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1. Introduction

A transversal of a family .Fof sets is a family of pairwise distinct elements, one from
each member of .y , and a multitransversal of .IF is a family of pairwise disjoint subsets,
one of each member of F . The main result of this note, Theorem 4, gives necessary and
sufficient conditions on families sa/ and .4 of cardinals in order that every family J
whose members have cardinals given by sl should have (i) a transversal, (ii) a
multitransversal whose members have cardinals given by .4. Our conditions turn out
to involve the notion of a weakly inaccessible cardinal and that of a stationary set of
ordinals . Our result (announced in [1]) amounts to saying that the test families .y,
whose "good behaviour" implies that of every other family with the same cardinalities,
are those whose members are sets of the form Ix : x < A}, where AA is an ordinal.

2. Terminology and notation

Capital letters denote sets . The relation A c B denotes inclusion in the wide sense .
If nothing is said to the contrary, small letters denote ordinals . For each a we put
á = {x : x < a} . For cardinals c put

w(c) = min{a : 1a1 = c} ;

For every set S of cardinals put

For cardinals y put

c = w(c) ; é = {t = cardinal : t < c} .

w(S) = {w(c) : c e S} .

[A]' = {X c A :IXI = y} .

The symbol (a o , . . ., á„), where the a, are any objects, denotes the sequence (a, : v < n).
Given a family (a, : i e 1) of cardinals and a family (A i : i e I) of sets we put, for J c 1,

a,, = ~: (j e J)aJ ; Ar = U(1 e J)AJ .

Symbols such as (a o , . . ., á„) < or (x i : i e I) * are self-explanatory . For infinite cardinals x
the symbol cf x, the cofinality of x, denotes the least cardinal t such that, for some

The second author received support from NSF Grant No MCS77-02046 .

Received 12 January . 1979 .

[J . LONDON MATH . Soc . (2), 20 (1979), 387-395]

~9f



388

	

P. ERDŐS, F. GALVIN AND R. RADO

cardinals x, < x, we have x = x, . The cardinal x is regular, if cf x = .x, and singular, if
cf x < x . For every cardinal x put

x+ = min (y = cardinal : y > x} ,

x- = min (y = cardinal : y + > x ; ,

and similarly for ordinals . The infinite cardinal x is weakly inaccessible if
x=x- =cfx.

Let .i be a regular cardinal and let A c . . A regressive function on A is a function
f: A- (0) -• . such thatf(x) < x for 0 < x e A. The set A is stationary on A- if A c i .
and for every regressive function f on A there is y E ~ with I f - '(y)I = ~ . Let star i .
denote the set of all sets which are stationary on A .

The disjoint subset relation

(1) (a i :iel)-+(b i :ieI),, S

means that the ai and b ; are cardinals with the property that whenever IAiJ = a ; for i E 1,
there always exist pairwise disjoint sets X i E [A i] ° i for i E L Thus if all b, = I then (1)
means that every family (A i : i e 1) with IAiJ = a, for i c- I has a transversal . Families
(X i : i c- 1) as described above are called multitransversals of (Ai : i c- 1) of size (b i : i E I) .

If F0 , . . ., A,, are sequences, then [.moo , . . ., t ] denotes the sequence obtained by
concatenation, i .e ., by arranging the terms of the .y, as a single sequence, maintaining in
each F, the given order and placing F„ in front of f~ if p < v < n. If x is an object and
c a cardinal then (x), denotes the sequence (x, : v e c) in which x, = x for v E c .

Let S be a set of infinite cardinals. An S-sequence is a sequence (a, : v < 11) such that
(a,. : v < n) = S and, if vo < n, then a, > Ivol and 11v < n : a, = a, ., á;1 = a, .0 .

3 . Results

THEOREM 1 . Let S be a set of infinite cardinals . Then the conditions (2), (3), (4), (5) are
equivalent, where

(2) for every weakly inaccessible cardinal i , co(S) r)

	

stat i.,

(3) there exists an S-sequence,

(4) every family of sets consisting, for each K E S, OfK members of cardinal K, has a
transversal,

(5) the family (K : K E S) has a transversal.

THEOREM 2. Let I be a set ; a, >, No for i c- I ; S = 1a, i c- 11 . Then the conditions
(6), (7), (8), (9), (10) are equivalent, where

(6)

	

(a, :ic1)-•(a ; :iEI),,,,

(7) (a i : i E I) -+ (I : i e I),,

(8) (a i : i c- I) has a transversal,
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(9) (x : K e S) has a transversal and I{i e I : a i = K) I < K for every cardinal K,

(10) I{i a 1 : a i = K}I S Kfor every cardinal K, and w(S) n A 0 stat Afor every weakly
inaccessible cardinal A .

