TRANSVERSALS AND MULTITRANSVERSALS

P. ERDÖS, F. GALVIN AND R. RADO

1. Introduction

A transversal of a family \mathscr{F} of sets is a family of pairwise distinct elements, one from each member of \mathscr{F}, and a multitransversal of \mathscr{F} is a family of pairwise disjoint subsets, one of each member of \mathscr{F}. The main result of this note, Theorem 4, gives necessary and sufficient conditions on families \mathscr{A} and \mathscr{B} of cardinals in order that every family \mathscr{F} whose members have cardinals given by \mathscr{A} should have (i) a transversal, (ii) a multitransversal whose members have cardinals given by \mathscr{B}. Our conditions turn out to involve the notion of a weakly inaccessible cardinal and that of a stationary set of ordinals. Our result (announced in [1]) amounts to saying that the test families \mathscr{F}, whose "good behaviour" implies that of every other family with the same cardinalities, are those whose members are sets of the form $\{x: x<\lambda\}$, where λ is an ordinal.

2. Terminology and notation

Capital letters denote sets. The relation $A \subset B$ denotes inclusion in the wide sense. If nothing is said to the contrary, small letters denote ordinals. For each α we put $\bar{\alpha}=\{x: x<\alpha\}$. For cardinals c put

$$
\begin{aligned}
\omega(c) & =\min \{\alpha:|\alpha|=c\} \\
\bar{c} & =\overline{\omega(c)} ; \quad \bar{c}=\{t=\text { cardinal }: t<c\}
\end{aligned}
$$

For every set S of cardinals put

$$
\omega(S)=\{\omega(c): c \in S\}
$$

For cardinals γ put

$$
[A]^{\gamma}=\{X \subset A:|X|=\gamma\}
$$

The symbol $\left(a_{0}, \ldots, \hat{a}_{n}\right)$, where the a_{v} are any objects, denotes the sequence $\left(a_{v}: v<n\right)$. Given a family $\left(a_{i}: i \in I\right)$ of cardinals and a family $\left(A_{i}: i \in I\right)$ of sets we put, for $J \subset I$,

$$
a_{J}=\sum(j \in J) a_{j} ; A_{J}=\bigcup(j \in J) A_{j}
$$

Symbols such as $\left(a_{0}, \ldots, \hat{a}_{n}\right)_{<}$or $\left(x_{i}: i \in I\right)_{\neq}$are self-explanatory. For infinite cardinals x the symbol cf x, the cofinality of x, denotes the least cardinal t such that, for some

The second author received support from NSF Grant No MCS77-02046.
Received 12 January, 1979.
cardinals $x_{\tau}<x$, we have $x=x_{i}$. The cardinal x is regular, if $\mathrm{cf} x=x$, and singular, if cf $x<x$. For every cardinal x put

$$
\begin{aligned}
x^{+} & =\min \{y=\text { cardinal }: y>x\} \\
x^{-} & =\min \left\{y=\text { cardinal }: y^{+} \geqslant x_{1}\right.
\end{aligned}
$$

and similarly for ordinals. The infinite cardinal x is weakly inaccessible if $x=x^{-}=\mathrm{cf} x$.

Let λ be a regular cardinal and let $A \subset \bar{\lambda}$. A regressive function on A is a function $f: A-\{0\} \rightarrow \bar{\lambda}$ such that $f(x)<x$ for $0<x \in A$. The set A is stationary on $\bar{\lambda}$ if $A \subset \bar{\lambda}$ and for every regressive function f on A there is $y \in \bar{\lambda}$ with $\left|f^{-1}(y)\right|=\lambda$. Let stat λ denote the set of all sets which are stationary on $\bar{\lambda}$.

The disjoint subset relation

$$
\begin{equation*}
\left(a_{i}: i \in I\right) \rightarrow\left(b_{i}: i \in I\right)_{d s} \tag{1}
\end{equation*}
$$

means that the a_{i} and b_{i} are cardinals with the property that whenever $\left|A_{i}\right|=a_{i}$ for $i \in I$, there always exist pairwise disjoint sets $X_{i} \in\left[A_{i}\right]^{b_{i}}$ for $i \in I$. Thus if all $b_{i}=1$ then (1) means that every family $\left(A_{i}: i \in I\right)$ with $\left|A_{i}\right|=a_{i}$ for $i \in I$ has a transversal. Families ($\left.X_{i}: i \in I\right)$ as described above are called multitranstersals of $\left(A_{i}: i \in I\right)$ of size $\left(b_{i}: i \in I\right)$.

If $\mathscr{F}_{0}, \ldots, \hat{\mathscr{F}}_{n}$ are sequences, then $\left[\mathscr{F}_{0}, \ldots, \hat{\mathscr{F}}_{n}\right]$ denotes the sequence obtained by concatenation, i.e., by arranging the terms of the \mathscr{F}_{v} as a single sequence, maintaining in each \mathscr{F}_{v} the given order and placing \mathscr{F}_{μ} in front of \mathscr{F}_{v} if $\mu<v<n$. If x is an object and c a cardinal then $(x)_{c}$ denotes the sequence $\left(x_{v}: v \in \bar{c}\right)$ in which $x_{v}=x$ for $v \in \bar{c}$.

Let S be a set of infinite cardinals. An S-sequence is a sequence ($a_{v}: v<n$) such that $\left\{a_{v}: v<n\right\}=S$ and, if $v_{0}<n$, then $a_{v 0}>\left|v_{0}\right|$ and $\mid\left\{v<n: a_{v}=a_{v 0} \mid=a_{v_{0}}\right.$.

