H}(G) & =\mid\{\psi: V(H) \rightarrow V(G), \text { homomorphism }\} \mid, \\
B_{H}(G) & =\mid\{\psi: V(H) \rightarrow V(G), \text { monomorphism }\} \mid, \\
C_{H}(G) & =\left|\left\{W \subseteq V(G):|W|=t,\left.G\right|_{W} \cong H\right\}\right|, \\
a_{H}(G) & =A_{H}(G) / n^{t}, \\
b_{H}(G) & =B_{H}(G) /(n)_{t} \quad\left[(n)_{t}=n(n-1) \cdots(n-t+1)\right], \\
c_{H}(G) & =C_{H}(G) /\left({ }_{t}^{n}\right) .
\end{aligned}
$$

The lower case functions give the fraction of homomorphism, monomorphism, and copies, respectively.

Throughout this paper let k denote a fixed integer $k \geq 3$. Let H_{1}, \ldots, H_{m} be all connected graphs (up to isomorphism) with $\left|V\left(H_{i}\right)\right| \leq k$. Let A_{i}, B_{i}, $C_{i}, a_{i}, b_{i}, c_{i}$ denote the functions $A_{H_{i}}, \ldots, c_{H_{i}}$ for convenience. Define vector valued functions $\mathbf{a}, \mathbf{b}, \mathbf{c}$ by

$$
\begin{aligned}
\mathbf{a}(G) & =\left(a_{1}(G), \ldots, a_{m}(G)\right), \\
\mathbf{b}(G) & =\left(b_{1}(G), \ldots, b_{m}(G)\right), \\
\mathbf{c}(G) & =\left(c_{1}(G), \ldots, c_{m}(G)\right) .
\end{aligned}
$$

Our object is to study the possible values for $\mathbf{a}(G), \mathbf{b}(G), \mathbf{c}(G)$. We wish, however, to avoid exceptional values taken by small G.

Definition S_{a}, S_{b}, S_{c} are defined as the sets of limit points of $\{\mathbf{a}(G)\}$, $\{\mathbf{b}(G)\},\{\mathbf{c}(G)\}$, respectively. More precisely, for $x=a, b, c$

$$
S_{x}=\left\{\mathbf{v} \in R^{m} ; \exists \text { sequence } G_{n},\left|V\left(G_{n}\right)\right| \rightarrow \infty, \mathbf{x}\left(G_{n}\right) \rightarrow \mathbf{v}\right\} .
$$

Example 1 Let $k=3$. Let H_{1} be the 2-point, 1-edge graph; H_{2} the 3-point 2-edge (vee) graph, H_{3} the 3-point 3-edge (triangle) graph. Then

$$
\mathbf{c}\left(H_{2}\right)=\left(\frac{2}{3}, 1,0\right) \notin S_{c} .
$$

We show later that $S_{a}=S_{b}$ and that S_{c} is a nonsingular linear transformation of S_{a}. Though the set S_{c} has perhaps the greatest natural interest, we shall prove theorems for S_{a}, where the technical problems are minimal.

Three Constructions

Let H be a graph on vertex set $V(H)=\{1, \ldots, t\}$. Let $x_{1}, \ldots, x_{t+1} \geq 0$, integral. We define a new graph $H^{*}=H\left(x_{1}, \ldots, x_{t}: x_{t+1}\right)$ as follows:

$$
V\left(H^{*}\right)=S_{1} \cup \cdots \cup S_{t} \cup S_{t+1}
$$

where S_{i} are disjoint sets $\left|S_{i}\right|=x_{i}$

$$
E\left(H^{*}\right)=\left\{\{\alpha, \beta\}: \alpha \in S_{i}, \beta \in S_{j},\{i, j\} \in E(H)\right\} .
$$

Intuitively, we have blown up the i th vertex into an independent set of size x_{i} and added x_{t+1} isolated points.

