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The authors show that if the tail of an infinitely divisible probability law
approaches zero sufficiently rapidly, then it must be the Normal Law . An applica-
tion is made to a problem of number theory .

A probability distribution function is said to be infinitely divisible if for
every positive integer n it may be expressed as the convolution of n copies of
some other distribution function . It was proved by Khinchine that the class
of such laws coincides with the class of all limit laws of sums of independent
infinitesimal random variables . For this reason they play an important
role in many applications of the theory of probability .
A function f(n), defined on the positive integers, is said to be additive if it

satisfies the relation f(ab) = f(a) + f(b) whenever the integers a and b have
no common prime factors . Supposing that for each prime p, f(pm) =f(p)
and Jf(p)s < 1, that

and that

B(N) _ y p-1 if(p)l2

1/2

-> 00,

p<N

A(N) = ~: p-1f(p),
p<_N
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(N - oo),



then Erdös and Kac [3], in 1939, proved that
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(27T) 1i2
f(n)-A(N)<_uB(N)

Their method, which was much developed by Kubilius [6] amongst others,
depended upon approximating the additive function f(n) with sums of
independent random variables . In particular it always led to a limit law
which was infinitely divisible .

Let a be a positive real number, a 1, and consider the additive function
defined by f(pm) _ (log pm)a . Although this function is not susceptible to
the method of Erdös-Kac [3], already in 1946 Erdös [2] had remarked that
the proper limiting distribution

K,,(u) _ (weak) Nim N-1 1
n_<N

f(n)Cu(IOgN)a

existed . A distribution function is said to be proper if it does not consist of a
single jump, and to be improper otherwise. If a = 1 then the limit law K,(u)
still exists, but is easily seen to be improper .

In a paper of 1955, Halberstam [5] pointed out that the existence of the
limiting distribution ha(u) could be deduced by evaluating the moments

~2

Nim N-1 Y	 ,

	

(k = 0, 1, . . .) .
n_<N

	 1f01)
og N

The nature of the limit law was obscured, however, since it satisfied a non-
trivial integral equation .

Other (later) treatments (Levin and Timofeev [7], Elliott [1]) only give
partial help in the study of this limit law . However, Levin and Timofeev,
in a short note [8], pointed out that when a > 1, then

f(n) < (log n)a-1 Y log p- _ (log n) ,
P' lln

so that K,(u) = 0 for u < 0, and = 1 for u - 1 . More succintly, K,(u) is
concentrated on the interval 0 < u < 1 for a > 1 . In particular, a proper
such law cannot be infinitely divisible . (They did not indicate a proof.)

It turns out that for 0 < a < 1 the law K,(u) is not concentrated on a
finite interval . Nevertheless, we shall show that it is still not infinitely divisible .
Thus the behaviour of the additive function E(log pnl)a, a 1, cannot be
investigated (at least in any obvious manner) by the applications of sums of
independent random variables .



544

	

ELLIOTT AND ERDŐS

We shall prove two results to the effect that the tail of an infinitely divisible
law cannot decrease to zero too rapidly . The first of these will be applied
to the study of the distribution function K,,(u) .

THEOREM 1 . Let the proper infinitely divisible law F(u) satisfy

we prove :

THEOREM 3 . The distribution function K.(u) is not infinitely divisible for
any positive value of a, a 1 . For 0 < a < 1 we have

max(F( u), 1 - F(u)) - e-AU1Ogw

for each A > 0 for all sufficiently large values of u. Then it must be a normal
law .

THEOREM 2 . Let the proper infinitely divisible law F(u) have a lattice
distribution concentrated on a half-line u > uo , and satisfy

for some c > 0 and all sufficiently large values of u . Then it must be the
convolution offinitely many laws of Poisson type .

Concerning the additive arithmetic function

1 - F(u) < eeulog u

	

(2)

f(n) _ Y, (log Pm)"
vIlln

aa «-a)

	

lim inf	- log(1 - K.(u))
u->~

	

ui/(I-a) log u

2u,

J
eru dF(u) ~ exp(2wr)(1 - F(w))

w

exp(2wr - 2Aw log w) • exp(- 2Aw log w) .

The expression in the first of these exponents is greatest when 2r = zA

(1)

<

	

log(1 - K,,(u))

	

1

	

(3)lim sup - ul/ ( I_,) log u

	

1 -

Proof of Theorem 1 . Let the inequality (1) hold for u > U > 0. Then
for any positive reals r, and w > U,
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(log w -1- 1), and so (uniformly in w) does not exceed exp(exp(4rA-i)) .
Setting w -= 2kU, k = 0, 1, 2, . . ., in turn, and adding, noting that the series

exp(- 2A - 2kU log 2'~U)

converges, we see that

so that

L e'"11 dF(u) - e, exp(exp(4rA-i)) .

~(z) - exp (iyz = f (e2- 1 -	Zzu ) 1+ u2 dH(u) )1 + u 2

	

u2

Re(g(z)) - log I T(z)I < exp(4 I z I A-~) + c 2 .

