THE PROPINQUITY OF DIVISORS

P. ERDÖS and R. R. HALL

Introduction

Let $\beta>\log 3-1$ be fixed. Erdös [1] stated without proof that the sequence of integers n having a divisors d, d^{\prime} such that

$$
d<d^{\prime}<d\left(1+(\log n)^{-\beta}\right)
$$

has asymptotic density 0 . It was also stated that if $\beta<\log 3-1$ then this density is 1 , but this claim has had to be withdrawn.

In this note we prove a result which is more precise than the former one quoted above, particularly for the small d 's (essentially those for which $\log d=o(\log n)$).

Theorem. Let $\varepsilon>0$ be fixed and set

$$
\eta(x)=3^{-(1+\varepsilon) \sqrt{ }(2 \log \log x \cdot \log \log \log \log x)}
$$

and

$$
\theta(x, d)=\eta(x)(\log d)^{1-\log 3} .
$$

Then the number of integers $n<x$ having divisors d, d^{\prime} such that

$$
d<d^{\prime}<d(1+\theta(x, d))
$$

is $o(x)$.
Alternatively, the sequence of integers n having divisors d, d^{\prime} such that

$$
d<d^{\prime}<d(1+\theta(n, d))
$$

has asymptotic density 0 .
Remarks. (i) The two forms are equivalent because of the slow decrease of $\eta(n)$. (ii) If we restrict our attention to divisors $d>x^{\delta}$ (or $>n^{\delta}$) for any fixed $\delta>0$, the factor $\sqrt{ } \log \log \log \log x$ may be replaced by any function of x tending to infinity in the definition of $\eta(x)$. This will be made clear in the proof of the theorem. (iii) Since the multiples of $d(d+1)$ have positive density, the theorem becomes false if $\theta(x, d)$ is any function of d alone, unless trivially $\theta(x, d) \leqslant 1 / d$. But it is not clear that our $\eta(x)$ is the most slowly decreasing function of x which will do.

The idea of the proof is to consider weighted sums over the integers n, the weight being constructed so that only integers n with divisors d, d^{\prime} close together have positive weight, but in such a way that the sum is not dominated by n 's and d 's in which we are not interested; these are integers with either an abnormal number, or abnormal distribution, of prime factors.

Proof of the theorem. Let n have divisors d and d^{\prime} such that $d<d^{\prime}<d(1+\theta(x, d))$, and suppose $\left(d, d^{\prime}\right)=t$. Since θ is a decreasing function of d, we have that $(d / t)<\left(d^{\prime} / t\right)<(d / t)(1+\theta(x, d / t))$, so that n has a pair of such divisors which are relatively prime. We therefore assume in what follows that $\left(d, d^{\prime}\right)=1$: actually all we need is that $d d^{\prime} \mid n$.

We get a better result if we restrict to $d>x^{\delta}$ and we deal with this case first. Let

$$
S=\sum_{n<x} y^{\Omega(n)} \sum_{\substack{d d^{\prime} \mid n \\ d>x^{\theta}}}^{\theta} 1
$$

where Σ^{θ} denotes summation restricted by the condition $d<d^{\prime}<d(1+\theta), \Omega(n)$ denotes the total number of prime factors of n (i.e. counted according to multiplicity) and $0<y \leqslant 1$. We have

$$
S=\sum_{x^{\sigma}<d<x^{1 / 2}} y^{\Omega(d)} \sum_{d<d^{\prime}<d(1+\theta)} y^{\Omega\left(d^{\prime}\right)} \sum_{m<x / d d^{\prime}} y^{\Omega(m)}
$$

and to estimate the inner sum we use the formula, (valid for fixed $y \in(0,2)$),
where

$$
\sum_{m<x} y^{\Omega(m)}=C(y) x(\log x)^{y-1}(1+O(1 / \log x))
$$

$$
C(y)=\frac{1}{\Gamma(y)} \prod_{p}\left(1-\frac{1}{p}\right)^{y}\left(1-\frac{y}{p}\right)^{-1}
$$