Notation $H\left(x_{1}, \ldots, x_{t}\right)=H\left(x_{1}, \ldots, x_{t}: 0\right)$.
$\phi: H\left(x_{1}, \ldots, x_{i}\right) \rightarrow H$ is the canonical homomorphism defined by $\phi(\alpha)=i$ iff $\alpha \in S_{i}$,

$$
\begin{gathered}
s H=H\left(x_{1}, \ldots, x_{t}\right) \quad \text { where } x_{1}=\cdots=x_{t}=s \\
\prod_{i=1}^{t} G_{i} \text { is the graph consisting of vertex disjoint copies of } G_{i} \\
\prod_{i=1}^{t} a_{i} G_{i} \text { is the graph consisting of vertex disjoint copies of } a_{i} G_{i}
\end{gathered}
$$

Lemma 1 If G has no isolated points

$$
A_{G}\left(H\left(x_{1}, \ldots, x_{t}: x_{t+1}\right)\right)=\sum_{\psi} \prod_{i \in V(G)} x_{\psi(i)},
$$

where ψ ranges over all homomorphisms $\psi: G \rightarrow H$. Also

$$
a_{G}\left(H\left(x_{1}, \ldots, x_{t}: x_{t+1}\right)\right)=\sum_{\psi} \prod_{i \in V(G)} P_{\psi(i)}
$$

where we define $P_{j}=x_{j} / \sum_{i=1}^{t+1} x_{i}$.
Proof As G has no isolated points any homomorphism is into $H\left(x_{1}, \ldots, x_{t}\right)$. For each homomorphism $\lambda: G \rightarrow H\left(x_{1}, \ldots, x_{t}\right), \psi=\phi \lambda$ is a homomorphism and for each ψ there are precisely $\prod_{i \in V(G)} x_{\psi_{i}}$ homomorphisms λ with $\psi=\phi \lambda$. The second equality follows from division.

Lemma 2

$$
\begin{aligned}
A_{H}(s G) & =A_{H}(G) s^{|V(H)|} \\
a_{H}(s G) & =a_{H}(G)
\end{aligned}
$$

Lemma 2 is only a special case of Lemma 1.
Corollary $1 \quad \mathbf{a}(G) \in S_{a}$ for all G.

Proof Let $G_{n}=n G$ in the definition of S_{a}.
Example 1 shows the Corollary 1 does not hold for S_{c}; nor does it hold for S_{b}.

Lemma 3 If H is connected

$$
\begin{aligned}
& A_{H}\left(\sum_{i=1}^{t} a_{i} G_{i}\right)=\sum_{i=1}^{t} A_{H}\left(G_{i}\right) a_{i}^{|H|}, \\
& a_{H}\left(\sum_{i=1}^{t} a_{i} G_{i}\right)=\sum_{i=1}^{t} a_{H}\left(G_{i}\right) p_{i}^{|H|}
\end{aligned}
$$

where

$$
p_{i}=a_{i}\left|V\left(G_{i}\right)\right| / \sum_{j=1}^{t} a_{j}\left|V\left(G_{i}\right)\right|
$$

Proof The first formula follows from Lemma 2 and the observation that the range of any homomorphism ψ shall be connected and hence lie in some $a_{i} G_{i}$. The second formula follows from division.

Let

$$
G=\sum_{i=1}^{t} a_{i} G_{i}+I_{a_{t+1}}
$$

and set $p_{i}=a_{i}\left|V\left(G_{i}\right)\right| /|V(G)|$ for $1 \leq i \leq t$. A simple calculation gives
Lemma 4 For H connected and G given as above

$$
a_{H}(G)=\sum_{i=1}^{t} a_{H}\left(G_{i}\right) p_{i}^{\left|H_{i}\right|} .
$$

Dimensions

Now we are able to state our main result.
Theorem 1 There exist $\mathbf{z} \in R^{m}, \varepsilon>0$, so that $B(\mathbf{z}, \varepsilon) \subseteq S_{a}$. Here $B(\mathbf{z}, \varepsilon)$ is the ball of radius ε about \mathbf{z}.

We require a preliminary lemma.