3. Results

Theorem 1. Let S be a set of infinite cardinals. Then the conditions (2), (3), (4), (5) are equivalent, where
(2) for every weakly inaccessible cardinal $\lambda, \omega(S) \cap \bar{\lambda} \notin$ stat λ,
(3) there exists an S-sequence,
(4) every family of sets consisting, for each $\kappa \in S$, of κ members of cardinal κ, has a transversal,
(5) the family $(\bar{\kappa}: \kappa \in S)$ has a transversal.

Theorem 2. Let I be a set; $a_{i} \geqslant \aleph_{0}$ for $i \in I ; S=\left\{a_{i}: i \in I\right\}$. Then the conditions (6), (7), (8), (9), (10) are equivalent, where
(6) $\left(a_{i}: i \in I\right) \rightarrow\left(a_{i}: i \in I\right)_{d s}$,
(7) $\left(a_{i}: i \in I\right) \rightarrow(1: i \in I)_{d s}$,
(8) $\left(\bar{a}_{i}: i \in I\right)$ has a transversal,
(9) $(\bar{\kappa}: \kappa \in S)$ has a transversal and $\left|\left\{i \in I: a_{i}=\kappa\right\}\right| \leqslant \kappa$ for every carrdinal κ,
(10) $\left|\left\{i \in I: a_{i}=\kappa\right\}\right| \leqslant \kappa$ for every cardinal κ, and $w(S) \cap \bar{\lambda} \notin$ stat λ for every weakly inaccessible cardinal λ.

Remark. The implication $(7) \Rightarrow(6)$ seems to be interesting. Perhaps it can be proved directly.

Corollary. Let I be a set and let a_{i}, b_{i} be cardinals for $i \in I$, where the a_{i} are infinite. Then (11) and (12) are equivalent, where
(11) $\left(a_{i}: i \in I\right) \rightarrow\left(b_{i}: i \in I\right)_{d s}$,
(12) $\left(\bar{a}_{i}: i \in I\right)$ has a multitransversal of size $\left(b_{i}: i \in I\right)$.

Theorem 3. Let I be a set and let a_{i}, b_{i} be cardinals for $i \in I$ such that $a_{i} \leqslant \aleph_{0}$ for $i \in I$. Then $(13) \Leftrightarrow(14) \Leftrightarrow(15) \wedge(16)$, where
(13) $\left.\left(a_{i}: i \in I\right)\right) \rightarrow\left(b_{i}: i \in I\right)_{d s}$,
(14) $\left(\bar{a}_{i}: i \in I\right)$ has a multitransversal of size $\left(b_{i}: i \in I\right)$,
(15) if $n \leqslant \aleph_{0}$, then $\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i} \leqslant n$,
(16) if $m<\omega$ and $m \leqslant \sum\left(i \in I ; a_{i}=\aleph_{0}\right) b_{i}$, then there is $n_{0}<\omega$ such that, whenever $n_{0} \leqslant n<\omega$, we have $m+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i} \leqslant n$.

Our main result is the following theorem.
Theorem 4. Let I be a set and a_{i}, b_{i} be arbitrary cardinals for $i \in I$. Put

$$
S=\left\{a_{i}: i \in I ; b_{i} \geqslant 1\right\} .
$$

Then $(17) \Leftrightarrow(18) \Leftrightarrow(19) \wedge(20) \wedge(21)$, where
(17) $\left(a_{i}: i \in I\right) \rightarrow\left(b_{i}: i \in I\right)_{d s}$,
(18) $\left(\bar{a}_{i}: i \in I\right)$ has a multitransversal of size $\left(b_{i}: i \in I\right)$,
(19) $\sum\left(i \in I ; a_{i} \leqslant \kappa\right) b_{i} \leqslant \kappa$ for every cardinal κ,
(20) $\omega(S) \cap \bar{\lambda} \notin$ stat λ for every weakly inaccessible cardinal λ,
(21) if $m<\omega$ and $m \leqslant \sum\left(i \in I ; a_{i}=\aleph_{0}\right) b_{i}$, then $m+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i} \leqslant n$ for every sufficiently large finite n.

4. Proof of Theorem 1

Proof of $(3) \Rightarrow(4)$. Let $\left(\kappa_{0}, \ldots, \hat{\kappa}_{n}\right)$ be an S-sequence. Then every family \mathscr{A} as described in (4) can be written in the form ($A_{0}, \ldots, \hat{A}_{n}$), where $\left|A_{v}\right|=\kappa_{v}$ for $v<n$. Since $\left|A_{v}\right|=\kappa_{v}>|v|$, we can choose elements x_{v} for $v<n$ so that $x_{v} \in A_{v}-\left\{x_{0}, \ldots, \hat{x}_{v}\right\}$ for $v<n$. Then $\left(x_{0}, \ldots, \hat{x}_{n}\right)$ is a transversal of \mathscr{A}.

Proof of $(4) \Rightarrow(5)$. This is trivial.