This formula is well-known and is proved by contour integration. It holds for all $x>0$ if we interpret $\log x$ as 1 say for $x \leqslant e$: and we make this convention throughout the paper. Hence

$$
S \ll x \sum_{d} \frac{y^{\Omega(d)}}{d^{2}}\left(\log \frac{x}{d^{2}}\right)^{y-1} \sum_{d<d^{\prime}<d(1+\theta)} y^{\Omega\left(d^{\prime}\right)},
$$

and we use the formula above again. Since $\theta(x, d)>1 / \log x$ there is no difficulty with the error term and

$$
\begin{aligned}
S & \ll x \sum_{d} \theta(x, d) \frac{y^{\Omega(d)}}{d}\left(\log \frac{x}{d^{2}}\right)^{y-1}(\log d)^{y-1} \\
& \ll \delta x \eta(x)(\log x)^{y-\log 3} \sum_{x^{\delta}<d<x^{1 / 2}} y^{\Omega(d)}\left(\log \frac{x}{d^{2}}\right)^{y-1}
\end{aligned}
$$

since for $d>x^{\delta}$ we have $\theta(x, d)<_{\delta} \theta(x, x)$. Now

$$
\frac{\sqrt{ } x}{d}\left(\log \frac{x}{d^{2}}\right)^{y-1} \ll \sum_{m<x^{1 / 2} / d}(\log m)^{y-1}
$$

so that

$$
\begin{aligned}
S & <_{\delta} \sqrt{ } x \eta(x)(\log x)^{y-\log 3} \sum_{m<x^{1 / 2-\delta}}(\log m)^{y-1} \sum_{d<x^{1 / 2} / m} y^{\Omega(d)} \\
& <_{\delta} x \eta(x)(\log x)^{2 y-1-\log 3} \sum_{m<x^{1 / 2-\delta}} m^{-1}(\log m)^{y-1} \\
& <_{\delta} x \eta(x)(\log x)^{3 y-1-\log 3} .
\end{aligned}
$$

We choose $y=1 / 3$, and deduce that

$$
\sum_{n<x} 3^{\log \log x-\Omega(n)} \sum_{\substack{d d^{\prime} \mid n \\ d<x^{\theta}}}^{\theta} 1 \ll x \eta(x) .
$$

Let $\psi(x) \rightarrow \infty$ arbitrarily slowly as $x \rightarrow \infty$. It is a well-known result of Hardy and

Ramanujan [5] that for all but $o(x)$ integers $n<x$, we have

$$
|\Omega(n)-\log \log x|<\psi(x) \sqrt{ } \log \log x
$$

We restrict the sum above to integers n for which this inequality is satisfied, and deduce that the number of integers n with such a divisor $d d^{\prime}$ is

$$
<_{\delta} x\left\{o(1)+\eta(x) 3^{\psi(x) \cdot \log \log x}\right\} .
$$

By definition of $\eta(x)$, this is $o(x)$ as required. We notice that for these "large" d 's the factor $\sqrt{ } \log \log \log \log x$ in $\eta(x)$ is not needed.

The proof is a little more difficult when we drop the condition $d>x^{\delta}$. Consider the sum

$$
T=\sum_{n<x d d^{\prime} \mid n}^{\theta} z^{\Omega(n, d)}(\log d)^{\log 3}
$$

where $\Omega(n, d)$ denotes the total number of prime factors of n which do not exceed d, and $0<z<\frac{1}{2}$. Notice that the condition $d<d^{\prime}<d(1+\theta(x, d))$ implies that $\theta(x, d)>1 / d$, that is

$$
d(\log d)^{\log 3-1} \geqslant 1 / \eta(x), \text { or } d \geqslant d_{0}(x), \text { say. }
$$

Then

$$
T=\sum_{d \leqslant x^{1 / 2}} \sum_{d<d^{\prime}<d(1+\theta)} z^{\Omega\left(d d^{\prime}, d\right)}(\log d)^{\log 3} \sum_{m<x / d d^{\prime}} z^{\Omega(m, d)}
$$