Lemma 5

$$
\{\mathbf{a}(G)\}_{G \in g} \operatorname{span} R^{m}(\text { as a vector space }) .
$$

Proof We use an indirect argument. If the lemma is false there exist c_{1}, \ldots, c_{m} not all zero, so that

$$
\sum_{i=1}^{m} c_{i} a_{i}(G)=0 \quad \text { for all } \quad G \in \mathscr{G}
$$

From $\left\{H_{i}: c_{i} \neq 0\right\}$ select from among the H with any particular number v of vertices an H with the minimal number of edges. Let $G=H\left(x_{1}, \ldots, x_{v}: x_{v+1}\right)$. From Lemma $1, a_{i}(G)$ is a polynomial in p_{1}, \ldots, p_{v} where $p_{i}=x_{i} /|V(G)|$. The coefficient of $p_{1} \cdots p_{v}$ in $a_{i}(G)$ is the number of bijective homomorphisms $\psi: H_{i} \rightarrow H$. By the minimality of H this coefficient is nonzero iff $H=H_{i}$. Thus $\sum c_{i} a_{i}(G)$ is not the zero polynomial-but then there exist rational values $p_{1}, \ldots, p_{v} \geq 0, \sum_{i=1}^{v} p_{i}<1$ for which the polynomial is nonzero. We may find $x_{1}, \ldots, x_{v+1} \in Z$ yielding these p_{i}, contradicting our assumption.

Proof of Theorem 1 Let G_{1}, \ldots, G_{m} be such that $\left\{\mathbf{a}\left(G_{i}\right)\right\}$ span R^{m}. Set

$$
a_{j}\left(G_{i}\right)=a_{i j}, \quad 1 \leq i, j \leq n
$$

so that the matrix $\left[a_{i j}\right]$ is nonsingular. Let $p_{1}, \ldots, p_{m}, p_{m+1} \geq 0$ and rational, with

$$
\sum_{i=1}^{m+1} p_{i}=1 .
$$

Let $D \in Z, D>0$ so that all $D p_{i} /\left|V\left(G_{i}\right)\right| \in Z$. Set

$$
G=\sum_{i=1}^{m}\left[\frac{\left(D p_{i}\right)}{\left|V\left(G_{i}\right)\right|}\right] G_{i}+I_{D_{p m+1}} .
$$

Then, by Lemma 4,

$$
a_{j}\left(G_{i}\right)=\sum_{i=1}^{m} a_{i j} p_{i}^{\left|H_{j}\right|}, \quad 1 \leq j \leq m
$$

We consider (\star) as a map $\Psi: R^{m} \rightarrow R^{m}$ transforming coordinates p_{1}, \ldots, p_{m} to $\eta_{1}, \ldots, \eta_{m} . G$ is defined for all $0 \leq p_{1}, \ldots, p_{m} \leq m^{-1}$. Then

$$
S_{a} \supseteq\left\{\Psi\left(p_{1}, \ldots, p_{m}\right): 0 \leq p_{1}, \ldots, p_{m} \leq m^{-1}, p_{i} \in Q\right\} .
$$

Since Ψ is continuous and S_{a} closed

$$
S_{a} \supseteq\left\{\Psi\left(p_{1}, \ldots, p_{m}\right): 0 \leq p_{1}, \ldots, p_{m} \leq m^{-1}\right\}
$$

Now we calculate

$$
\frac{\partial \eta_{j}}{\partial p_{i}}=a_{i j}\left|H_{j}\right| p_{i}^{\left|H_{j}\right|-1}
$$

and $\operatorname{Jac}(\Psi)$ is a polynomial in p_{1}, \ldots, p_{m}. At $p_{1}=\cdots=p_{m}=1$

$$
\operatorname{Jac}(\Psi)=\operatorname{det}\left[a_{i j}\left|H_{j}\right|\right]=\left[\prod_{j=1}^{m}\left|H_{j}\right|\right] \operatorname{det}\left[a_{i j}\right] \neq 0
$$

so $\operatorname{Jac}(\Psi)$ is not the zero polynomial. Hence there exist $0<p_{1}, \ldots, p_{m}<m^{-1}$ for which $\operatorname{Jac}(\Psi) \neq 0$. Setting $\mathbf{z}=\Psi\left(p_{1}, \ldots, p_{m}\right), S_{a}$ contains a ball about z.