Proof of $(5) \Rightarrow(2)$. Let $\left(x_{\kappa}: \kappa \in S\right)$ be a transversal of $(\bar{\kappa}: \kappa \in S)$. Then the function $\omega(\kappa) \mapsto x_{\kappa}$ is regressive on $\omega(S)$ and injective. Hence, clearly, (2) is satisfied. There only remains:

Proof of (2) \Rightarrow (3). Let us call a set S good if S is a set of infinite cardinals satisfying (2). For $\lambda \geqslant \aleph_{0}$ let $P(\lambda)$ denote the statement: whenever S is good and $S \subset \bar{\lambda}$, then (3) holds. We have to show that $P(\lambda)$ holds for every $\lambda \geqslant N_{0}$. We use induction over λ. We know that $P\left(\aleph_{0}\right)$ is true. Let $\lambda>\aleph_{0}$ and assume that $P\left(\lambda^{\prime}\right)$ holds for $\aleph_{0} \leqslant \lambda^{\prime}<\lambda$. We have to prove $P(\lambda)$. Let S be good and $S \subset \bar{\lambda}$. We have to construct an S-sequence.

Case 1: $\lambda>\lambda^{-}$. Put $\delta=\lambda^{-}$. We may assume that $S \notin \delta$ so that $S=T \cup\{\delta\}$, where $T \subset \delta$. By $P(\delta)$ there is a T-sequence $\left(\kappa_{0}, \ldots, \kappa_{\mathrm{t}}\right)$. Then $|\tau|=\sum(\kappa \in T) \kappa \leqslant \delta$.

Case 1a: $\quad|\tau|<\delta$. Put $\kappa_{\alpha}^{\prime}=\kappa_{\alpha}$ for $\alpha<\tau$, and $\kappa_{\alpha}^{\prime}=\delta$ for $\tau \leqslant \alpha \in \delta$. Then $\left(\kappa_{\alpha}^{\prime}: \alpha \in \delta\right)$ is an S-sequence.

Case 1b: $\quad|\tau|=\delta$. For $\kappa \in T$ put

$$
M_{\kappa}=\left\{\alpha<\tau: \kappa_{x}=\kappa\right\} .
$$

Then $\alpha \in M_{\kappa}$ implies that $\kappa=\kappa_{\alpha}>|\alpha|$, that is, $\alpha \in \bar{\kappa}$. Also, $\left|M_{\kappa}\right|=\kappa$ for $\kappa \in T$, and we can write $M_{\kappa}=P_{\kappa} \cup Q_{\kappa}$, where $P_{\kappa} \cap Q_{\kappa}=\varnothing$ and $\left|P_{\kappa}\right|=\left|Q_{\kappa}\right|=\kappa$. Put $\kappa_{\alpha}^{\prime}=\kappa_{\alpha}$ for $\alpha \in P_{T}$ and $\kappa_{\alpha}^{\prime}=\delta$ for $\alpha \in Q_{\tau}$. Then ($\kappa_{\alpha}^{\prime}: \alpha<\tau$) is an S-sequence.

Case 2: λ is weakly inaccessible. Then, since S is good, we have $\omega(S) \notin$ stat λ and, by well known properties of inaccessible cardinals and stationary sets, there is a set $C=\left\{\delta_{0}, \ldots, \delta_{\omega(\lambda)}\right\}<$ of infinite cardinals such that $\omega(C)$ is closed and cofinal in $\bar{\lambda}$ and $C \cap S=\varnothing$. (Here closure refers to the usual order topology.) For $\alpha \in \bar{\lambda}$ put $S_{\alpha}=S \cap \bar{\delta}_{\alpha}$ and $S_{\alpha}^{\prime}=S_{\alpha}-S_{i}$. Then $S=S_{\alpha}^{\prime} ; S_{\alpha}^{\prime} \cap S_{\beta}^{\prime}=\varnothing$ for $\alpha<\beta \in \bar{\lambda} ; S_{\alpha}^{\prime} \subset S_{\alpha} \subset \bar{\delta}_{\alpha}$, and $P\left(\delta_{\alpha}\right)$ holds for $\alpha \in \bar{\lambda}$. Hence there is an S_{α}^{\prime}-sequence Λ_{α}. Put

$$
\Lambda=\left[\Lambda_{\alpha}: \alpha \in \bar{\lambda}\right] .
$$

We claim that
Λ is an S-sequence.
Proof of (22). Let $\kappa \in S$. Then $\kappa \in S_{x_{0}}^{\prime}$ for some $\alpha_{0} \in \bar{\lambda}$, and exactly κ terms of Λ are equal to κ. All these terms belong to $\Lambda_{\alpha_{0}}$. We have to show that every occurrence of κ in Λ has an index in Λ which belongs to $\bar{\kappa}$. Now every occurrence of κ in $\Lambda_{\alpha_{0}}$ has an index in $\Lambda_{\alpha_{0}}$ which belongs to $\bar{\kappa}$. Hence it suffices to show that the sequence $\left[\Lambda_{z}: \alpha<\alpha_{0}\right.$] has fewer than κ terms. This holds if $\alpha_{0}=0$. Now let $\alpha_{0} \geqslant 1$. If $\alpha_{0}^{-}=\alpha_{0}$ then $\kappa \in S_{\alpha_{0}}^{\prime}=\varnothing$ which is false. Hence $\alpha_{0}=\alpha_{1}+1$ for some α_{1}. By definition of $S_{x_{0}}^{\prime}$ we have $\delta_{\alpha_{1}} \leqslant \kappa<\delta_{\alpha_{1}+1}$. Since $\delta_{\alpha_{1}} \in C, \kappa \in S, C \cap S=\varnothing$, we have $\delta_{\alpha_{1}}<\kappa$. Hence

$$
\begin{aligned}
& \text { (number of terms of } \left.\left[\Lambda_{x}: \alpha<\alpha_{0}\right]\right) \\
= & \text { (number of terms of } \left.\left[\Lambda_{x}: \alpha \leqslant \alpha_{1}\right]\right) \\
= & \sum\left(\kappa^{\prime} \in S \cap \bar{\delta}_{x_{1}}\right) \kappa^{\prime} \leqslant \dot{\delta}_{x_{1}}<\kappa^{\prime} .
\end{aligned}
$$