1 g(z)1 < c 3 exp(8 Iz IA-1) .

If I z I > 1 then from Cauchy's integral representation theorem

g

	

2'f	 f(S)„(z) _ __
27r1 z-s=lz /2 (S - ~) 3

ds

19 "(z)I < c4 exp(12 I z 1 A-i) .

(4)

It follows from a result of Raikov (see, for example, Linnik [9], [10], or
Lukacs [11]) that (p(t), the characteristic function of the distribution function
F(u), coincides on the real axis with an integral function cp(z) of the complex
variable z . A further result of Raikov (loc . cit.) asserts that the Uvy-
Khinchine representation

of the characteristic function of an infinitely divisible law, initially valid
for all real values of z, then holds over the whole complex z-plane . Here the
function H(u) is non-decreasing and of finite total variation . In particular
T(z) never vanishes and

g(z) - iyz -~- f (e' u

	

1
zi?uu2) 1	u uz dH(u) = log T(z) (5)

the value of the logarithm being the principal one when z is near to zero .
It follows from our result (4) that

An application of the Bore1-Carathéodory theorem (see Titchmarsh [12,
Section 5 .5, p . 174]) allows us to extend this to an upper bound
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By adjusting the value of c 4 , if necessary, we may assume that this bound is
also satisfied when I z 1 < 1 .

However, the representation

e2zu ( 1 + u2) dQ(u)

which may be deduced from (5) shows that for every imaginary number iy

L e- lu(1 + u 2) dH(u) < c, exp(12 1 y 1 A-i) •

In this step we have implicitly made another application of the first theorem
of Raikov to which we referred earlier .

Suppose now that the function H(u) has a point-of-increase at u = a > 0 .
Then 8 = H(M12) - H(a12) > 0 and for every y < 0

e l Yla / 2 . 8< c4 exp(12 1 y 1 A-i) •

Letting 1 y 1 , oo shows that a < 24A-r, and if A is sufficiently large (see
the hypothesis) a contradiction is obtained .
Hence H(u) is concentrated at u = 0, and

q9(t) = exp(iyt - 2p. 2t2)

for some u > 0. The distribution function is then a law of either normal or
improper type .

This completes the proof of Theorem 1 .

Proof of Theorem 2 . Without loss of generality the lattice on which
F(u) is concentrated may be assumed to contain the origin, and its maximum
span may be taken to be 2~r . Then (p(t), the characteristic function of F(u)
satisfies T(t + 1) - T(t) for all real values of t .

Arguing as in the proof of Theorem 1 we see that an integral function cp(z)
exists, of the form exp(g(z)) ; and a bound

holds for some c2 > 0, this time fixed.
Then for real values of t

1 g(z)1 < cl exp(c2 1 z 1)

exp(g(t + 1)) - cp(t + 1) _ 9P(t) = e4p(g(t))

so that g(t + 1) - g(t) - 2~7m for some integer n . Since g(t) is a continuous
function of t, n must be a constant, and g'(t), g"(t) will be periodic, of period 1 .
By analytic continuation this will also be true of the integral function g"(z) .
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We next note, following the proof of Theorem 1, that

I g"(z)1 < c3 eXp(c4 I z ~)

for some positive constants c 3 , c4 .
However, if z = x + iy

(ridge property), so that

1 -9 "01 < -9"QY) < es eXp(c4 I Y D •

	

(6)

For w A 0 the function -g"((i12,r) log w) is well defined and analytic
in the complex w-plane punctured at the origin . It satisfies

and

-g"(x + iA = J eá(x+2y)u (l + u2) dH(u)
~

J e-yu (I + u2) dH(u) _ -g"(jy)~

-g" (	
217T

	 log w) < 03 exp(c4 I log I w 1 1)

~eslwl'4

	

if IwI>1,

c 3 1 w I-C4

	

if I
W
I< 1 .

Let m be a positive integer, m > c 4 . It is now easy to extend the definition of
-w-g"((í127r) log w) to an integral function, and then to deduce that it
must be a polynomial in w .
Hence

-g"(z) _ Y, ake2nikz
0<Ikl<m

Integrating twice gives

g(z) _

	

(27Tk)-2 ake2~ikz + P(z )
0<Ikl`m

where P(z) is a polynomial in z of degree at most two .
Suppose now that (27rm)-2 I a_ m I = 28 > 0. Then choosing 0 suitably,

0 < 0 < m-1 , we see that for all real negative values of y

Re g(iy + 0) = 28e2rmy + O(e2~ (m-l)y)

1 99(iy + 0)I > exp(8e 2nmy)
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if y is large enough . But, by hypothesis

1 (P(iy + 0)I < f e` áF(u) < e"I
up

which leads to a contradiction as y -> oo .
We deduce that a_. = 0, and, likewise, a_ k = 0 for k < 0 . Hence

For every integer r > l the function obtained by differentiating -g"(t) 2r
times has a real value when t = 0 . Hence

