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Let H be a finite graph on v vertices . We define a function CH , with domain
the set of all finite graphs, by letting cH(G) denote the fraction of subgraphs
of G on v vertices isomorphic to H. Our primary aim is to investigate the
behavior of the functions CH with respect to each other. We show that the CH,

where H is restricted to be connected, are independent in a strong sense. We
also show that, in an asymptotic sense, the cH, H disconnected, may be
expressed in terms of the CH , H connected .

In 1932, Whitney [1] proved that the functions CH , H connected, were
algebraically independent . Our results may be considered an extension of this
work .

Notations and Conventions

All graphs G shall be finite, without loops of multiple edges . W denotes the
family of all finite graphs . V(G), E(G) denote the vertex and edge sets of G .
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For purposes of counting all graphs may be considered labelled . A map

0 : V(H) -> V(G)

is called a homomorphism if {x, y} E E(H) implies {o, 0y} E E(G). If further-
more x y implies 0. 31- 0y then 0 is a monomorphism. For W 9 V(G), the
restriction of G to W denoted by G I w , is that graph with vertex set W and
{x, y} E E(G I w ) iff {x, y} E E(G), x, y e W. Let I s, KS denote the empty and
complete graphs respectively on s elements .

Let H, G E W, I V(H) I = t, I V(G) I = n . Define

AH(G) = I {0 : V(H) -> V(G), homomorphism} 1,

BH(G) = 1 {0 : V(H) -> V(G), monomorphism} I,

CH(G) =1{W--V(G) :IWI =t,Glw=H}I,

all(G) = AH(G)l n`,
bH(G) = BH(G)l(n),

	

[(n), = n(n - 1) . . . (n - t + 1)],

c,(G) = CH(G)I(" ).

The lower case functions give the fraction of homomorphism, monomor-
phism, and copies, respectively .

Throughout this paper let k denote a fixed integer k >- 3. Let H,, . . . , Hm
be all connected graphs (up to isomorphism) with I V(H i ) I < k . Let Ai, Bi ,
Ci , a„ b i , ci denote the functions AH	cH, for convenience . Define vector
valued functions a, b, c by

a(G) _ (a, (G), . . . , am(G)),

b(G) _ (b, (G), . . . , bm(G)),

c(G) _ (c, (G), . . . , cm(G)) .

Our object is to study the possible values for a(G), b(G), c(G) . We wish,
however, to avoid exceptional values taken by small G.

Definition Sa , Sb , Sc are defined as the sets of limit points of {a(G)J,
{b(G)J, {c(G)J, respectively. More precisely, for x = a, b, c

Sx = {v E Rm; 3 sequence Ga , I V(G„)I --> oo, x(GJ -> v) .

Example 1 Let k = 3 . Let H, be the 2-point, 1-edge graph ; H2 the
3-point 2-edge (vee) graph, H3 the 3-point 3-edge (triangle) graph. Then

c(H2) _ (3, 1, 0) 0 Sc .

We show later that S a = S b and that Sc is a nonsingular linear transfor-
mation of Sa . Though the set Sc has perhaps the greatest natural interest, we
shall prove theorems for S a , where the technical problems are minimal .
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Three Constructions

Let H be a graph on vertex set V(H) _ {1, . . . , t} . Let x,, . . . , x, + , >_ 0,
integral . We define a new graph H* = H(x l , . . . , x, : x, + ,) as follows :

V(H*) = S, u . . . U S' U S,+ ,,

where S i are disjoint sets I Si I = x i

E(H*) _ {{a, #I : a e Si , Q E Sj , {i, j} E E(H)} .

Intuitively, we have blown up the ith vertex into an independent set of size
x i and added x, + , isolated points .

Notation H(x,, . . . , x,) = H(x	x, : 0) .
0 : H(x,	x i ) -> H is the canonical homomorphism defined by

0(a) = i iff a e S i ,

sH = H(x,, . . ., x,)

	

where x, _ . . . = x, = s,

H Gi is the graph consisting of vertex disjoint copies of G i ,
i=i

a i Gi is the graph consisting of vertex disjoint copies of a i Gi .

Lemma 1 If G has no isolated points

AG(H(x,, . . . , x, : x,+

	

f1 xy(i),
i e V(G)

where 0 ranges over all homomorphisms 0 : G -> H. Also

aG(H(x,, . . . , x, : x,+i)) _ Y- H
I# iEV(G)

where we define P, = xj/zt ± i xi .