Case 3: $\lambda>\operatorname{cf} \lambda$. Put cf $\lambda=\tau$. Then there is a set $D=\left\{\delta_{0}, \ldots, \delta_{\omega(\mathrm{r})}\right\}<\subset \bar{\lambda}-\tau^{+}$ such that $\omega(D)$ is closed and cofinal in $\bar{\lambda}$. Put

$$
\begin{aligned}
& A=\left\{\alpha \in \bar{\tau}: \delta_{\alpha} \in S ; \sup \bar{\delta}_{\alpha} \cap S=\delta_{\alpha}\right\} \\
& \Delta=\left\{\delta_{\alpha}: \alpha \in \mathrm{A}\right\} ; S^{\prime}=S-\Delta
\end{aligned}
$$

For $\alpha \in \bar{\tau}$ put $S_{\alpha}=S^{\prime} \cap \bar{\delta}_{\alpha}$ and $S_{\alpha}^{\prime}=S_{\alpha}-S_{\dot{\alpha}}$. Then $S^{\prime}=S_{\bar{z}}^{\prime}$ and $S_{\alpha}^{\prime} \cap S_{\beta}^{\prime}=\varnothing$ for $\alpha<\beta \in \bar{\tau}$. The set S is good and $S_{\alpha}^{\prime} \subset S$. Hence S_{α}^{\prime} is good. Since $S_{\alpha}^{\prime} \subset \delta_{\alpha}$ and $P\left(\delta_{\alpha}\right)$ holds, it follows that there exists an S_{a}^{\prime}-sequence Λ_{a}, for every $\alpha \in \bar{\tau}$. Put $\Lambda=\left[\Lambda_{x}: \alpha \in \bar{\tau}\right]$. We claim that
Λ is an S^{\prime}-sequence.
Proof of (23). Let $\kappa \in S^{\prime}$. Then there is exactly one $\alpha_{0} \in \bar{\tau}$ with $\kappa \in S_{\alpha_{0}}^{\prime}$, and exactly κ terms of Λ equal κ. All these terms are terms of $\Lambda_{\alpha_{0}}$, and their indices in $\Lambda_{\alpha_{0}}$ lie in $\bar{\kappa}$. Hence it suffices to show that the sequence $\left[\Lambda_{\alpha}: \alpha<\alpha_{0}\right]$ has fewer than κ terms. This holds for $\alpha_{0}=0$. Now let $\alpha_{0} \geqslant 1$. If $\alpha_{0}=\alpha_{0}^{-}$, then $\kappa \in S_{\alpha_{0}}^{\prime}=\varnothing$ which is false. Hence $\alpha_{0}=\alpha_{1}+1$ for some α_{1}, and $\delta_{\alpha_{1}} \leqslant \kappa<\delta_{\alpha_{1}+1}$. If $\delta_{\alpha_{1}}<\kappa$, then

$$
\begin{aligned}
& \text { (number of terms of } \left.\left[\Lambda_{\alpha}: \alpha<\alpha_{0}\right]\right) \\
= & \text { (number of terms of } \left.\left[\Lambda_{\alpha}: \alpha \leqslant \alpha_{1}\right]\right) \\
= & \sum\left(\kappa^{\prime} \in S^{\prime} \cap \delta_{\alpha_{1}}\right) \kappa^{\prime} \leqslant \delta_{\alpha_{1}}<\kappa
\end{aligned}
$$

as required. On the other hand, let $\delta_{\alpha_{1}}=\kappa$. Then

$$
\delta_{x_{1}}=\kappa \in S^{\prime}=S-\Delta ; \quad \delta_{x_{1}} \notin \Delta ; \quad \alpha_{1} \notin A ; \quad \delta_{\alpha_{1}}=\kappa \in S^{\prime} \subset S .
$$

Since $\alpha_{1} \notin A$, we have

$$
\sum\left(\kappa^{\prime} \in S \cap \bar{\delta}_{\alpha_{1}}\right) \kappa^{\prime}<\delta_{x_{1}} .
$$

Hence

$$
\begin{aligned}
& \text { (number of terms of } \left.\left[\Lambda_{\alpha}: \alpha<\alpha_{0}\right]\right) \\
= & \left(\text { number of terms of }\left[\Lambda_{\alpha}: \alpha \leqslant \alpha_{1}\right]\right) \\
= & \sum\left(\kappa^{\prime} \in S^{\prime} \cap \delta_{\alpha_{1}}\right) \kappa^{\prime} \leqslant \sum\left(\kappa^{\prime} \in S \cap \bar{\delta}_{\alpha_{1}}\right) \kappa^{\prime}<\delta_{\alpha_{1}}=\kappa
\end{aligned}
$$

as required. This proves (23).
Let $\Lambda=\left(\kappa_{0}, \ldots, \hat{\kappa}_{\sigma}\right)$. For $\kappa \in S^{\prime}$ put $M_{\kappa}=\left\{\mu<\sigma: \kappa_{\mu}=\kappa\right\}$. If $\mu \in M_{\kappa}$, then $\kappa=\kappa_{\mu}>|\mu|$. Hence $M_{\kappa} \subset \bar{\kappa}$. Also, $\left|M_{\kappa}\right|=\kappa$ for $\kappa \in S^{\prime}$. If $\tau \leqslant \kappa \in S^{\prime}$, then there is a representation $M_{\kappa}=\bigcup(\alpha \leqslant \omega(\tau)) M_{\kappa}^{\alpha}$ such that $\left|M_{\kappa}^{\alpha}\right|=\kappa$ for $\alpha \leqslant \omega(\tau)$ and $M_{\kappa}^{\alpha} \cap M_{\kappa}^{\beta}=\varnothing$ for $\alpha<\beta \leqslant \omega(\tau)$.