A result of Hall [4] states that if $f: Z^{+} \rightarrow[0,1]$ is multiplicative then

$$
\sum_{n<x} f(n) \leqslant e^{\gamma} x\left(1+O\left(\frac{\log \log x}{\log x}\right)\right) \prod_{p<x}\left(1-\frac{1}{p}\right)\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\ldots\right),
$$

and we deduce that

$$
\sum_{m<x / d d^{\prime}} z^{\Omega(m, d)} \ll \frac{x}{d^{2}}(\log d)^{z-1}
$$

Substituting in the above, we obtain

$$
T \ll \sum_{d \leqslant x^{1 / 2}} \frac{z^{\Omega(d)}}{d^{2}}(\log d)^{z-1+\log 3} \sum_{d<d^{\prime}<d(1+\theta)} z^{\Omega\left(d^{\prime}, d\right)} .
$$

Provided $\theta(x, d)<1$, as we may assume, we have $\Omega\left(d^{\prime}, d\right) \geqslant \Omega\left(d^{\prime}\right)-1$. Thus as before

$$
\begin{aligned}
T & \ll x z^{-1} \eta(x) \sum_{d<x} \frac{z^{\Omega(d)}}{d}(\log d)^{2 z-1} \\
& \ll x z^{-1} \eta(x) \sum_{d<x} \frac{z^{\Omega(d)}}{d}\left\{(\log x)^{2 z-1}+(1-2 z) \int_{d}^{x} \frac{d t}{t(\log t)^{2-2 z}}\right\} \\
& \ll x z^{-1} \eta(x)\left\{(\log x)^{3 z-1}+(1-2 z) \int_{d_{0}}^{x} \frac{d t}{t(\log t)^{2-3 z}}\right\}
\end{aligned}
$$

We choose $z=1 / 3$, and deduce that

$$
\sum_{n<x} \sum_{d d^{\prime} \mid n}^{\theta} 3^{\log \log d-\Omega(n, d)} \ll x \eta(x) \log \log x .
$$

We need the following lemma, which is an application of Theorem VI of Erdös [2]:

Lemma. Let $\lambda>0$ be fixed, and let $N(x, \xi)$ denote the number of integers $n<x$ such that for some $d, \xi \leqslant d \leqslant n$, we have

$$
|\Omega(n, d)-\log \log d|>(1+\lambda) \sqrt{ }(2 \log \log d \cdot \log \log \log \log d) .
$$

Then

$$
\lim _{\xi \rightarrow \infty} \lim _{x \rightarrow \infty} \sup ^{-1} N(x, \xi)=0 .
$$

Since $N(x, \xi)$ is a decreasing function of ξ, if we substitute $\xi=\xi(x)$ where $\xi(x) \rightarrow \infty$ as $x \rightarrow \infty$, then

$$
\lim _{x \rightarrow \infty} x^{-1} N(x, \xi(x))=0
$$

and we apply this result with $\xi(x)=d_{0}(x)$. We restrict the sum above to integers n not counted by $N\left(x, d_{0}(x)\right)$, with $\lambda=\varepsilon / 2$, and deduce that the number of integers $n<x$ with a divisor $d d^{\prime}$ of the required type is

$$
\ll N\left(x, d_{0}(x)\right)+x \eta(x) \log \log x \cdot 3^{(1+\lambda) \sqrt{ }(2 \log \log x \cdot \log \log \log \log x)} .
$$

By the definition of $\eta(x)$ and the relation $\lambda=\varepsilon / 2$, this is $o(x)$ as required.

References

1. P. Erdös, "On some applications of probability to analysis and number theory", J. London Math. Soc., 39 (1964), 692-696.
2. P. Erdös, "On the distribution function of additive functions", Ann. Math., 47 (1946), 1-20.
3. R. R. Hall, "The propinquity of divisors", J. London Math. Soc., (2) 19 (1979), 35-40.
4. R. R. Hall, "Halving an estimate obtained from Selberg's upper bound method", Acta Arithmetica, 25 (1974), 347-351.
5. G. H. Hardy and S. Ramanujan, "The normal number of prime factors of a number n", Quarterly J. of Math., 48 (1917), 76-92.

Mathematical Institute, Hungarian Academy of Sciences
and
Department of Mathematics, University of York, Heslington, York.