Equivalence of Formulations

Theorem $2 S_{a}=S_{b}$.
Proof Fix $H,|V(H)|=i$, and $G,|V(G)|=n$. There are less than $i^{2} n^{i-1}$ set mappings $\psi: V(H) \rightarrow V(G)$ which are not monomorphisms. Thus

$$
A_{H}(G)-i^{2} n^{i-1} \leq B_{H}(G) \leq A_{H}(G)
$$

and hence

$$
a_{H}(G)\left[n^{i} /(n)_{i}\right]-i^{2} n^{i-1} /(n)_{i} \leq b_{H}(G) \leq a_{H}(G)\left[n^{i} /(n)_{i}\right]
$$

Now $\operatorname{Lim}_{n} n^{i} /(n)_{i}=1$ and $\operatorname{Lim}_{n} i^{2} n^{i-1} /(n)_{i}=0$. If G_{n} is a sequence with $\left|V\left(G_{n}\right)\right| \rightarrow \infty$, then $a_{H}\left(G_{n}\right) \rightarrow \alpha$ iff $b_{H}\left(G_{n}\right) \rightarrow \alpha$. From the definition, $S_{a}=S_{b}$.

Theorem $3 S_{c}$ is a nonsingular linear transformation of S_{b} (and hence S_{a}).
Proof Let $|V(H)|=i,|V(G)|=n$. We claim

$$
B_{H}(G)=\sum_{H_{1}} B_{H}\left(H_{1}\right) C_{H_{1}}(G),
$$

where H_{1} ranges over all graphs, $\left|V\left(H_{1}\right)\right|=|V(H)|$, which contain H as a subgraph. For if $\psi: H \rightarrow G$ is a monomorphism $\psi(V(H))=H_{1}$, a graph containing H as a subgraph. Conversely, for each H_{1} there are $C_{H_{1}}(G)$ copies of H_{1} in G and $B_{H}\left(H_{1}\right)$ maps ψ into each copy. Dividing by $(n)_{i}$:

$$
b_{H}(G)=\sum_{H_{1}}\left[B_{H}\left(H_{1}\right) / i!\right] c_{H_{1}}(G),
$$

giving an explicit transformation from \mathbf{c} to \mathbf{b} for any fixed k. If we order $\left\{H_{1}, \ldots, H_{m}\right\}$ by number of edges (arbitrarily among graphs with the same number of edges) the coefficient matrix becomes upper triangular with diagonal terms $B_{H}(H) / i!\neq 0$ and hence the transformation is nonsingular.

Topological Properties

Theorem $4 S_{a}$ is arcwise connected (and hence, by Theorems 2 and 3, so are S_{b} and S_{c}).

Proof Let $\left|V\left(H_{i}\right)\right|=\alpha_{i}$ for $1 \leq i \leq m$. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in S_{a}$. We claim that for $0 \leq p \leq 1,\left(x_{1} p^{\alpha_{1}}, \ldots, x_{m} p^{\alpha_{m}}\right) \in S_{a}$. We use that, by Lemma 4

$$
a_{i}\left(v G+I_{w}\right)=a_{i}(G) r^{\alpha_{i}} \quad \text { where } \quad r=v|V(G)| /[v|V(G)|+w] .
$$

We may find G with $\left|a_{1}(G)-x_{i}\right|$ arbitrarily small for all i and thence find v, w so that $|p-r|$ is arbitrarily small, thus making $a_{i}\left(v G+I_{w}\right)$ arbitrarily close to $x_{i} p^{\alpha_{i}}$. This completes the claim. The theorem follows as we have given an arc between an arbitrary $\mathbf{x} \in S_{a}$ and $\mathbf{0}$.

Dependence of Disconnected Graphs

We have shown that the functions a_{H}, where H runs over connected graphs of size $\leq m$ are strongly independent.

Observation Let $G=\sum_{i=1}^{s} G_{i}$. Then

$$
a_{G}=\prod_{i=1}^{s} a_{G_{i}}
$$

That is, the functions a_{H}, H disconnected, are dependent on the a_{H}, H connected.