Let $\mu<\sigma$. We now define κ_{μ}^{\prime}. If $\tau \leqslant \kappa_{\mu}$, then there is a unique $\alpha(\mu) \leqslant \omega(\tau)$ with $\mu \in M_{\kappa_{\mu}}^{z(\mu)}$. If, in addition, $\alpha(\mu)<\omega(\tau)$ and $|\mu|<\delta_{\alpha(\mu)} \in S$, then we put $\kappa_{\mu}^{\prime \prime}=\delta_{x(\mu)}$. For all
other $\mu<\sigma$ we put $\kappa_{\mu}^{\prime}=\kappa_{\mu}$. We claim that

$$
\begin{equation*}
\left(\kappa_{\mu}^{\prime} ; \mu<\sigma\right) \text { is an } S \text {-sequence. } \tag{24}
\end{equation*}
$$

Proof of (24). We have $\kappa_{\mu}^{\prime} \in S$ for $\mu<\sigma$. Let $\mu<\sigma$. Then $\kappa_{\mu}^{\prime}>|\mu|$. For if $\kappa_{\mu}^{\prime}=\kappa_{\mu}$, then $\kappa_{\mu}^{\prime}=\kappa_{\mu}>|\mu|$ since $\left(\kappa_{0}, \ldots, \hat{\kappa}_{\sigma}\right)$ is an S^{\prime}-sequence, and if $\kappa_{\mu}^{\prime} \neq \kappa_{\mu}$, then $\kappa_{\mu}^{\prime}=\delta_{\alpha(\mu)}>|\mu|$. To complete the proof of Theorem 1 it suffices to show that, for $\kappa \in S$, we have

$$
\begin{equation*}
\left|\left\{\mu<\sigma: \kappa_{\mu}^{\prime}=\kappa\right\}\right|=\kappa \tag{25}
\end{equation*}
$$

Case 3a: $\tau \leqslant \kappa \in S^{\prime}$. Then $\kappa_{\mu}^{\prime}=\kappa$ for all $\mu \in M_{\kappa}^{\omega(\tau)}$, and (25) follows.
Case 3b: $\kappa<\tau$ and $\kappa \in S^{\prime}$. Then $\mu \in M_{\kappa}$ implies that $\kappa_{\mu}=\kappa<\tau$ and hence $\kappa_{\mu}^{\prime}=\kappa_{\mu}=\kappa$, so that $M_{\kappa} \subset\left\{\mu<\sigma: \kappa_{\mu}^{\prime}=\kappa\right\}$. Since $\left|M_{\kappa}\right|=\kappa$, we conclude that (25) holds.

Case 3c: $\kappa \in S-S^{\prime}$. Then $\kappa \in \Delta$. and $\kappa=\delta_{\alpha}$ for some $\alpha \in A$. Put $T=\left\{\kappa^{\prime} \in S^{\prime}: \tau \leqslant \kappa^{\prime}<\delta_{\alpha}\right\}$. We claim that

$$
\begin{equation*}
M_{T}^{\alpha} \subset\left\{\mu<\sigma: \kappa_{\mu}^{\prime}=\kappa\right\} . \tag{26}
\end{equation*}
$$

Proof of (26). Let $\kappa^{\prime} \in S^{\prime} ; \tau \leqslant \kappa^{\prime}<\delta_{\alpha} ; \mu \in M_{\kappa^{\prime}}^{\alpha}$. Then $\kappa_{\mu}=\kappa^{\prime}$, so that $\tau \leqslant \kappa_{\mu}$ and $\alpha(\mu)=\alpha<\omega(\tau)$. Also, $|\mu|<\kappa_{\mu}=\kappa^{\prime}<\delta_{\alpha}$, and we have $|\mu|<\delta_{\alpha(\mu)} \in S$. Hence $\kappa_{\mu}^{\prime}=\delta_{a(\mu)}=\delta_{\alpha}=\kappa$. This proves (26). Now, to complete the argument in Case 3c, it suffices to show that

$$
\begin{equation*}
\left|M_{T}^{\alpha}\right|=\kappa . \tag{27}
\end{equation*}
$$

Proof of (27). Let $\kappa^{\prime \prime}<\delta_{\alpha}$. Denote by $\kappa^{\prime \prime \prime}$ the least cardinal in S satisfying $\max \left\{\kappa^{\prime \prime}, \tau\right\}<\kappa^{\prime \prime \prime}<\delta_{\alpha}$. This cardinal $\kappa^{\prime \prime \prime}$ exists in view of

$$
\sup \delta_{\alpha} \cap S=\delta_{a}
$$

Then sup $\bar{\kappa}^{\prime \prime \prime} \cap S \leqslant \max \left\{\kappa^{\prime \prime}, \tau\right\}<\kappa^{\prime \prime \prime}$. If $\kappa^{\prime \prime \prime} \notin S^{\prime}$ then $\kappa^{\prime \prime \prime} \in \Delta ; \kappa^{\prime \prime \prime}=\delta_{\beta}$ for some $\beta \in A$; $\sup \delta_{\beta} \cap S=\delta_{\beta} ; \sup \bar{\kappa}^{\prime \prime \prime} \cap S=\boldsymbol{\kappa}^{\prime \prime \prime}$ which is a contradiction. Hence $\kappa^{\prime \prime \prime} \in S^{\prime}$. Now

$$
\left|M_{T}^{a}\right|=\sum\left(y \in S^{\prime} ; \tau \leqslant y<\delta_{a}\right) y \geqslant \kappa^{\prime \prime \prime}>\kappa^{\prime \prime} .
$$