Remark . The implication (7) (6) seems to be interesting . Perhaps it can be
proved directly .

COROLLARY . Let I be a set and let a i , b i be cardinals for i c- I, where the ai are infinite.
Then (11) and (12) are equivalent, where

(11) (ai : i e l) -+ (bi : i e l)ds ,

(12) (iii : i e 1) has a multitransversal of size (b i : i e I) .

THEOREM 3 . Let I be a set and let a i , bi be cardinals for i e 1 such that ai < No for
i e 1 . Then (13) a (14) a (15) A (16), where

(13) (a i : i c- l) ) -a (b i : i e 1)d,,

(14) (á i : i E I) has a multitransversal of size (b i : i E 1) ,

(15) if n < N o , then I (i E I ; ai 5 n) b i < n ,

(16) if m < co and m < I (i e I ; ai = NO)b i , then there is no < w such that,
whenever n o < n < co, we have m+I (i c- I ; ai < n)bi < n .

Our main result is the following theorem .

THEOREM 4. Let I be a set and a i , bi be arbitrary cardinals for i e 1 . Put

S= Ja i : iel ;b i >, 1} .

Then (17) p (18) p ( 19) n (20) n (21), where

(17) (a, :iEI)--+(bi :iEI)d.,,

(18) (6i : i c- I) has a multitransversal of size (b i : i c- 1),

(19) 1(i e I ; a i < K)b i < K for every cardinal K,

(20) o)(S) n ~0 stat ti for every weakly inaccessible cardinal i ,

(21) if m < w and m < I (i c- I ; ai = N,)b i , then m+E (i e 1 ; a i 5 n)b i 5 n for
every sufficiently large finite n .

4 . Proof of Theorem 1

Proof of (3) =:~(4). Let (K O , . . ., k n ) be an S-sequence. Then every family %/ as
described in (4) can be written in the form (A o , . . ., A .), where IAJ = K, for v < n . Since
IA J = K„ > Ivy, we can choose elements x,, for v < n so that x, e A,.- {xo , . . ., z,} for
v < n . Then (x,, . . ., zn) is a transversal of .4 .

Proof' of (4)

	

(5) . This is trivial .
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Proof of (5) (2). Let (x,, : K E S) be a transversal of (k : K E S). Then the function
a4K) r- x K is regressive on w(S) and injective . Hence, clearly, (2) is satisfied . There only
remains :

Proof of (2) (3). Let us call a set S good if S is a set of infinite cardinals satisfying
(2). For A > N o let P(A) denote the statement : whenever S is good and S c X, then (3)
holds. We have to show that P(A) holds for every n >, lo o . We use induction over i. . We
know that P(N,) is true. Let ti > No and assume that P(A') holds for N o < i.' < i. . We
have to- prove P(A). Let S be good and S c X. We have to construct an S-sequence .

Case 1 : i, > i . - . Put S = A - . We may assume that S ¢ $ so that S = T v {b},
where T c $. By P(S) there is a T-sequence (K O , . . ., Kt) . Then ITI = (K E T)K < S .

Case la : ITI < S. Put Ká = K, for a < T, and Ká = S for r <, a E $. Then (K. : a E $)
is an S-sequence .

Case lb : ITI = S . For K E Tput

MK = {a < T : K, = K} .

Then a E MK implies that K = K, > lal, that is, a E R. Also, IMK I = K for K E T, and we
can write MK = PK U QK , where PK n QK = 0 and IPKI = IQKI = K . Put Ká = K, for
ac- PT and Ká = 6 for a c- QT . Then (K,' : a < T) is an S-sequence .

Case 2 : A is weakly inaccessible . Then, since S is good, we have axS)o state. and, by
well known properties of inaccessible cardinals and stationary sets, there is a set
C= {S O , . . ., b., x ,} < of infinite cardinals such that w(C) is closed and cofinal in and
C n S = 0. (Here closure refers to the usual order topology .) For a E put
S,, = S nj, and Sá = S, - S z . Then S = Sz ; Sá n S~ _ 0 for a < P E ~ ; Sá C: S, C J.,
and P(S,) holds for a e ~ . Hence there is an Sá sequence A,. Put

We claim that

(22)

	

A is an S-sequence .