Proof As G has no isolated points any homomorphism is into
H(x,, . . . , x) . For each homomorphism A : G -* H(x,, . . . , x,), 0 _ OA is a
homomorphism and for each 0 there are precisely HicV(G) x,, ; homomor-
phisms A with 0 _ OA. The second equality follows from division .

Lemma 2

AH(sG) = AH(G)sJV(H)I ,

aH(sG) = aH(G).

Lemma 2 is only a special case of Lemma 1 .

Corollary 1 a(G) E Sa for all G .
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Proof Let G„ = nG in the definition of S. .

Example 1 shows the Corollary 1 does not hold for S, ; nor does it hold
for Sb .

Lemma 3 If H is connected

where

t
AH

(
Y- ai Gi = Y AH(Gi)a,H ~,

t

aH

	

ai Gi =

	

aH(Gi)p,Hi ~
i=1

	

i=1

t

pi = a i 1 V(Gi) 1

	

a;1 V(Gi)1
i=1

Proof The first formula follows from Lemma 2 and the observation
that the range of any homomorphism ~ shall be connected and hence lie in
some a i G i . The second formula follows from division .

Let
t

G = Y- aiGi + I «, l
i=1

and set p i = ai I V(G i ) / V(G) I for 1 < i < t . A simple calculation gives

Lemma 4 For H connected and G given as above

Dimensions

Now we are able to state our main result .

Theorem 1 There exist z e R'", e > 0, so that B(z, e) 9 S, Here B(z, e)
is the ball of radius a about z .

We require a preliminary lemma .

Lemma 5

{a(G)}G c 9 span R' (as a vector space) .

t

aH(G) _

	

aH(Gi)p,H '
l

.
i=1
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Proof We use an indirect argument . If the lemma is false there exist
c l , . . . , cm not all zero, so that

m
cia i(G) = 0

	

for all G E ~.
i=1

From {H i : ci 0} select from among the H with any particular number v of
vertices an H with the minimal number of edges . Let G = H(x,, . . . , x„ : x„+ 1)•
From Lemma 1, a i(G) is a polynomial in p,, . . . ' p„ where pi = xi/I V(G) I .
The coefficient of p, • • • p„ in a i(G) is the number of bijective homomor-
phisms 0 : H i --+ H. By the minimality of H this coefficient is nonzero iff
H = Hi . Thus I ciai(G) is not the zero polynomial-but then there exist
rational values p	p„ >_ 0, iI p i < 1 for which the polynomial is non
zero. We may find x,,..., x„ + , e Z yielding these p i , contradicting our
assumption .

	

∎

Proof of Theorem 1 Let G,, . . . ' Gm be such that {a(G)} span Rm . Set

aj(G i ) = aid,

	

1 < i, j < n

so that the matrix [ai;] is nonsingular . Let p,, . . . , pm, pm+, >_ 0 and rational,
with

m+1
Y,Pi=1 .
i=1

Let D E Z, D > 0 so that all Dp i/ I V(G j ) I E Z. Set

Then, by Lemma 4,

G

	

[ (Dpi) ]
i=1 I V(Gi) I G` + ~D°„

M

aj(Gi)

	

a j jpiHi
I,

	

1 < j < m.

	

( )
i=1

We consider (*) as a map `I' : Rm -+ Rm transforming coordinates p,, . . . , pm
to ri	rim . G is defined for all 0 < p,	pm < m-1 . Then

Sa 2 {`Y(P1, . . . , Pm) : 0 < P,, . . ., Pm <_ m-1 , Pi E Q} .

Since `Y is continuous and Sa closed

Sa ? {Y(P1, . . ., Pm) :0

	

P1, . . ., Pm G m-1 } .

Now we calculate

ón, =

	

jl P H;i-1
api

ai;IH[
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and Jac(`F) is a polynomial in p,, . . . , p,„ . At p, _ . . . = p,„ = 1

Jac(`I') = det[ai; IH; I ] _ [ ~ IH; I ] det[a ;;] 74- 0,

so Jac(`If) is not the zero polynomial . Hence there exist 0 < p,, . . . , p,„ < m- '
for which Jac(`Y) 96 0. Setting z = T(p	p,„), S a contains a ball about
z .

Equivalence of Formulations

Theorem 2 Sa = S6 .

Proof Fix H, I V(H) I = i, and G, I V(G)I = n . There are less than
i2 n' - ' set mappings 0 : V(H) -> V(G) which are not monomorphisms. Thus

and hence

aH(G)[n`l(n)i] - iZni-'/(n)i G bH(G) C aH(G)[n`l(n)i] •

Now Lim,, n i /(n) i = 1 and Lim„ iZni-'/(n), = 0. If G„ is a sequence with
I V(G n) I -+ oo, then aH(Gn) --> a iff b H(G,,) -> a . From the definition, S a = Sb .

