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A SURVEY OF PROBLEMS IN COMBINATORIAL
NUMBER THEORY

Paul ERDŐS
Hungarian Academy of Science, Budapest, Hungary

During my long life I published and stated many conjectures and wrote several
papers which consisted entirely of stating old and new problems . In this paper I
hope to survey some of them - not to make the paper too long I restrict myself to
problems on the borderline of combinatorics and number theory fields which
are - as stated in a previous paper - closest to my heart or rather than to my
brain. Again, to avoid excessive length, I restrict myself as much as possible to
problems which either were raised by my collaborators and myself, or we worked
on them. I do not want to imply that these problems are more interesting or
important than the ones I neglect, but I am likely to know more about my own
problems than the reader and finally, despite my great age, my memory and mind
are still more or less intact . Thus I remember how and why I or we came to
consider these problems, and what are the connections with other questions .

First, I list some of my papers in which relevant problems are stated .
(i) Problems and results on combinatorial number theory I, II, II' and III. Paper

I was given at the first conference at Fort Collins (in honor of Professor Bose) also
edited by Srivastava: A survey of combinatorial theory (North Holland Amster-
dam, 1973) 117-138; the pair II and II' is due to my mistake : II' should have
been III, II is in Journée Arithmetique de Bordeaux, Astérisque 24-25 (Juin
1974), 295-210, and II' is in J . Indian Math . Soc. 40 (1976) 285-298. Paper III is
in Number theory day, held at Rockerfeller Univ ., edited by M . Natanson,
Lecture Notes in Mathematics 626 (Springer Verlag, Berlin) 43-72 .

(ii) Some older papers of mine : Quelques problémes de la théorie des nombres,
Monographies de 1'Enseignement Mathématique No . 6, Univ. de Geneva (1963)
81-135 . Graham and I will soon publish a long paper in the same journal which
brings this paper up to date and give also many new problems .

P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957) 291-300 and
Publ. Math . Inst . Hung. Acad. Sci . 6 (1961) 2216-254. The paper in Michigan
Math. Journal was my first paper on unsolved problems .

P. Erdős, Extremal problems in number theory, Proc . Symp . in Pure Math .
VIII, Theory of Numbers (Amer . Math. Soc., Providence, RI, 1965) 181-189 .
Several of the results stated in this paper were improved and extended in various
papers by S.L.R. Choi .

P. Erdős, Some recent advances and current problems in number theory,
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Lectures on Modern Mathematics, edited by L . Saaty, (Wiley, New York, 1965)
111 . 196-244 .
P. Erdős, Some extremal problems in combinatorial number theory, Math .

essays dedicated to A .J. Macyntyre, edited by L. Shankar, (Ohio Univ. Press,
Athens, OH, 1970) 123-133 .
P. Erdős, Some problems in number theory, Computers in number theory,

conference held in Oxford 1969 (Academic Press, London, 1971) 406-414 .
P. Erdős, Remarks on number theory IV and V . Extremal problems in number

theory I and 11 . Mat . Lapok 13 (1962) 28-38 ; 17 (1966) 135-166 (in Hungarian) .
I divide the present paper into several sections, one long one is for problems

which do not seem to fit into any of the classifications . I try as much as possible to
indicate what happened to the problems stated in previous papers . So as not to
make the paper too long I do not give proofs and I discuss some of the old
problems only if there is some recent progress or if I find them very attractive and
feel that perhaps they have been neglected .

1. Van der Waerden's and Szemerédi's theorem

In this Section I discuss problems connected with Van der Waerden's and
Szemerédi's theorem . These questions have been discussed adequately in my
previous papers . Thus I give details only if there is some important new develop-
ment .

According to Alfred Brauer, Schur conjectured more than 50 years ago that if
we divide the integers into two classes at least one of them contains arbitrarily
long arithmetic progressions . Van der Waerden proved this conjecture in the
following stronger form: There is an f(n) so that if we divide the integers
1 < t ; f(n) into two classes, at least one of them contains an arithmetic progres-
sion of n terms. There is no satisfactory upper bound for f(n)-in view of the
recent surprising results of Paris and his colleagues on a modification of Ramsey's
theorem. I am no longer absolutely certain that Van der Waerden's original
bound can be very much improved. The best lower bounds are due to Berlekamp
and Lovász and myself : f (p) > cp2° if p is a prime and f (n) > c2" for all n. I am of
course sure that

lim f(n)/2"=- .

	

(1)
n --

(1) will perhaps be not too difficult to establish, but I offer 500 dollars for the
proof or disproof of

lim f(n) i /" =~

	

(2)
n="

(2) seems very difficult . In view of the difficulty in dealing with f(n) I modified the
problem as follows : Let zn < u , n. Let f (u, n) be the smallest integer such that if
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we divide the integers 1 _ t < f (u, n) into two classes there always is an arithmetic
progression of n terms in which one of the classes has at least u terms . the
probability method easily gives f(u ;n)>(1+c(E))" for u>ln(1+$). J. Spencer
determined f (n + 1 ; 2n) . Otherwise nothing is known . Clearly very many interest-
ing problems remain here ; e .g. determine or estimate f(n+k ; 2n) for fixed k if n
tends to infinity .
Analogously to the Ramsey numbers we can define the Van der Waerden

numbers as follows : f„,„ is the smallest integer so that if we divide the integers
1 _ t _ f,,,,, into two classes either class I contains an arithmetic progression of u
terms or class II contains a progression of v terms . Very little is known about
these Van der Waerden numbers-in particular it is not known if f3,,, tends to
infinity polynomially or faster . Another analogy with Ramsey numbers is this :
Denote by f(4,3),. the smallest integer so that if we divide the integers 1 _ t'--
f(4,3),. into two classes then either the first class contains three numbers of an
arithmetic progression of four terms or the second contains an arithmetic progres-
sion of v terms . Clearly many related questions can be asked whose formulation
can be left to the reader, unfortunately so far there are practically no non-trivial
bounds for any of these problems .

We can extend these functions to more than two variables - in fact this was
already done in the original paper of Van der Waerden. Here we only state one
problem: Let g(l) be the smallest integer so that if we divide the integers
1 _ t _ g(l) into l classes at least one of them contains an arithmetic progression of
3 terms. The bound g(l) <exp exp cl follows from Roth's result but as far as I
know it has not yet been shown that g(l) tends to infinity faster than polynomially .