Proof of (22) . Let K E S . Then K E Sá0 for some a O E ~, and exactly K terms of A are
equal to K. All these terms belong to A, O . We have to show that every occurrence of K in
A has an index in A which belongs to k . Now every occurrence of K in A,0 has an index
in A„O which belongs to k . Hence it suffices to show that the sequence [A ., : a < ao] has
fewer than K terms. This holds if a o = 0 . Now let a O >, 1 . If aO = ao then K E Sá0 = 0
which is false . Hence a o = a, + 1 for some a, . By definition of Sá0 we have
6, < K < Sa , +, . Since ó,, E C, K E S, C n S = 0, we have b„ < K. Hence

(number of terms of [A, : a < of j)

A = [A, :aE ;] .

_ (number of terms of [A, : a ~< a,])

_ (K' E S n J, 1)K' ~< J„ < K .



TRANSVERSALS AND MULTITRANSVERSALS

	

39 1

Case 3 : A > cfA. Put cf A = r . Then there is a set D = {b o ,

	

<

	

f +

such that au D) is closed and cofinal in A . Put

A = {aef :b.ES ;sup$a nS =ba } ;

A = {ba :aeA} ;S' = S-A .

For a c- f put S a = S' n $a and Sá = Sa -S á. Then S' = S,' and Sá n S,' = 0 for
a < P E f. The set S is good and S,, c S . Hence SM is good . Since S' c b, and P(b a )
holds, it follows that there exists an S.-sequence A a , for every a e f . Put
A = [Aa : a e f] . We claim that

(23)

	

A is an S'-sequence .

Proof of (23) . Let K E S' . Then there is exactly one a s E f with K E Sá., and exactly K

terms of A equal K . All these terms are terms of A ao , and their indices in A.,, lie in k .
Hence it suffices to show that the sequence [A a : a < ao] has fewer than K terms. This
holds for a o = 0. Now let ao > 1 . If a o = a O , then K E Sao = 0 which is false . Hence
ao = a, + 1 for some a,, and b a , < K < ba , + , . If b a , < K, then

(number of terms of [A a : a < ao])

_ (number of terms of [Aa : a 5 a,])

_ (K' E S ' n S.) K t b a , < K

as required . On the other hand, let b a , = K . Then

b a,=KES'=S-A; ba,0A ; cc, 0A ; ba,=KES'cS .

Since a, 0 A, we have

Hence

~:(K E S n Oa,)K' < b a , .

(number of terms of [A. : a < ao])

_ (number of terms of [A. : a < a,])

_ I (K' E S ' n Ja ) K' ~< E (K E S n 3a )K' < ba , = K

as required . This proves (23) .

Let A = (KO , . . .,Q. For K E S' Put M K = J U < v : Kµ = K} . If µ E M K , then
K = K„ > 1µl . Hence MK c K. Also, IMK I = K for KES'. If T S K E S', then there is a
representation M K = U (a < vXT))MK such that IMKI = K for a CO(T) and
MK n MK = í?l for a < # < to(-r) .

Let u < Q . We now define Kµ . If i ~<- K,,, then there is a unique a(µ) , CAT) with
µ E MK'µ' . If, in addition, a(µ) < w(t) and Jµ) < 6a,,,, E S, then we put Ká = ba,,,, . For all
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other µ < a we put K" = Kp . We claim that

(24)

	

(Kp ; µ < a) is an S-sequence.

Proofof(24). We have Kµ E S forµ < a. Letµ < a . Then K', > Juj . For if KN = K p ,
then K„ = Kp > IµI since (K O , . . ., KQ) is an S'-sequence, and if K„ # Kp , then
Kµ = J . (p) > IµI . To complete the proof of Theorem 1 it suffices to show that, for K E S,
we have

(25)

	

I {µ < a : K„ = K)I = K .

Case 3a : T < K E S' . Then K' = K for all µ E MKM, and (25) follows .

Case 3b: K < T and K E S' . Then µ e MK implies that xp = K < T and hence
K', = Kp = K, so that M„ c {µ < a : KÍ, = K} . Since IMJ = K, we conclude that (25)
holds .

Case 3c : K e S-S'. Then K E A . and K = JQ for some a E A . Put
T= {K' E S' : T K, K' < 6a}. We claim that

(26)

	

MT c {µ < a : K„ = K} .

Proof of (26). Let K' E- S' ; T K, K' < J a ;,u e MK . . Then Kp = K', so that T < K p and
a(µ) = a < ao T). Also, IµI < K u = K' < J a , and we have IµI < 6a(p ) a S. Hence
K„'= Ja(p ) = Ja = K . This proves (26). Now, to complete the argument in Case 3c, it
suffices to show that

(27)

	

IMTI = K .