∎

Theorem 3 S, is a nonsingular linear transformation of S b (and hence S a ).

Proof Let I V (H) I = i, I V(G) I = n . We claim

AH(G) - i2n'-' < BH(G) < AH(G)

BH(G) _ BH(H')CH,(G),
H,

where H, ranges over all graphs, I V(H,) I = I V(H) I , which contain H as a
subgraph. For if 0 : H -> G is a monomorphism O(V(H)) = H,, a graph
containing H as a subgraph . Conversely, for each H, there are CH , (G)
copies of H, in G and BH(H,) maps 0 into each copy. Dividing by (n) j :

bH(G) _

	

[BH(H')li!]CH,(G),
H,

giving an explicit transformation from c to b for any fixed k . If we order
{H,	H,j by number of edges (arbitrarily among graphs with the same
number of edges) the coefficient matrix becomes upper triangular with
diagonal terms BH(H)/i ! 0 0 and hence the transformation is nonsingular .

∎
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Topological Properties

Theorem 4 Sa is arcwise connected (and hence, by Theorems 2 and 3, so
are Sb and S j .

Proof Let I V(H,) I = a ; for 1 < i < m. Let x = (x,, . . . , xe Sa . We
claim that for 0 < p < 1, (x I p", . . . , x,„p"m) E Sa . We use that, by Lemma 4

a i(vG + Ij = a i(G)r

	

where r = v ( V(G) I /[v I V(G) I + w] .

We may find G with I a, (G) - x i I arbitrarily small for all i and thence find
v, w so that I p - r I is arbitrarily small, thus making a;(vG + I„,) arbitrarily
close to xi p"i. This completes the claim. The theorem follows as we have given
an arc between an arbitrary x e S" and 0.

Dependence of Disconnected Graphs

We have shown that the functions a,,, where H runs over connected
graphs of size < mare strongly independent.

Observation Let G = Xi=, G i . Then

171

s
aG = 1 1 a,, .

That is, the functions a,,, H disconnected, are dependent on the a,,, H
connected .

Theorem 5 Suppose Hl , . . ., H„ represent all graphs on < k vertices,
define a(G) _ (a1(G), . . . , a„(G)), S" as before. Then Sa has dimension m equal
to the number of connected graphs on < k vertices.

Observation Let H* = H + I5 . Then a,, . = a,, .

Theorem 6 Suppose H 1 , . . . , H„ represent all graphs on exactly k
vertices, define a(G) _ (a 1(G), . . . , a a(G)), Sa as before. Then Sa has dimension
m equal to the number of connected graphs on < k vertices .

The previous theorems also hold for S b , S, by equivalence theorems .

Example 2 For h = 3, dim(S,) = 3 .

Comments

1 . The domain of our functions has been the class I of all finite graphs .
Let Sa* be the set analogous to Sa if we restrict the domain to connected
graphs. We claim Sa* = Sa (and similarly Sb* = Sb , Se * = Sc ) .
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Clearly Sa* -- S, Let a E S,, and fix a sequence G,,, I V(G„) I -+ oo, a„ _
a(G„) -+ a. To each G„ add at most I V(G„)I - 1 edges to form a connected
graph G„*. One can easily show that, in an asymptotic sense, almost none
of the k vertex subgraphs contain any edges of G„* - G„ so that a(G„*) -+ a.

We may restrict our domain to doubly connected graphs, or similar
restrictions, with identichl results.

2. It is not known if Sa is locally arcwise connected . In general, the
topological nature of Sa is not understood .

3 . In the definition of limit points it was required to find a sequence G„
with I V(G„) I oo. It can be shown, using probabilitic methods, that for all
sequences G,,, I V(GJ I -+ oo, a(G„) -+ a, there exists a sequence G,* (of which
G„ is a subsequence) so that I V(G„*)I = n and a(G„*) -+ a .

4 . The sets S are, in general, not convex . For example-let k = 3 and
H; denote the 3-point (i - 1)-edge graph, 1 < i < 4, then

(1,0,0,0), (0,0,0,1)ES,

	

(by I,, and K S)

but

l2~ 0, 0,2)0Sc

5 . A complete description of convex hull (S) would settle several long
standing questions in graph theory . For example, for k >- 4, an ancient
conjecture of Erdös is that

min [c,, + c, k] = 2' -k
ccs c

6 . A complete description of S for k = 3 appears very difficult .
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