In view of the difficulty of obtaining a satisfactory upper bound for f(n) Turán
and I conjectured more than 45 years ago that every sequence of positive upper
density contains arbitrarily long arithmetic progressions . More precisely : Let r, (n)
be the smallest integer l so that if

1_a,< . . .<a,_n

	

(3)

then the a's contain an arithmetic progression of k terms . Our conjecture with
Turán states

rk (n)=o(n)

	

(4)

We first believed rk (n) < n' -', , but Salem and Spencer showed r3(n) > n' -' for
every 8 > 0 and n > no(s) . I realised the real difficulty of (4) only after this result
of Salem and Spencer . Behrend and Roth proved

n exp(-c~(log n)~) < r3(n) <
czn

	

(5)
log log n

Yudin states without proof (Abstracts of Number Theory meeting in Vilnius
1974) that he can get r 3(n) < cn/log n .
Finally Szemerédi proved (4) ; his proof is a masterpiece of combinatorial

reasoning . I offered 1000 dollars for the proof of (4) .
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Recently, Fürstenberg proved (4) by using methods of ergodic theory and
topological dynamics. This proof was recently simplified by Katz-Nelson, Ornstein
and Varadhan. At this moment it is impossible to decide on the importance of this
invasion of ergodic methods into combinatorial number theory . It is conceivable
that it will be like the application of analysis to number theory, but perhaps it is
too early to form an opinion - anyway the future will soon decide .

I conjectured long ago that if

1/a, _

	

(6)

then the ac 's contain arbitrarily long arithmetic progressions . If true this of course
implies that there are arbitrarily long arithmetic progressions all whose terms are
primes. I offer 3000 dollars for a proof or disproof of (6) . In fact it would be very
desirable to obtain an asymptotic formula for rk (n) . I would be very pleased to
have reasonably good upper and lower bounds for it .

Szemerédi remarks that we can not even prove that rk(n)/rk+,(n) 0 as n ~ .
As far as I know this has not been proved for k = 3 .

There is an interesting finite version of the 3000 dollar conjecture : Put

Ak = max 1/a,

where the maximum is taken over all the sequences which contain no arithmetic
progressions of k terms . It is not clear that Ak < CC, I can not even prove A 3 < 00 .

Gerver recently proved Ak , (1 + o(I)k log k . For further related questions see
III .

Here I state only one more related problem which seems interesting : Is it true
that to every s > 0 and k there is an n„ = n„(--, k) so that if no < a, < az • • is a
sequence of integers which do not contain an arithmetic progression of k terms
then ~i 1/a; < e?

J. Spencer observed that there is an h(a) which increases very slowly (like the
inverse function of the Van der Waerden function) so that we can divide the
integers into three classes so that for every a all arithmetic progressions with first
term a and all whose terms belong to the same class have length less than h(a) .
He asked what happens for two classes? I can divide the integers into two classes
so that all arithmetic progressions all whose terms are in the same class and whose
first term is a are shorter than c,a`~, very likely this remains true for a',
unfortunately I have no non trivial lower bound .

A problem in measure theory very recently led Mauldin and myself to ask : Is it
true that to every c > 0 there is a t = t(c) so that if 1 < a, < . . . < a k n, k > cn is a
sequence of integers and I < b, < . . . < b, < n is an arbitrary set of t integers then
the a's always contain an arithmetic progression of three terms and difference
b, - b; . Probably the same result holds with arithmetic progressions of k terms .
Let l(d) be an increasing function . More than 25 years ago Cohen asked :

Divide the integers into two classes . Is there for some an arithmetic progression of
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I (d) terms and difference d? I showed that if 1(d) > cd, the answer is negative and
Petruska and Szemerédi proved that if 1(d) > c& the answer is also negative . They
expect a negative answer for 1(d) > dQ and think that their method of proof might
settle this question . Unfortunately no lower bound for 1(d) is in sight .

Denote by A(n ; k) the largest integer so that if we divide the integers 1,t,n
into two classes there are at least A(n ; k) k-term arithmetic progressions all
whose terms are in the same class . It is easy to see that

ckn'<A(n ; k)<(1+o(1))	n2	
2(k 1)2k- ~

(7)

The lower bound follows from Van der Waerden's theorem and the upper bound
from the probability method . Perhaps one can get an asymptotic formula in (7) .
For Ramsey's theorem, A . Goodman and others obtained related and in some
cases sharp results .
Denote by fk (n, a) the largest integer so that every set of an integers not

exceeding n contains at least fk (n, a) arithmetic progressions of k terms . The
inequality f, (n, a) > c(a, k)n' follows from Szemerédi's theorem (for k = 3 this
was shown by Varnavides, this was before Szemerédi) . It would be interesting to
have an asymptotic formula for fk (n, a) .

Is it true that if we divide the integers into two classes then there always is a
three term arithmetic progression all whose elements are in the same class and
whose difference is larger than its first term? If true this is best possible. To see
this put in the first class the integers 32k , t < 32k+ ' t = 1, 2 . . . . and in the second
class the other integers . Clearly none of the classes contains a four term arithmetic
progression whose difference is larger than its first term .

Van der Waerden's theorem can be formulated in terms of hypergraphs as
follows : Consider the hypergraph whose vertices are the integers and whose edges
are the k term arithmetic progressions . This hypergraph has chromatic number
infinity .

Does this remain true if we restrict ourselves to arithmetic progressions whose
difference is a prime number or all whose terms are primes? Clearly many further
questions could be posed .

On final question which was already stated in I : Let h(n ; k, l) (1 > k) be the
smallest integer so that if the sequence {a	a.1 contains h(n ; k, l) arithmetic
progressions of k terms then it contains at least one progression of l terms .
Estimate h(n ; k, 1) as well as possible. In particular prove

h(n ; k, l)=o(n'),

	

(8)

for every k and l, (8) is open for k = 3, l = 4 . Suppose {a	an} contains cn 2
progressions of three terms . Perhaps it must then contain a progression of length
s log n, s = E (c), but as I just stated we can not even prove that it contains an
arithmetic progression of four terms . Below some papers in this general field are
listed .
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E.R. Berlekamp, A construction for partitions which avoid long arithmetic
progressions, Canad. Math. Bull. 11 (1968) 409-419 .
E. Szemerédi, On sets of integers containing no k elements in arithmetic

progression, Acta Arith . 27 (1975), 299-315 . For further literature and history of
the problem see 1, II, 11' and III and the paper of Szemerédi. Here I only make a
historical remark which can not entirely be documented . E. Rothe in 1944 told
me that his wife Dr . Hildegard Ille was given the problem of estimating r,(n) by I .
Schur sometime in the 1930's . Thus perhaps Schur conjectured r, (n) = o(n)
before Turán and myself .

J. Spencer, Bull. Canad. Math . Soc . 16 (1973) 464 .
H. Fürstenberg, Ergodic behaviour of diagonal measures and a theorem of

Szemerédi on arithmetic progressions, J . Analyse Math . 31 (1977) 204-265 . See
also the preprint H . Fürstenberg and B . Weiss Topological dynamics and com-
binatorial number theory and the lecture of Jean Paul Thouvenot, La
démonstration de Fürstenberg du théoréme de Szemerédi sur les progressions
arithmétiques, Sem . Bourbaki, Vol. 1977-78 (Février 1978) 518, 1-11 .

J .L. Gerver, The sum of the reciprocals of a set of integers which no arithmetic
progression of k terms, Proc . Amer. Math . Soc. 62 (1977) 211-214 .
A.W. Goodman, On sets of acquaintences and strangers at any party, Amer .