Theorem 5 Suppose H_{1}, \ldots, H_{n} represent all graphs on $\leq k$ vertices, define $\mathbf{a}(G)=\left(a_{1}(G), \ldots, a_{n}(G)\right), S_{a}$ as before. Then S_{a} has dimension m equal to the number of connected graphs on $\leq k$ vertices.

Observation Let $H^{*}=H+I_{s}$. Then $a_{H^{*}}=a_{H}$.
Theorem 6 Suppose H_{1}, \ldots, H_{n} represent all graphs on exactly k vertices, define $\mathbf{a}(G)=\left(a_{1}(G), \ldots, a_{n}(G)\right), S_{a}$ as before. Then S_{a} has dimension m equal to the number of connected graphs on $\leq k$ vertices.

The previous theorems also hold for S_{b}, S_{c} by equivalence theorems.
Example 2 For $h=3, \operatorname{dim}\left(S_{c}\right)=3$.

Comments

1. The domain of our functions has been the class \mathscr{G} of all finite graphs. Let $S_{a}{ }^{*}$ be the set analogous to S_{a} if we restrict the domain to connected graphs. We claim $S_{a}{ }^{*}=S_{a}$ (and similarly $S_{b}{ }^{*}=S_{b}, S_{c}{ }^{*}=S_{c}$).

Clearly $S_{a}{ }^{*} \subseteq S_{a}$. Let $\mathbf{a} \in S_{a}$ and fix a sequence $G_{n},\left|V\left(G_{n}\right)\right| \rightarrow \infty, \mathbf{a}_{n}=$ $\mathbf{a}\left(G_{n}\right) \rightarrow \mathbf{a}$. To each G_{n} add at most $\left|V\left(G_{n}\right)\right|-1$ edges to form a connected graph $G_{n}{ }^{*}$. One can easily show that, in an asymptotic sense, almost none of the k vertex subgraphs contain any edges of $G_{n}{ }^{*}-G_{n}$ so that $\mathbf{a}\left(G_{n}{ }^{*}\right) \rightarrow \mathbf{a}$.

We may restrict our domain to doubly connected graphs, or similar restrictions, with identical results.
2. It is not known if S_{a} is locally arcwise connected. In general, the topological nature of S_{a} is not understood.
3. In the definition of limit points it was required to find a sequence G_{n} with $\left|V\left(G_{n}\right)\right| \rightarrow \infty$. It can be shown, using probabilitic methods, that for all sequences $G_{n},\left|V\left(G_{n}\right)\right| \rightarrow \infty, \mathbf{a}\left(G_{n}\right) \rightarrow \mathbf{a}$, there exists a sequence $G_{n}{ }^{*}$ (of which G_{n} is a subsequence) so that $\left|V\left(G_{n}{ }^{*}\right)\right|=n$ and $\mathbf{a}\left(G_{n}{ }^{*}\right) \rightarrow \mathbf{a}$.
4. The sets S are, in general, not convex. For example-let $k=3$ and H_{i} denote the 3-point ($i-1$)-edge graph, $1 \leq i \leq 4$, then

$$
\left.(1,0,0,0),(0,0,0,1) \in S_{c} \quad \text { (by } I_{s} \text { and } K_{s}\right)
$$

but

$$
\left(\frac{1}{2}, 0,0, \frac{1}{2}\right) \notin S_{c} .
$$

5. A complete description of convex hull (S) would settle several long standing questions in graph theory. For example, for $k \geq 4$, an ancient conjecture of Erdös is that

$$
\min _{\mathbf{c} \in S_{c}}\left[c_{I_{k}}+c_{K_{k}}\right]=2^{1-k}
$$

6. A complete description of S for $k=3$ appears very difficult.

REFERENCE

1. H. Whitney, The coloring of graphs, Ann. of Math. 33 (1932) 688-718.

AMS 05C99, 05A05

Paul Erdös

MATHEMATICS INSTITUTE
hungarian academy of sciences
BUDAPEST, HUNGARY

Joel Spencer

MATHEMATICS DEPARTMENT
STATE UNIVERSITY OF NEW YORK
AT STONY BROOK
STONY BROOK, NEW YORK

László Lovász
bolyal intézet
JÓZSEF ATTILA UNIVERSITY
SZEGED, HUNGARY