Since $\kappa^{\prime \prime}$ is an arbitrary cardinal with $\kappa^{\prime \prime}<\delta_{\alpha}$, we conclude that $\left|M_{T}^{\alpha}\right| \geqslant \delta_{\alpha}=\kappa$. This, together with the previously proved relation $M_{\kappa} \subset \bar{\kappa}$, establishes (27) and so completes the proof of Theorem 1.

5. Proof of Theorem 2

The implications $(6) \Rightarrow(7) \Rightarrow(8)$ are trivial, and the implication $(9) \Rightarrow 10)$ follows from Theorem i.

Proof of $(8) \Rightarrow(9)$. Let $\left(x_{i}: i \in I\right)$ be a transversal of $\left(\bar{a}_{i}: i \in I\right)$. For each $\kappa \in S$ choose $i_{\kappa} \in I$ with $a_{i_{\kappa}}=\kappa$. Then ($x_{i_{\kappa}}: \kappa \in S$) is a transversal of ($\bar{\kappa}: \kappa \in S$). For every cardinal κ, we have $\left\{x_{i}: i \in I ; a_{i}=\kappa\right\} \subset \bar{\kappa}$ and therefore

$$
\left|\left\{i \in I: a_{i}=\kappa\right\}\right|=\left|\left\{x_{i}: i \in I ; a_{i}=\kappa\right\}\right| \leqslant \kappa
$$

This proves (9).
Proof of $(10) \Rightarrow(6)$. Let $\left|A_{i}\right|=a_{i}$ for $i \in I$. It suffices to show that the sequence $\mathscr{F}=\left[\left(A_{i}\right)_{a_{i}}: i \in I\right]$ has a transversal. Given any $\kappa \in S$, the family \mathscr{F} contains at most $\kappa^{2}(=\kappa)$ sets of cardinal κ. Since $\omega(S) \cap \bar{\lambda} \not$ stat λ for every weakly inaccessible cardinal λ, Theorem 1 shows that \mathscr{F} has a transversal.

Proof of the Corollary. Clearly (11) $\Rightarrow(12)$.
Proof of $(12) \Rightarrow(11)$. We have $b_{i} \leqslant a_{i}$ for $i \in I$. Put $I^{+}=\left\{i \in I: b_{i} \geqslant 1\right\}$. Then $\left(\bar{a}_{i}: i \in I^{+}\right)$has a transversal. By Theorem 2, $\left(a_{i}: i \in I^{+}\right) \rightarrow\left(a_{i}: i \in I^{+}\right)_{d s}$. Since $b_{i} \leqslant a_{i}$, it follows that $\left(a_{i}: i \in I^{+}\right) \rightarrow\left(b_{i}: i \in I^{+}\right)_{d s}$. Since $b_{i}=0$ for $i \in I-I^{+}$, (11) follows.

6. Proof of Theorem 3

The implications $(13) \Rightarrow(14) \Rightarrow(15)$ are trivial.
Proof of $(14) \Rightarrow(16)$. Let $\left(X_{i}: i \in I\right)$ be a multitransversal of $\left(\bar{a}_{i}: i \in I\right)$ of size $\left(b_{i}: i \in I\right)$. Let m satisfy $m<\omega$ and $m \leqslant \sum\left(i \in I ; a_{i}=\aleph_{0}\right) b_{i}$. Then

$$
\| \cup\left(i \in I ; a_{i}=\aleph_{0}\right) X_{i} \mid=\sum\left(i \in I ; a_{i}=\aleph_{0}\right) b_{i} \geqslant m,
$$

and we can find a set M with

$$
M \in\left[U\left(i \in I ; a_{i}=\aleph_{0}\right) X_{i}\right]^{m}
$$

Then $M \subset \bar{\omega} ;|M|=m<\omega$, and there is $n_{0}<\omega$ with $M \subset \bar{n}_{0}$. Let $n_{0} \leqslant n<\omega$. Then $M \subset \bar{n}_{0} \subset \bar{n}$. Also, $U\left(i \in I ; a_{i} \leqslant n\right) X_{i} \subset \bar{n}$. Therefore

$$
m+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i}=\left|M \cup \bigcup\left(i \in I ; a_{i} \leqslant n\right) X_{i}\right| \leqslant n .
$$