Math. Monthly 69 (1962) 114-120 .
P. Varnavides, On certain sets of positive density, J . London Math . Soc. 34

(1959) 358-360 .
G .J. Simmons and H.L. Abbott, How many three-term arithmetic progressions

can there be if there are no longer ones? Amer . Math. Monthly 84 (1977)
633-635 .

J . Paris, Independence result for Peano arithmetic using inner models, to
appear; see also J . Paris and L. Harrington, A mathematical incompleteness in
Peano arithmetic, Handbook of Mathematical logic, edited by J . Barwise, Studies
in Logic and Foundation of Math ., Vol. 90, (North Holland, Amsterdam, 1977)
1133-1142 .
H. Fürstenberg and Y. Katz-Nelson, An ergodic theorem for commuting

transformations, J. Analyse Math . 34 (1978) 275-291 . See also the forthcoming
book of Fürstenberg, Recurrence in Ergodic Theory and Combinatorial Number
Theory (Princeton Univ . Press) .

2 . Covering congruences and related questions

These problems are very adequately discussed in the papers quoted in the
introduction and in my forthcoming paper with R .L. Graham. Thus I make this
section short .

A system of congruences

a, (mod n,), n, < . . . < n z (1)



is called a covering if every integer satisfies at least one of the congruences (1) .
The basic unsolved problem which I formulated in 1934 states : Can n, be chosen
arbitrarily - in particular can it be arbitrarily large? I offer 500 dollars for a proof
or disproof. The current record is still n, = 20 due to S.R.L. Choi. Another
question : Is it true that for every d > 1 there is a system (1) with (ni , d) = 1?

A set of integers 1 < n, < . . . < nk is called a covering set if they can be the
moduli of the system (1) . Such a covering set is called irreducible if no subset of it
is a covering . It is easy to see that there are only a finite number of irreducible
covering sets of size k. How large is their number and how small (resp . large) can
nk be for an irreducible covering set 1 < n, < . . . < n k ? Also how many irreducible
covering systems 1 ; n, < . . . < n, , x (l is variable) are there? Let 1 < n, < . . . <
nk , x be an irreducible covering system . Determine or estimate max 1] 1/ni .

Are there infinitely many integers n so that the set of divisors d % 2 of n form
an irreducible covering system? n = 12 is such an n .

I conjectured that for every C there is an integer N with (T(N)/N>C (cr(N) is
the sum of the divisors of N) so that the divisors of N do not form a covering set .
J. Haight recently proved this conjecture, his paper will soon appear in
Mathematics . The following extremal problem can now be posed : Put

f(x) = max or(m)/m
M <X
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where the maximum is to be taken over all the m for which the divisors of m do
not form a covering system . By Haight's theorem f(x) tends to infinity as x -> - .
Is it true that f(x) = o (log log x) . In other words does f(x) tend to infinity much
slower than max Q(m)/m .

Some more extremal problems: Determine or estimate the maximum number jX
of covering systems {n,i) < nz ) < . . . < nk~} where all the n's are distinct and less
than x. We do not even know that jx tends to infinity with x since this would
imply that there is a covering system for which n, is arbitrarily large . I expect that
jx tends to infinity very slowly .

Determine or estimate

max I 1/mi

where the maximum is taken over all the sequences {mil which do not form a
covering system and all terms of which are less than x . This maximum is perhaps
greater than log x - C; if not then again there is a covering system for which n, is

as large as we please .
Romanoff proved in 1934 that the density of integers of the form 2' + p is

positive . In a letter he then asked me if there are infinitely many odd numbers not
of this form . Using covering congruences (see my paper in Summa Bras . Math .) . I
proved that there are arithmetic progressions of odd numbers u(mod v) and a
finite set of primes P = {p,, . . . , pk I so that for every n = u (mod v) every number
n - 2' is divisible by one of the primes P . Consider all the arithmetic progressions
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no term of which is of the form 2" + p - they probably are all included in the
progressions determined by covering congruences . Is it true that almost all odd
integers not contained in any of these progressions are of the form 2' + p?

If jx tends to infinity-or what is the same there are systems (1) with ni as
large as we please then for every r there is an arithmetic progression no term of
which is the form 2' + Q, where Q, has at most r prime factors . Surely every large
n is of the form 2' + Q„ r < log log n, but I have not been able to prove this .

Are there infinitely many odd integers n for which n - 2", 1 _- 2" , n is never
squarefree? In fact is there any such an integer?

One more question which can be formulated in terms of covering congruences .
Is there a finite set p i , . . . , Pk of primes and an infinite sequence of integers {n,} so
that all positive numbers of the form n - 2" - 2' are multiples of the least one of
the p; (i = 1, . . . , k)? I conjecture with some trepidation that the answer is
negative . With even more trepidation, I conjecture that almost all odd numbers
are of the form p + 2" + 2' and that for some r every integer is of the form
p + 2"~ + • • • + 2"•. A theorem of Gallagher asserts that for r > r,(s) the lower
density of the integers of this form is >I - F ; Crocker proved that there are
infinitely many odd integers not of the form p + 2" + 2' . Covering congruences can
clearly be generalised for groups and many interesting problems can be posed,
Schinzel used covering congruences to study the irreducibility of polynomials, he
and Selfridge made interesting observations on the existence of covering congru-
ences .

A system of congruences

a, (mod ni ), n, < . . . < nk

	

(2)

is called disjoint if there is no integer which satisfies two of the congruences (2) . It
would be of some interest to find necessary and sufficient conditions on the {nJ
which would imply that a disjoint system (2) exists for suitable a ; . Stein and I
asked: Determine or estimate max k = f (x) where the maximum is extended over
all the disjoint systems (2) . Szemerédi and I proved that

x exp(-(log x)~"') < f(x) <
(log x)`

The lower bound we obtained with the help of Stein . We believe that the lower
bound is closer to the true order of magnitude of f(x) .

One of the few theorems on covering congruences was proved by L . Mirsky and
D. Newman. A disjoint system can never be covering, or (2) implies I 1/n; < 1 .
Put

Fm = max I 1/n;

X

where the maximum is taken over all disjoint systems for which n, > m. Deter-
mine or estimate s m as well as possible . I could not even decide whether Em 0
as m - x.



Some further work is contained in the following papers :

P. Erdős and E. Szemerédi, On a problem of Erdős and Stein, Acta Arith-
metica 15 (1968) 85-90 .

A. Schinzel, Reducibility of polynomials and covering systems of congruences,
Acta Arithmetica 13 (1967) 91-101 .

For a further extremal problem see : B .B . Crittenden and C.L. Van der Eynden,

Any k arithmetic progressions covering the first 2' integers cover all integers,
Proc. Amer. Math. Soc. 24 (1970) 475-481 .

P. Erdős, On systems of congruences (in Hungarian), Mat . Lapok 3 (1952)

122-128; On the integers of the form p + 2' and some related problems, Summa

Basil . Math. 11 (1950) 113-123 .