Proof of (27) . Let K" < 6 Q. Denote by K"' the least cardinal in S satisfying
max{K", T} < K"' < J, . This cardinal K"' exists in view of

sup ba n S = Ja .

Then sup ic"' n S < max {K", T) < K"' . If K"' 0 S' then K . . . E A; K'" = d a for some # E A ;
sup 3, n S= 6 a ; sup rc"' n S = K"' which is a contradiction. Hence K"' E S' . Now

IMTI = 2, (Y E S' ; T < Y < ba)Y i K"' > K" .

Since K" isan arbitrary cardinal with K" < 6a , we conclude that IMTI > 6a = K . This,
together with the previously proved relation M,, c ic, establishes (27) and so completes
the proof of Theorem 1 .

5. Proof of Theorem 2

The implications (6)

	

(7)

	

(8) are trivial, and the implication (9)

	

10) follows
fróm Theorem ; .
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Proof of (8) (9). Let (x i : i e 1) be a transversal of (a, : i c- 1) . For each K E S
choose i,, E 1 with ai . = K. Then (xi . : K E S) is a transversal of (K : .K a S). For every
cardinal K, we have {x i : i e 1 ; a ; = K} c x and therefore

1{i e 1 : a i = K)l = I{xi : i e l ; ai = K}I < K .

This proves (9).

Proof of (10) (6) . Let 1A í 1 = ai for i E .1 . It suffices to show that the sequence
.F _ [(A i)„ : i E I] has a transversal . Given any K E- S, the family R, contains at most
K2( = K) sets of cardinal K. Since aAS) n X 0 stag. for every weakly inaccessible cardinal
A, Theorem 1 shows that .Ir has a transversal.

Proof of the Corollary . Clearly (11)

	

(12).

Proof of (12) (11) . We have bi < a ; for i e L Put I + _ {i c- I : bi > 1) . Then
(iii : i e 1+ ) has a transversal . By Theorem 2, (a, : i e 1+) --o- (ai : i e 1 + ) d, . Since bi < a,, it
follows that (a i : i E I +) -+ (bi : i c- 1 + )4 . Since bi = 0 for i e 1-1 +, (11) follows.

6. Proof of Theorem 3

The implications (13)

	

(14)

	

(15) are trivial.

Proof of (14)= :- (16). Let (X i : i c- 1) be a multitransversal of (iii : i E 1) of size
(bi : i e I) . Let m satisfy m < w and m < ( i E I; ai = N (,) b i . Then

11J(í E I ; a i = tt o)Xi 1 = E (i e I ; a i = N o)bi % m,

and we can rind a set M with

M E [U(i E I ; a i = KO)Xi] m •

Then M c w ; IMI = m < w, and there is no < w with M c h o . Let n o < n < co .
Then M c no c n . Also, 1J(i E I ; a i < n)X i c n . Therefore

m+~: (i E I ; a i < n)bi = IM v 1J(i e 1 ; ai < n)Xi l < n .

Proof of (15) A (16) (13) . Let JAil = ai for i c- L For n < N o put

1„ _ {i e I ; ai = n) .

Let p = b,;,. Then p < b, < No by (15). Put P = {r < co : 1 < r < p) . . .Then IPI = p .
There is a mapping f : P -• I,, such that, for every i e Ixo , I{r e P :f(r) = i) I = bi . This
follows from the definition of p . For n < co put d„ = n-~ (i e I ; a, < n)b, and
e„ = min {d.,d„+,, . . .,d,,,) . Then 0 < e„ < d„ and, since d„ +1

	

d„+1,

e„ < e.,, < e.+ 1 .

By (16), given any r E P, there is n < co with e„ = r . (Here one uses that e o = 0.) For
n < uj we shall define, by induction on n, a set F„ with 1F„1 < e„+E (i e I ; a i < n)b i , as
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well as sets X ; c A i n F„ for i E 1„ . Put Fo = 0 and X i = 0 for i e 1 0 . Now let
0 < n < w, and suppose that F„_, and X; have been defined for i E 1, . Then

IF 11+6,,

	

e„_, +~(icI;ai S n-1)bi +b,.

= en -1 +2: (1 e I ; a i

	

n)bi < d„ +~ (l e I ; ai 5 n)b i

=n .