Proof of $(15) \wedge(16) \Rightarrow(13)$. Let $\left|A_{i}\right|=a_{i}$ for $i \in I$. For $n \leqslant \aleph_{0}$ put

$$
I_{n}=\left\{i \in I ; a_{i}=n\right\} .
$$

Let $p=b_{1 \mathrm{k}_{0}}$. Then $p \leqslant b_{I} \leqslant \aleph_{0}$ by (15). Put $P=\{r<\omega: 1 \leqslant r \leqslant p\}$...Then $|P|=p$. There is a mapping $f: P \rightarrow I_{\kappa_{0}}$ such that, for every $i \in I_{\mathrm{N}_{0}},|\{r \in P: f(r)=i\}|=b_{i}$. This follows from the definition of p. For $n<\omega$ put $d_{n}=n-\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i}$ and $e_{n}=\min \left\{d_{n}, d_{n+1}, \ldots, \dot{d}_{c,}\right\}$. Then $0 \leqslant e_{n} \leqslant d_{n}$ and, since $d_{n+1} \leqslant d_{n}+1$,

$$
e_{n} \leqslant e_{n+1} \leqslant e_{n}+1
$$

By (16), given any $r \in P$, there is $n<\omega$ with $e_{n}=r$. (Here one uses that $e_{0}=0$.) For $n<\omega$ we shall define, by induction on n, a set F_{n} with $\left|F_{n}\right| \leqslant e_{n}+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i}$, as
well as sets $X_{i} \subset A_{i} \cap F_{n}$ for $i \in I_{n}$. Put $F_{0}=\varnothing$ and $X_{i}=\varnothing$ for $i \in I_{0}$. Now let $0<n<\omega$, and suppose that F_{n-1} and X_{i} have been defined for $i \in I_{n}$. Then

$$
\begin{aligned}
\left|F_{n-1}\right|+b_{I_{n}} & \leqslant e_{n-1}+\sum\left(i \in I ; a_{i} \leqslant n-1\right) b_{i}+b_{I_{n}} \\
& =e_{n-1}+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i} \leqslant d_{n}+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i} \\
& =n .
\end{aligned}
$$

(Here we have used the relation $e_{n-1} \leqslant d_{n}$ and the definition of d_{n}.) Thus $\left|F_{n-1}\right|+b_{I_{n}} \leqslant n$. Let $j \in I_{n}$. Then $\left|A_{j}\right|=a_{j}=n ; \quad\left|A_{j}-F_{n-1}\right| \geqslant n-\left|F_{n-1}\right| \geqslant b_{I_{n}}$, so that $b_{I_{n}} \leqslant\left|A_{j}-F_{n-1}\right|$ for $j \in I_{n}$. Therefore there are pairwise disjoint sets $X_{i} \in\left[A_{i}-F_{n-1}\right]^{b_{i}}$ for $i \in I_{n}$. Put $F_{n}^{\prime}=F_{n-1} \cup X_{I_{n}}$. Then

$$
\begin{aligned}
\left|F_{n}^{\prime}\right|=\left|F_{n-1}\right|+b_{l_{n}} & \leqslant e_{n-1}+\sum\left(i \in I: a_{i} \leqslant n\right) b_{i} \\
& \leqslant e_{n}+\sum\left(i \in I ; a_{i} \leqslant n\right) b_{i}=e_{n}+\left(n-d_{n}\right) \leqslant n
\end{aligned}
$$

by definition of e_{n}. Put $F_{n}=F_{n}^{\prime}$ if either $e_{n-1}=e_{n}$ or $e_{n-1}<e_{n} \notin P$. In the remaining case, i.e. if $e_{n-1}<e_{n} \in P$, we choose, as is then possible, an element $x_{n} \in A_{f\left(e_{n}\right)}-F_{n}^{\prime}$ and put $F_{n}=F_{n}^{\prime} \cup\left\{x_{n}\right\}$. We have now defined X_{i} for every $i \in I_{\dot{\omega}}$. For $i \in I_{\kappa_{0}}$ put

$$
X_{i}=\left\{x_{n}: 0<n<\omega ; e_{n-1}<e_{n} \in P ; f\left(e_{n}\right)=i\right\} .
$$

It follows that $\left(X_{i}: i \in I\right)$ is a multitransversal of $\left(A_{i}: i \in I\right)$ and that $\left|X_{i}\right|=b_{i}$ for $i \in I_{\dot{\omega}}$. It only remains to prove that $\left|X_{i}\right|=b_{i}$ for $i \in I_{\mathrm{N}_{0}}$. Let $r \in P$. Denote by $n(r)$ the least number $n<\omega$ with $e_{n}=r$, which clearly exists. Then, since $e_{0}=d_{0}=0 \notin P$, we have $n(r)>0$, so that $e_{n(r)-1}<e_{n(r)} \in P$. Hence the element $x_{n(r)}$ is defined and satisfies $x_{n(r)} \in X_{f(r)}$. Put $g(r)=x_{n(r)}$. Then the mapping

$$
g: P \rightarrow U\left(i \in I_{\aleph_{0}}\right) X_{i}
$$

is bijective. For $i \in I_{\aleph_{0}}$ put

$$
P_{i}=\{r \in P: f(r)=i\} .
$$

Then $g\left(P_{i}\right)=X_{i}$ and hence $\left|X_{i}\right|=\left|P_{i}\right|=b_{i}$, and Theorem 3 is established.

$$
7 .
$$

Lemma. Let I be a set and a_{i}, b_{i} be cardinals for $i \in I$. Let

$$
c \geqslant \aleph_{0} ; \quad I_{0}=\left\{i \in I: \quad a_{i} \leqslant c\right\} ; \quad I_{1}=I-I_{0}
$$