S .L.G. Choi, Covering the set of integers by congruence classes of distinct

moduli, Math. Comp . 25 (1971) 885-895 .
R. Crocker, On the sum of a prime and of two powers of two, Pacific J . Math .

36 (1971) 103-107 .
J .A. Haight, Covering systems of congruences . A negative result, Mathematika

26 (1979) 53-61 .

3. Some problems in additive number theory

Here are some of my oldest problems and conjectures . Unfortunately not much
progress has been made with these questions in the last few years .

Let 1, a, < . . . < ak < x be a sequence of integers . Assume that the sums

~k 1 spa,, si = 0 or 1 are all different . Put max k = F(x) . I conjectured more than

45 years ago that

F(x)=log	 X+O(1)
g
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(1)

A simple counting argument gives

F(x)
<log2+loglogx

+O(1)
g

	

g

and L. Moser and I using second moments improved this to

F(x)
< loogX + log log

+O(1)

	

(2)
g

	

g

As far as I know (2) has never been improved .

I asked : Is it true that f (2k ) > k +2 for k > k o ? ( Both this question and (1) were

posed independently also by L. Moser.) I offer 500 dollars for a proof or disproof

of (1) .
Conway and Guy proved F(2') > k + 2 for k > ko and it has been conjectured

that for k > kOF(2k ) = k + 2 . 1 have no opinion .
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In 1932 or 1933, S. Sidon defined a sequence 1, a, < a 2< • • • to be a B,
sequence if the sums I Eia,, E E; < r are all distinct (Ei = 0 or 1) . In other words the
sums taken r (or fewer) at a time should be all different . He wanted to estimate
the slowest possible growth of a B, sequence. He was led to these problems from
his well known work on lacunary trigonometric series .

Also he asked the following very fruitful question : Let 1 ~ a, < a2,- be an
infinite sequence of integers . Denote by f2(n) the number of solutions of n =
a i + a;. Is there a sequence A for which f2(n) > 0 for n > no but f2(n)m - E

-~ 0 for
all E > 0?

Sidon mentioned these problems to me when we first met in 1932 or 1933 . By
the greedy algorithm I easily constructed a B2 sequence satisfying ak < ck 3 . We
both conjectured that this is very far from the truth and probably there are B2

sequences with ak < k2+e for every E > 0 if k > k o(E) .
We are still very far from being able to settle this question . Using the

probabilistic method Rényi and I proved the existence of a sequence with
ak < k2+e and f2(n) < CE . The problem whether a B2 sequence exists with a k =
o(V) is still open and I offer a hundred dollars for a proof or disproof . (Added in
proof. Ajtai, Komlos and Szemerédi proved this conjecture ; their proof will
appear in Europ . Comb. J .)
Using the probability method I proved the existence of a sequence A =

{a, < . . . } satisfying

c, log n < f2(n) < c2 log n

	

(3)

which answers affirmatively Sidon's question on whether f2(n)n -' ---> 0 . Is (3) the
best possible? Turán and I conjectured that if f2(n) > 0 for all n > no , then f2(n)
can not be bounded . I offer 500 dollars for a proof or disproof . Perhaps f2(n) > 0
for all n already implies that f2(n) > c log n for infinitely many n . Is there a
sequence A for which

f2(n)/log n --> 1?

	

(4)

The probability method easily gives that if h(n)

	

monotonically, then there
is a sequence A satisfying f2(n)(h(n) log n) - '---> 1 . 1 expect that there is no
sequence satisfying (4) .

I proved that for a B2 sequence

lim sup a,/k2 log k >0 .

	

(5)
Perhaps in (5) the lim sup is in fact infinity. On the other hand perhaps there is

a B2 sequence satisfying (for all k)

ak <c,k2(log k)`2 .

	

(6)

I offer a thousand dollars for clearing up the problems raised by (5) and (6) .
These problems change character completely if we restrict ourselves to finite

sequences. Denote by F,(n) the largest integer l for which there is a sequence
1 ~ a, < . . . < al ~ n so that all the sums Y_ E,a„ I .E, , r, E; = 0 or 1 are different .



Turán and I conjectured

FZ(n) = n2+ O(1) .

x
fr(n) 2 <Cx.

	

(10)
n=1
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(7)

We only could prove FZ(n) < n 2 +cná, F2(n) < n 2 + n41 was proved by Lind-

strom. I offered (and offer) 500 dollars for a proof or disproof of (7) . Bose and

Chowla showed that F,(n)%(1+o(1))n"' follows by using finite geometries . Bose

called attention to the fact that the proof of

Fr (n) < (1 + On"'

	

(8)

presents great difficulties for r > 2 . Our proof with Turán for r = 2 does not work
and at the moment this attractive problem seems intractable . Perhaps F,(n) _

n "' + O(1) holds for every r.
I was not able to prove that if 1 < a, < a 2 <

	

is an infinite B 3 sequence, then

lim sup ak/k 3 = - .

	

(9)

The same problem arises for every r > 3 .

A further generalisation : Let ak < ck' for every k. Is it true that

lim sup fr(n) _ -?

This is open even for r = 2 and perhaps here the real difficulty occurs already for
r=2.
Rényi and I proved by the probabilistic method that there is a sequence

ak < ck' for which

Probably (10) holds even for a basis of order r . In other words there is a

sequence A satisfying (10) and fr(n)>0 for every n .

I proved that there is an infinite B2 sequence for which

lim sup A (n) n? % 2,

where

A(n)= Z 1 .
a, <n

this has been improved to 1/,[2 by Krickeberg and I conjectured that it can be
improved to 1, which of course would be best possible .
This would follow from one of my favourite recent conjectures : Let 1, a,<

. . .< a, be a finite B2 sequence. Prove that it can be imbedded into a perfect

difference set, i .e. there is a prime p and a set of p + 1 residues

u1 , . . . , u,, 1mod p 2 + p + 1 so that all the differences u,-u, are incongruent

mod p2 + p + 1 and the a's all occur amongst the u's . I offer a thousand dollars for

a proof or disproof of this conjecture .
Recently Nathanson and I published several papers on bases and we will soon (I

hope) publish a survey paper on this subject-here I only state one of our most
attractive problems : Is there an infinite sequence a, < a2 < • • • of integers so that
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f2(n) > 0 for all n > n„ but if we omit any a;, then the number of n < x with
fz(n)= 0 is >cix for all (or perhaps only infinitely many) x?

A recent conjecture of D . Newman and myself states as follows : There is a
sequence a, < az< • • • of integers for which f2(n) is bounded but which is not the
union of a finite number of BZ sequences . (Added May 1980 ; 1 proved this
conjecture in 1979 and my proof will soon appear in the first issue of Europ .
Combinatorial J .)

Let g(n)>0 be a non-decreasing function of n . I conjecture that the lower
density of the integers n for which f2(n) = g(n) is 0. The upper density can be
positive but I believe it is bounded away from 1 .

It is easy to construct a sequence of integers 1 - a, < . . . so that every integer n
can be uniquely written in the form a ; - a; . It is easy to see that

lim sup al"I n =

	

where n = a ;n) - a' ) .