If, for example, b = Im(a,), then

g(t) _

	

(27Tk)-2 ake 2aikt + P(t) .
k=1

M

(2zk) 2 r Im(ak) = 0 .
k=1

aaa-1
m 2r I b y (M - 1)2r

	

1
Im(ak)I .

k=1

Dividing by m2r and letting r > oo shows that b - 0 .
In this way we see that every ak is real .
Since g'(t) has period 1, P(t) can be at most linear . By considering the size

of I cp(t)I as I t I becomes unbounded through integer values we deduce that
for some real number a,

c~(t) = exp Y (27rk)-2 ak(e 2~2 '°t - 1) + i t(

	

~ .
k=1

This completes the proof of Theorem 2 .

Proof of Theorem 3 . Assume that 0 < a < 1 . We first prove that K,(u)
is not concentrated on a finite interval . Clearly K,(u) = 0 when u < 0, so
that only the positive values of u are of interest .

Let k be a positive integer . Let N be a further positive integer to be thought
of as "large" . Let q run through the primes p which lie in the interval N11(4k) <
p < NI1(2k) . Then for all sufficiently large values of N (see Hardy and Wright
[4])

Iq=log2-+-® ( lo1

	

>Ilog2.
N) 2
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Let m denote a typical integer which is made up of k distinct primes chosen
from amongst the q, thus N1 / 4 < m < N1/2

Consider the integers n i , not exceeding N, which are of the form md, where I
is not divisible by any of the (above) primes q . Their number is at least

y y I-
m l<_N/m

A straightforward application of the Brun or Selberg sieve method shows
that if k is fixed at a sufficiently large value, then a typical innersum is at least

cl m

	

(1 -
1) -F O(N 1 1 4) >- c2 nq

Here the constant c 2 does not depend upon k . Therefore the number of ni is
at least

Moreover,

so that

k-2
c2N

	

>- C 2N k	(~
q1

-
(k

	 1
2)

(~
q/ Yq2

N exp(-k log k - c,k) .

NY(log PT) a % k (4k log N) '
P 1 11

ni

1 - Ka(4-akl-a) > exp(-k log k - c,k) .

This shows that K,(u) < 1 for every positive value of u . Indeed, a more careful
treatment of details, confining the primes q to an interval N~1-2 E ) lr < q
N(1-1) lk and then letting e approach zero enables one to prove that

- log(1 - Kju))

	

1lim sup	ul%(1-a) log u

	

< I - a

We now obtain a result going in the direction opposite to that of (7) . We
continue to assume that 0 < a < 1 .

Consider those integers n not exceeding N for which

(7)

(log pr), > k(log N)a .

p•u n
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Let T = exp((2 log N)lkll (1-a)) For each integer n under consideration

N (log pr)a y ( log T)a-1

	

logpr 6 2-1+ak(log N)a ,

P'Jj n, p'>T

	

P''ll n

so that

Otherwise

here

Y_ (log pr), > k(1 - 2-1+a)(log N)a .
P'jjn, P'<_T

Let w be a positive real number which satisfies

-1

w (1 - 2	 ) . (2k-1 1 (1-» -<- k(1 - 2-1+a)

	

(9)a

We maintain that each of the integers n satisfying (8) must have at least w
exact prime-power factors p' in at least one of the intervals

T2-('1-1) < p r \ T2-1

	

(j = 0, 1, 2, . . .) .

	

(10)

(log pr),

	

Y cu(log T2-')a
p l iin,p'_<T

	

j=0

= w

		

2-ja ( 1
2	log N)a + k(1 - 2-1+a)(log N)a,

=o k is-a )

contradicting (8) .
Those integers n for which the jth interval in (10) contains at least w prime-

powers are in number at most

Y N + N A- + A +

	

A 2

n-N

	

n

	

w !

	

(1

	

w -F 1

	

(co + 1)(w + 2) . . . )
(10)holdsfo

N exp(-w log w -{ c,w) ;

_

	

1

	

1.

	

1

	

( 2-i log TA-~ p r <Y p IY- d <log\2- -11o T )+C S --c6 .
P,a>2 p

	

g

(8)

Since the intervals in (10) contain no prime-powers unless j = O(log k)
we see that

1 - &(k) < exp(- c,k' / (1-11 ) log k) .

	

(11)
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A more careful treatment of this proof leads to the bound

lim inf	- log(i - K,,(u))
u1 /(I-) log u

It follows from the bound (11) and Theorem 1 that the distribution K,,(u)
can be infinitely divisible only if it is a normal law . Since this is clarly not the
case, Theorem 3 is established .

Concluding Remarks . The proof that K,(u) is not infinitely divisible
when 0 G a G 1 depends only upon weak upper bounds of the form

I f(p)l <- c(log&, so that the method is applicable to many other functions
f(n) for which a limiting distribution exists .

Perhaps

lim - log(1 - K,(u))
U'.

	

u'- / ( I-.) log u
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