Then $(28) \Rightarrow(29) \wedge(30)$, where

$$
\begin{gather*}
\left(a_{i}: i \in I\right) \rightarrow\left(b_{i}: i \in I\right)_{d s}, \tag{28}\\
\left(a_{i}: i \in I_{0}\right) \rightarrow\left(b_{i}: i \in I_{0}\right)_{d s}, \tag{29}\\
\left(a_{i}: i \in I_{1}\right) \rightarrow\left(b_{i}: i \in I_{1}\right)_{d s} . \tag{30}
\end{gather*}
$$

Proof. Trivially $(28) \Rightarrow(29) \wedge(30)$. Now assume, vice versa, that (29) and (30) hold. Let $\left|A_{i}\right|=a_{i}$ for $i \in I$. Then, applying (29) to the family $\left(\bar{a}_{i}: i \in I_{0}\right)$, we find that $b_{I_{0}} \leqslant c$. Also, the family $\left(A_{i}: i \in I_{0}\right)$ has a multitransversal $\left(X_{i}: i \in I_{0}\right)$ of $\operatorname{size}\left(b_{i}: i \in I_{0}\right)$. Then $\left|X_{I_{0}}\right|=b_{I_{0}} \leqslant c$. Hence, since $c \geqslant \mathcal{N}_{0}$, we have $\left|A_{i}-X_{I_{0}}\right|=a_{i}$ for $i \in I_{1}$. By (30), the family $\left(A_{i}-X_{I_{0}}: i \in I_{1}\right)$ has a multitransversal $\left(X_{i}: i \in I_{1}\right)$ of size $\left.b_{i}: i \in I_{1}\right)$. Then ($X_{i}: i \in I$) is a multitransversal of $\left(A_{i}: i \in I\right)$ of size $\left(b_{i}: i \in I\right)$, which proves (28).

8.

Proof of Theorem 4. The implications $(17) \Rightarrow(18) \Rightarrow(19)$ are trivial.
Proof of $(18) \Rightarrow(20)$. Let $I^{\prime}=\left\{i \in I: a_{i} \geqslant \aleph_{0} ; b_{i} \geqslant 1\right\}$. Then ($\left.\bar{a}_{i}: i \in I^{\prime}\right)$ has a multitransversal of size ($b_{i}: i \in I^{\prime}$). Let $S^{\prime}=\left\{a_{i}: i \in I^{\prime}\right\}$. Then, by Theorem 2, $\omega\left(S^{\prime}\right) \cap \bar{\lambda} \notin$ stat λ for every weakly inaccessible cardinal λ. Since $\omega(S) \subset \omega\left(S^{\prime}\right) \cup \bar{\omega}$, it follows that $\omega(S) \cap \bar{\lambda} \notin$ stat λ.

Proof of (18) $\Rightarrow(21)$. Let $I_{0}=\left\{i \in I: a_{i} \leqslant \aleph_{0}\right\}$. Then $\left(\bar{a}_{i}: i \in I_{0}\right)$ has a multitransversal of size $\left(b_{i}: i \in I_{0}\right)$. Then (21) follows from Theorem 3, in view of the relations
$\sum\left(i \in I ; a_{i}=\aleph_{0}\right) b_{i}=\sum\left(i \in I_{0} ; a_{i}=\aleph_{0}\right) b_{i}, \sum\left(i \in I ; a_{i} \leqslant n\right) b_{i}=\sum\left(i \in I_{0} ; a_{i} \leqslant n\right) b_{i}$ for $n<\omega$.

Proof of $(19) \wedge(20) \wedge(21) \Rightarrow(17)$. Let $I_{0}=\left\{i \in I: a_{i} \leqslant \aleph_{0}\right\} ; \quad I_{1}=I-I_{0}$. Then $\left(a_{i}: i \in I_{0}\right) \rightarrow\left(b_{i}: i \in I_{0}\right)_{d s}$ by Theorem 3. Let $I_{1}^{+}=\left\{i \in I_{1}: b_{i} \geqslant 1\right\}$.

Then, for every cardinal κ,

$$
\begin{aligned}
\left|\left\{i \in I_{1}^{+}: a_{i}=\kappa\right\}\right| & =\sum\left(i \in I_{1}^{+} ; a_{1}=\kappa\right) 1 \\
& \leqslant \sum\left(i \in I_{1}^{+} ; a_{1}=\kappa\right) b_{i} \leqslant \sum\left(i \in I ; a_{i}=\kappa\right) b_{i} \leqslant \kappa .
\end{aligned}
$$

Since $a_{i} \in S$ for $i \in I_{1}^{+}$, we deduce from Theorem 2 that

$$
\left(a_{i}: i \in I_{1}^{+}\right) \rightarrow\left(a_{i}: i \in I_{1}^{+}\right)_{d s} .
$$

By (19) we have $b_{i} \leqslant a_{i}$ for $i \in I_{1}^{+}$, which implies that $\left(a_{i}: i \in I_{1}^{+}\right) \rightarrow\left(b_{i}: i \in I_{1}^{+}\right)_{d_{s}}$. But $b_{i}=0$ for $i \in I_{1}-I_{1}^{+}$. Hence $\left(a_{i}: i \in I_{1}\right) \rightarrow\left(b_{i}: i \in I_{1}\right)_{d s}$. Now the lemma, with $c=\mathcal{N}_{0}$, yields $\left(a_{i}: i \in I\right) \rightarrow\left(b_{i}: i \in I\right)_{d s}$, and this concludes the proof of Theorem 4.

Reference

1. R. Rado,"The selection of disjoint subsets of given sets". Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), 509-514. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., Canada, 1976.

The University of Colorado,
Boulder, CO 80309, USA.
The University of Kansas,
Lawrence, KS 66045, USA.