	

(11)

I can not determine how fast (11) must increase .
In general the problems here can at present be attacked only by the probability

method and where these methods do not apply we have not been able to make
much progress .

Many of the problems stated here are discussed in the excellent book of
Halberstam and Roth Sequences, (Oxford Univ . Press, Oxford, 1966) . The book
has very extensive references .

For many problems and results on bases and related questions see A . Stöhr,
Gelöste and ungelöste Fragen über Bases der natürlichen Zahlenreihe I and 11, J .
Reine u. Angew . Math. 194 (1955) 40-64, 110-140 .
B. Lindström, An inequality for B Z sequences, J. Combinatorial Theory, 6

(1969) 211-212 .
P. Erdős, Problems and results in additive number theory, Colloque sur la

Théorie des Nombres, Bruxelles, George Those, Liége, Mason and Cie, Paris
1959, 127-137 .
In 1959, 1963 and 1972 there were meetings on number theory at the

University of Colorado in Boulder, many interesting problems can be found in the
conference reports which were published but unfortunately are not easily availa-
ble. Also see the book H.H . Ostmann, Additive Zahlentheorie, Ergebnisse der
Math, Heft 7 and 11 contains a review of the older litterature and also H .
Rohrbach, Ein Beitrag zur additives Zahlentheorie, Math . Zeitschrift 42 (1937)
1-30 and Einige neuere Untersuchungen über die Dichte in der additives
Zahlentheorie, Jahresbericht D.M.V. 48 (1938) 199-236 .

4. Solutions of equations in dense sets of integers or real numbers

A sequence of real numbers is called primitive if no one divides any other . A
sequence of real numbers 1 < a, < . . . is called primitive if for every i, j and k

ikai -aj--1 . (1)
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If the a's are integers (1) means that no a divides any other . In 1934
Besicovitch made the surprising discovery that there is a primitive sequence of
positive upper density . Behrend and I proved that the lower density of a primitive
sequence must be 0 . Behrend proved that if 1 < a, < . . . < a,< < x is a primitive
sequence, then

(2) and (3) are both best possible .
Perhaps (2) and (3) hold if A is a sequence of real numbers satisfying (1) . In

fact I can not even prove that if (1) is satisfied, then lim sup a n/n = -.
The only result in this direction is an unpublished one of J . Haight . He proved

that if the Jai l are rationally independent and satisfy (1), then a„/n - x, or in
other words [aJ is a sequence of density 0 . Observe that by the example of
Besicovitch this does not have to hold if the a's are integers .

A question of W. Schmidt states : Is there a set S of real numbers of infinite
measure so that x/y, x e S, y E S is never an integer?

J. Haight and E. Szemerédi (independently) constructed such a set . Denote by
m(S, x) the measure of the intersection of S with (0, x) . How fast can m(S, x)
tend to infinity? It is easy to see that m(S, x) = o(x) but probably very much more
is true . Immediately two questions can be posed : Let F(x) - ; is there a set S so
that x/y x e S, y e S is never an integer and m(S, x) > F(x) for all x > x o , or only
for a sequence xm The answer to these two questions will no doubt be quite
different .
A conjecture of Sárközi, Szemerédi and myself which has perhaps been

neglected states : To every s > 0 there is a k so that if k < a, < a2< - is any
primitive sequence then

1 <1+t .

	

(4)
ai log a i

The following question seems difficult and perhaps has no reasonable solution :
Let b, < bz < . . . be an infinite sequence . What is the necessary and sufficient
condition that there should exist a primitive sequence {a"} satisfying an < Cb" for
every n? Perhaps there is more chance to get an answer for the following
question : Let n, < nz < • • • . What is the necessary and sufficient condition that
there should exist a primitive sequence {aJ satisfying A(2"t)>c2", for every i and
an absolute constant c?

Now we discuss some multiplicative extremal problems . Let 1 < a, < . . . < ak
x be a sequence of integers . Assume that the products alai are all distinct . I

1 < c log X (log log X)
_ a,

Szemerédi, Sárközi and I proved that for an infinite primitive sequence

(2)

1 1 = o(log x(log log x) -2') . (3)
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proved

ir(x)+c,xá(logx) <maxk<7r(x)+c zxá(logx)_ .

	

(5)

where 7T(x) is the number of primes --x.
(5) is perhaps unexpectedly accurate I am sure that there is an absolute constant

c so that

max k = 7r(x) + (c + o(1))xá(log x)

	

(6)

I do not at the moment see how to prove (6) and I do not believe that there is a
simple explicit formula for max k .

Let F(x) be the largest l for which there is a sequence of real numbers
1 < a, < . . . < ai < x for which

I aja; - ar a, I % 1

	

(7)

for all choices of the indices i, j, r, s . I was sure that 1= o(x) and in fact I expected
that an estimation like (6) will hold here too . In fact it turned out that I
completely misjudged the situation . Ralph Alexander constructed a sequence
satisfying (7) and 1 > cx. Here is the outline of Alexander's construction . Put
x = 4eN+1 . By a theorem of Turán and myself there are integers

1<y,< . . .<y, <e2N, t>(1-8)e'

	

(8)

so that the sums y, + yi , 1 -- i < j _ I are all distinct . By removing at most half of
the y's we obtain a subsequence

1,Yi< . . . <Yi<e2N ,

	

I-zt, Yi+1 - Yi>4

	

(8 )

Put

x; = exp(N + y i/e2N ) .

	

(9)

From (9) we obtain by a simple computation that

Jx; - xJ >1 and lxix; - xrxp 1 > 1 .

Put finally ai = 4x; . (8), (8') and (9) show that (7) and l > cx are satisfied . After this
surprising result I am no longer so sure that (1) implies lim sup an/n = - as I used
to be. The following problem might be still of some interest : Let 1 < a, < . . . <
a,, < n satisfy (7) . Determine of estimate max tn . Perhaps lim tn/n = C. Determine
C, this perhaps is not a hopeless task. Finally is there an infinite sequence
1 < a, < . . . satisfying (7) and A (x) > cx(log x)' for every x? If true this is clearly
best possible .
Some more problems. Let 1, a, < . . . < a, _ n be again a sequence of integers .

Assume that all the products rji a", (ai --0 integer) are distinct . Then it is easy to
see that max to = 7T(n) . Assume next that the products fl a 8, = 0 or 1 are all
distinct . I suspect that then

max to = rr(n)+ rr(n')+o(n'/log n)
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I could only prove that max t„ < 7r(n)+ Cnz(log n) -1 . Perhaps the reader will
forgive a very old man to tell how Pósa and I conjectured in 1963 how large to
can be. In 1962 or 1963 I talked to high school students at the Bolyai Math. Soc .
I stated that perhaps

max tn = ar(n)+ 17r(n 1/2k)
k - 1

but then immediately noticed that this is wrong . Not wanting to state more
nonsense I talked immediately about something else . Before the end of my talk I
formulated in my mind the following conjecture :

max to=ar(n)+,tr(n2)+7r(n^)+7r(n7')+ • • •

	

(10)

wherein the sum (10) 7r(n"') occurs if and only if F(k)>F(k-1) where F(k) is
defined in the first problem of III (it is the largest l so that there is a sequence
1 _ a, < . . . < a i < k, all the sums Y_á_, -ja i are different)

max t„ % 17r (n 1/ ak)

	

(11)

is of course easy -it is not clear if the opposite inequality is also true . After the
lecture I talked to Pósa (who was then about 14) and he formulated the same
conjecture during my talk and noticed of course that Y_ ar(n "2k ) is wrong . We do
not know at present if (10) is true .