(Here we have used the relation e,,-, 5 d„ and the definition of d„ .) Thus
IF„_,I+b,,, < n . Let j c- I . . Then IA;I = a j = n; IA;-F,_,I > n-IF,_,I 3 b,,, so
that b, . < 1Aj -F„_,I for j c- I„ . Therefore there are pairwise disjoint sets
Xi E [A i - F„ _ J'i for i c- I Put F'. = F„ _ , v X,. . Then

IF~1 = IF,,-11+b,. 5 en -1+Z(icI :a i < n)b i

5 e„+2: (i e 1 ; a i < n)b i = e „ +(n-d„) < n

by definition of e Put F„ = F' if either e„ _ 1 = e„ or e„ _ , < e„ # P . In the remaining
case, i .e. if e„ _ , < e„ a P, we choose, as is then possible, an element x„ e Af(e~ ) - F' and
put F„ = F,, U {x„} . We have now defined X i for every i c- I . . For i E I t ,) put

Xi = {x„ :0<n «;en_1 <e„EP;f(e„) =i} .

It follows that (X i : i e 1) is a multitransversal of (A i : i e 1) and that IX i I = b i for i e I, . It
only remains to prove that IX i I = b i for i c- IKo . Let r c- P. Denote by n(r) the least
number n < w with e„ = r, which clearly exists . Then, since eo = do = 0 0 P, we have
n(r) > 0, so that a„ ( ,) _ , < e„( , ) a P. Hence the element x„(,) is defined and satisfies
x„(,) e Xf(,) . Put g(r) = x„ (,) . Then the mapping

g : P -+ U(i E I"')Xi

is bijective. For i E I,,,) put

Pi = {r E P J(r) = i} .

Then g(P) = X i and hence IX i I = IP i J = b i , and Theorem 3 is established .

7 .

LEMMA . Let 1 be a set and a i , b i be cardinals for i e 1 . Let

c3t` o ; lo = {iE1 : ni ‹c} ; 1,=1-Io .

Then (28)

	

(29) n (30), where

(28)

	

(a, : i e 1) -~ (b i : i e 1),,

(29)

	

(ai : i c- 1 0 ) -i (b i : i e 10), ,

(30)

	

(a, :ieI,)-~(bi :ic1,)a, .



for n < co .

Proof of (19) n (20) n (21)

	

(17). Let to = { i e 1 : a i < No); I t = 1-lo .
Then (a i : i e 1 0 ) --+ (b i : i c- lo)ds by Theorem 3 . Let I ; _ {i E I t : b i >, 1} .

Then, for every cardinal K,

TRANSVERSALS AND MULTITRANSVERSALS

	

395

Proof. Trivially (28) (29) n (30) . Now assume, vice versa, that (29) and (30)
hold . Let IA i I = a i for i c- 1 . Then, applying (29) to the family (d, : i E 10), we find that
b,o < c . Also, the family (A i : i E 1 0 ) has a multitransversal (X i : i E ! o ) of size (b i : i E 1 0 ) .
Then JX,O I = b, o < c. Hence, since c 3 N o , we have IA i -X,O I .= ai for i c- I t . By
(30), the family (Ai -X,o : i c- I t ) has a multitransversal (X i : i E I t ) of size bi : i E I t ).
Then (X i : i c- 1) is a multitransversal of (A i : i c- I) of size (b i : i c- 1), which proves (28) .

8 .

Proof of Theorem 4. The implications (17)

	

(18)

	

(19) are trivial.

Proof of (18) (20). Let 1' _ {i c- 1 : ai ho ; b i > 11 . Then (n i : i e 1') has a
multitransversal of size (b i : i e I'). Let S' _ {ai : i c- I'} . Then, by Theorem 2,
oXS') n X 0 stat A for every weakly inaccessible cardinal A . Since w(S) (-- (1)(S) U CO, it
follows that oAS) n ~ 0 stat ). .

Proof of (18) (21). Let Io = { i E 1 : a i < No}. Then (n i : i e 1 0) has a
multitransversal of size (b i : i E Io). Then (21) follows from Theorem 3, in view of the
relations

(i e I ; ai = KO)bi =

	

( i E Io ; ai = NO)b i ,

	

(i e I ; ai < n)bi =

	

(i c- lo ; ai < n)bi

Ili Eli :a i = K} I =Z

	

I(ieI ;a t =K)l

Y_ (i c- I i ; at = K)bi <

	

(i e I ; ai = K)bi < K .

Since ai E S for i e 1 1 , we deduce from Theorem 2 that

(ai :iEli)-+ (ai :ic- IDds •

By (19) we have b i < ai for i e I ; , which implies that (a i : i e 1 ; )

	

(bi : i E 1 i )ds
bi = 0 for i c- I t -I ; . Hence (a i : i E 1 t ) -+ (b i : i E I t )ds . Now the lemma, with c =
yields (a i : i c- 1) -+ (b i : i c- 1)d,, and this concludes the proof of Theorem 4 .
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