The following nice conjecture is due to Beurling . Let 1 < P, < . . . be a sequence
of real numbers . b, < b 2< • , , is the set of real numbers of the form fl P"P where
the ai are non-negative integers . Assume that

B(x)=

	

1=x+o(logx) .

	

(12)
6 ; <x

Then the P's are the primes . It is not hard to see that if (12) is true it is best
possible .

In this connection H .N . Shapiro asked the following question : Assume that the
numbers f Ii P"l differ by at least one . Is it then true that

1 _ 7r (X),

	

(13)
P, -_x

The equality occurring only if the P's are the primes?'
To end this section I state the following interesting measure theoretic conjec-

ture of John Haight : Let E be a set of a positive measure in (0, -) . Consider the

' I just notice (1978 .IX.17) that I stated nearly the same conjecture in my paper "Some applications
of graph theory to number theory" . The many Facets of Graph Theory, Lecture Notes in Mathematics
110 (Springer Verlag, Berlin) 77-82, see p . 82 . I did not conjecture though that equality holds only if
the P's are the primes . In view of this I should perhaps with regret modify what I said about my
memory and mind. When Shapiro told me this problem I felt foolish that I did not think of it myself .
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set E'= U-,, rE . In other words z e E' if for some integer r, z/r E E. Is it true that
for almost all x there is an M(x) so that for every integer n > M(x), nx E E'?

For primitive sequences see Halberstam-Roth, "Sequences" and P . Erdős, A .
Sárközy and E . Szemerédi, On the divisibility properties of sequences of integers,
Coll . Math. Soc . J . Bolyai, Vol. 2. Number theory (North Holland Amsterdam,
1968) 35-49, this paper has extensive references .

J.A. Haight, A linear set of infinite measure with no two points having integral
ratio, Mathematika 17 (1970) 133-138 .
E. Szemerédi, On a problem of W . Schmidt, Studia Sci . Math. Hungar. 6 (1971)

287-288.
About Beurling primes see e .g. H.G. Diamond, When do Beurling generalised

integers have a density, J. Reine Angew . Math. 295 (1977) 22-29 . This paper
contains many references to older results .
P. Erdős, On some applications of graph theory to number theoretic problems,

Publ. Ramanujan Inst. 1 (1969) 131-136 .

5 . Some problems on infinite subsets

Graham and Rothschild conjectured that if the integers are split into two
classes there always is an infinite sequence 1 < a, < . . . so that all the sums Y_ e jai,
E i = 0 or 1 are in the same class . This beautiful conjecture was proved by
Hindman whose proof was greatly simplified by Baumgartner . Later a different
and perhaps the simplest proof was given by Glaser .

Some time ago, I thought of the following fascinating problem : Divide the
integers into two classes . Is it true that there always is an infinite sequence
a, < . . . so that all the multilinear expressions formed from the a's are all in the
same class. One would perhaps guess that the answer must be "no" but no
counterexample is in sight .
The following much weaker conjecture is also open : Divide the integers into

two classes. Is there an infinite sequence a, < . . . so that all the sums a ; + ai and
the products a ia; are in the same class? A further complication arises if we also
insist that a,, az , . . . should also belong to the same class . In fact very little is
known. Graham proved that if we divide the integers 1 < t , 252 there are always
4 distinct numbers x, y, x + y, xy all in the same class . The number 252 is the best
possible . Hindman showed that if we require x > 1, y > 1 then the same result
holds for t < 990 and 990 is the best possible . As far as I know this is all that is
known. (Recently Hindman found some very interesting counterexamples .)

Ewing conjectured that there always is an infinite sequence a, < . . . where all
the sums a, + a; (i = j permitted) are in the same class . It is rather annoying that
this simple and interesting question is still open . Hindman has certain preliminary
results. Among others he proved that this conjecture fails certainly for three
classes . In fact Hindman observes that one of his sequences can have density 0
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and in fact
A,(x) _ I 1 < Cx1

	

(1)
a; Gx

It is not yet clear if (1) is the best possible .
I thought of strengthening Hindman's theorem in the same way as Szemerédi

strengthened Van der Waerden's theorem: Let A be a sequence of positive
density. Is there an infinite subsequence a, < . . . and an integer t so that all the
integers a,, a, + a; + t belong to the same class?

I first hoped that Hindman's theorem on all subsums E eja; can be generalised
for sets of positive density, but the following example of E . Straus seems to give a
counterexample to all such attempts : Let p, < . . . be a set of primes tending to
infinity fast, and let i s, <-. Consider the set of integers a, < a2< • • • so that
au a (mod p,) where IaI_t; i p i . The density of this sequence is R (1-s,)>0, and
it is not difficult to see that this sequence furnishes the required counterexample .

More than 10 years ago, Graham and I conjectured that if we split the integers
into k classes, then

1 = I 1, x, < . . . (finite sum)

	

(2)
xi

is always solvable with all the x, in the same class . In the language of hypergraphs
the conjecture states : The chromatic number of the non-uniform hypergraph
whose vertices are the integers and whose edges are the sets satisfying (2) is
infinite . A finite form of this problem states that if J,,, 1/a; is large enough, then
one can select amongst the a's a sequence satisfying (2) . "Large enough" as a
function of n? We really have no idea what "large enough" should mean . It could
be o((log log n)") or E log n.

Silverman and I conjectured that if we split the integers into k classes, then
there are always two integers in the same class whose sum is an rth power (in
particular a square) . It would be of interest to characterise the sequences for
which this conjecture holds . We also conjectured that if 1 --a,< . . . <a, --n is
such that a, + a; is never a square, then k -- (1+ o(1))n/3, n/3 is given by the
integers =-1 (mod 3) . The exact determination of max k is perhaps not hopeless,
but we certainly have not succeeded .

If we assume that a k - a, is never a square, then the situation is radically
different . Fürstenberg and Sárközi independently of each other proved that here
k = o(m) . Sárközi obtains explicit bounds for k but no doubt they are very far
from being best possible . Many further conjectures could be formulated but we
must leave these to the reader .
Glazer's proof is given in the excellent survey paper of W .W. Comfort,

Ultrafilters : Some old and some new results, Bull . Amer. Math . Soc . 83 (1977)
417-455, see 449-452 .
N . Hindman, Finite sums from sequences within cells of a partition of N, J .

Combinatorial theory 17 (1974) 1-11 ; Baumgartner, A short proof of Hindman's
theorem, 17 (1974) 384-386 .
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A. Sárközy, On difference sets of integers I, II and III . II will appear in Annales
Univ . Sci . Budapest, I and III, Acta Math . Acad . Sci. Hungar . 31 (1978) 125-149
and 355-386 .
N. Hindman, Ultrafilters and combinatorial number theory, Number Theory

Carbondale, 1979, Lecture Notes in Math . 751 (Springer-Verlag, Berlin) 119-
184. This paper has a very extensive list of references .

6. Some problems on sieve methods

During my long life I often applied Brun's method but unfortunately I contri-
buted next to nothing to the improvement of the method or its generalisations .
All I can do is to state a few problems which are directly or indirectly connected
with sieve methods .

1 . Let f (x) be the smallest integer so that there is a set of residues

ar, (mod p), p < f(x)

	

(1)

so that every integer n < x satisfies one of the congruence (1) . In particular must
f(x) be significantly larger than x2'? Also it would be very useful to estimate F(x)
if we only require that the number of integers n < x not satisfying any of the
congruences (1) is o(x/log x) (where p < F(x)) . Is F(x) significantly smaller than
f (x)? These problems can of course be extended if more than one residue is
omitted .

It is not clear who first formulated this problem -probably many of us did it
independently . I offer max(1000 dollars, z my total savings) for clearing up of this
problem. It is clear that many important problems could be attacked if we would
know a little more .

Let e x be the largest number for which there is a system of congruences

a p (mod p), x'- < p < x

	

(1')

so that every integer n <x satisfies at least one of the consequences (1') . It is not
difficult to prove that

c log log log x
log log x

but perhaps eX is much larger .
Ruzsa and I made the following surprising conjecture . There is a constant C for

which there is a set of primes pi < x, I 1/p< < C and a system of congruences

a, (mod pi ) (1 11)

so that every integer n < x satisfies at least one of the congruences (I") . If we are
right, then very likely s, > c for some absolute constant c. (See our forthcoming
paper in the Journal of Number Theory .)



2. Is it true that to every E and it there is a k so that the density of integers n
for which

max P(n + i) > n 1
_E

1_i--k

is greater than 1- rl, where P(m) denotes the greatest prime factor of m . I can
only do this for E = 2-

3 . Is it true that to every e > 0, Tl > 0 there is a k = k o (a, rl) so that p, <

	

<
pk < n 1- E and a (i i ) , 1 _ i < (pi -1)/2, j = 1, . . . , k are any set of (pi -1)/2 distinct
residues mod p;, j = 1, . . . , k . Then the number of integers m _ n for which

mo a ;' ) (mod p; ), 1 _ i _ (pi -1)/2, j = 1, . . . , k

is less than En? This follows easily from the large sieve if pk < n2 but the general
case seems intractable at present .

4. Denote by V(n) the number of distinct prime factors of n I conjecture that
for infinitely many

max m + V(m) _ n

	

(2)
m <n

(2) seems unattackable. Replace [m + V(m)] by [m + e V(m)] where 8 > 0 is
sufficiently small . It seems to me that even this weakened form of (2) is just
beyond what we can do at the present time .

Selfridge and I considered the following much more difficult problem

max m+d(m)_n+2

	

(3)
-<n

where d(m) is the number of divisors of m .
n = 24 satisfies (3) . We convinced ourselves that if (3) has a solution n > 24,

then n must be enormously big-far beyond the limits of our tables and computa-
tions .
A related problem can be formulated as follows . Put

f(n,t)=max V(n+i)
16i_t
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Trivially f (n, t) - (1 + o (1))log t(log log t) -1 , but I expect that usually very much
more will be true . More precisely put

max f (n, t)log log t (log t) -1 = F(n) .

	

(4)
i

Then F(n)--- as n ~. I am very far from being able to prove this .
4. Are there infinitely many integers n for which n - i 0 0 (mod p2) for i =

0, 1, . . . , p - 1 and for all p' < n? A further question is : are there infinitely many
integers n for which n - i 0 (mod V) for every i = 0, 1, . . . , k - 1 and V < n?
The density of integers in both of these classes is 0, but I have no good

estimation for these numbers . Some preliminary calculations of Selfridge seem to
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indicate that the number of these integers not exceeding x is (c + o(1))x' for some
1 > a > 0 and c, but we are very far from being able to prove this .

5. Elliott considered the following problem : Let 0 --a,< . . . < ak be a sequ-
ence of integers which does not contain a complete set of residues mod p (p runs
through the set of all primes) . Clearly only the primes p -- k have to be
considered . Elliott investigates the estimation of min a k =A(k). He proves

(1+o(1))k log k --A(k) -- (2+ o(l)k log k .

	

(5)

The lower bound in (5) is due to Davenport . Probably the lower bound is the
correct one, this seems very hard and is of course connected with the problem
stated in 1 . The exact determination of ak is probably hopeless .

It would be of interest to determine Ak for small values of k . Also determine or
estimate

x .

Bk = min(a, + • • • + ak )/k .

There is no reason to assume that the minimum in (5) and (6) is given by the
same sequence .

One can define a sequence {a	ak } by the greedy algorithm as follows :
Assume a,, . . . , a,_, is already defined let a, be the smallest integer greater than
a,_, so that a,, . . . , a,-1, a, does not form a complete set of residues (mod p) .
Estimate this ak as well as possible . There is no reason to assume that this
sequence gives the minimum in (5) or (6) .

6. Let f(x) be the largest integer for which there is a system of congruences

ap (mod p)

(where p runs through the primes not exceeding x) so that every integer n < x
should satisfy at least f(x) of the congruences (1) . I can not even prove that
f (x) > 2 for x > x0 . On the other hand perhaps f(x) tends to infinity together with

Denote by F(x) the largest integer for which there is a system of congruences

a„ (mod n)

	

(8)

(where n runs through the integers not exceeding x) so that every integer t --<x
satisfies at least F(x) of the congruences (8) . Now it is a simple exercise to prove
that F(x) --> - as x --> - . The only problem is to determine or estimate how fast
F(x) tends to infinity .
Denote by 7T(x) the number of primes not exceeding x . -r(x) _ (1 +o(1))x/log x

is the prime number theorem . The number of primes in short intervals is very
difficult to estimate . I conjectured

7T(X) --rr(y)<c lo x for every y<x-(log x)'

	

(9)
g

where C is a sufficiently large absolute constant .

(6)

(7)
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The proof or disproof of (9) is probably hopeless at present .
P.D.T.A. Elliott, On sequences of integers, Quarterly J . Math. 16 (1965)

35-45 .
About sieve methods in general see Halberstam-Roth, "Sequences" and the

more recent Cambridge Tract of Hooley and the book of Halberstam-Richert on
sieve methods .

7 . Miscellaneous problems

This section is necessarily incomplete . I have to concentrate mainly on prob-
lems stated in previous papers . I discuss problems only if they were in my opinion
neglected or if some progress has been made .

Riddell defines 9k (n) as the largest integer so that among any n real numbers
one can always find 9k (n) of them which do not contain an arithmetic progression
of k terms. Clearly gk (n) _- rk (n) and Riddell showed that gk (n) can be less than
rk (n), g 3 (5) = 3, r3 (5) = 4 (from the set 1, 3, 4, 5, 7) one can select only 3 integers
not containing an arithmetic progression) . Riddell also shows 9304) = 7 < r 3 (14) _
8. Perhaps for large n, gk(n)=rk(n) .

Riddell also investigated the following problem : Let 1 --<a , < . . . < a,t be any set
of n integers (or real numbers) . Denote by F* (n) the minimum of the largest r for
which air < • • • < ai is a B Z sequence . The minimum is to be taken for all the
sequences {a	aJ I conjectured F*(n)=(l+o(1))n' and perhaps F*(n)=
F(n) for all large n. Komlós, Sulyok and Szemerédi proved a general theorem on
the solution linear equations which implies 9k(n) > crk (n) and F*(n) > cF,(n) .
They proved that apart from a multiplicative constant the worst set for all such
problems is to take the integers l, 2, . . . , n . This remarkable theorem still leaves
many questions unanswered . Very likely c can be chosen to be 1 - F for every
->O if n > n,(s) and perhaps gk (n) = rk (n), F*(n) = F2(n) for n > no . If this
conjecture seems too optimistic perhaps one should only expect gk(n)>rk(n)-C,

F*(n)>F2(n)-C. ( Recall the functions rk (n) and Fk (n) defined in Sections 1 and
3 respectively .)

Also, what happens for non linear equations? Here are some of the questions I
have in mind: Let A„ ={a,	a„1 be a sequence of n integers . Denote by
g k (A„) the largest integer l for which there is a subsequence {a ir , . . . , a i j so that
{a,, is a B z sequence . Put min g k (A11 ) = G(n, k) where the minimum is to be taken
over all the sequences A„ . Is it true that G(n, k) is attained if A„ is 1, . . . , n? Is it
true that G(n, 2) > n'-' for every F > 0 if n > no(c)? G(n, k) > ckn for k , 3?
Perhaps these conjectures are completely wrongheaded .

We can ask questions for infinite sequences which are perhaps both interesting
and fruitful : Is there an infinite sequence a, < ak < k 1+E so that {ai } is a Bz
sequence? Further is there a sequence a,<Ct so that the sums a3+a ; are all
distinct?
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Riddell denotes by P(n, k) the largest integer so that amongst n points in
k-dimensional space one can always find P(n, k) points which do not contain an
isosceles triangle . It is not hard to prove that P(n, k) > n'k, £k 0 as k --.
Perhaps P(n, 2) < n". Here again perhaps the worst set of points is if they are
lattice points in a sphere of as small radius as possible . By the way, P(n, 1)
reduces to having no three points in an arithmetic progression . Instead of no three
points forming an isosceles triangle we could require that all the distances be
distinct . We can leave the exact formulation of the problems to the reader .

One of my oldest unsolved problems states as follows: Let f(n) be +1 or -1 for
every n. Is it true that to every c there is a d and an m so that

m

I f(kd) >c?

	

(1)
k=1

I offer 500 dollars for a proof or disproof of (1) . Perhaps (1) can be
strengthened as follows : For suitable d and m, is it true that

m
f(kd)

k=1
md-n

> c log n ?

It is not difficult to prove that (1'), if true, is the best possible .
Non-averaging sets . A set of integers a l < az < • • • < ak , n is called not av-

eraging by E . Straus if no a is the arithmetic mean of other a's . Straus asked for
an estimation of max k = A (n) . The best bounds are at present

c, n- <A(n)<n3+a .

	

(2)

The lower bound is due to Abbott and the upper to Straus and myself . It would
be of interest to prove that lim log A(n)(log n) - ' = a exists and to determine a .

Graham conjectured: Let I --< a,< . . . < a n be n integers . Then

max a;/(a„ a;) , n .

Szemerédi proved this recently . The proof is not yet published .
I conjectured that if 1 < a, < . . . < ak _ n, 1 1/a; < C, then the number of

integers _-n not divisible by any of the a's is >n' - E for every s >0 and C if
n > no($, C) . It turned out here that my intuition completely misled me since
Ruzsa proved that to every s >0 there is a C= C(E) so that there is a sequence A
with ~k=1 1/a, < C so that the number of m _- n, with mt0 (mod a;) for i =
1, . . . , k, is <n£, the exact dependence of c from C is far from being known .
Ruzsa proved that to every s > 0 there is a C = C(s) so that there is a sequence A
more than x' -E numbers m < x, m * 0 (mod a i ), i = 1, . . . , k. This is not yet
cleared up .

the following extremal problem seems to be interesting . Let

Y. 1/a; < 1
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be any sequence of integers . Denote by A'(x) the number of integers not
exceeding x and not divisible by any of the a's . Determine or estimate min A'(x)
where the minimum is to be taken over all sequences satisfying (3) . I expect that is
of the order of magnitude x/(log x)' . It follows from a result of Schinzel and
Szekeres that A'(x) < cx/(log x)- for some a > 0 .

Here also my intuition was wrong . In 1940 1 conjectured that if 1 < a, < . . . <
ak -- x is a sequence of integers so that the least common multiple of any two a's
is greater than x, then A'(x) > cx. Szekeres soon proved me wrong and in fact
here we have

c2x/(log x)t`~ < A'(x) < c,x/(log 03R

It would be of interest if one could give explicitely the sequence which solves
the extremal problem (3), but I very much doubt if this is possible . Ruzsa remarks
that trivially A'(x) > cx/log x .

The prime k-tuple conjecture of Hardy and Littlewood states that if a, < . . . <
ak such that the a's do not form a complete set of residues mod p for every p,
then there are infinitely many integers n so that all the numbers n + a i , i =
1, . . . , k are primes . This is of course quite unattackable at present .

On the other hand it is a simple exercise to prove that if a, < . . . < ak does not
form a complete set of residues mod p2 for every p, then there are infinitely many
integers n for which n + ai , i = 1, 2, . . . , k are all squarefree .

There are difficulties in formulating a reasonable conjecture for infinite sequ-
ences. Can the following conjecture be true : Let a k tend to infinity sufficiently
fast, and assume that there is an n so that all the n + ak are primes . Are there
infinitely many such values of n? Is there any hope of proving this for squarefree
numbers instead of primes? Or are there values of n for which say n + 2 2k is
always a prime? Always squarefree, or infinitely often a prime, or infinitely often
squarefree? Unless I overlook a trivial way of getting a counterexample these
questions are quite hopeless .

Perhaps the following generalisation for infinite sequences is possible : Let
1-_ a, < . . . be a sequence which does not contain a complete set of residues
mod p for every p, then there are infinitely many values of n for which all the
integers n + ak, ak < n are primes . Perhaps the following modification is slightly
less hopeless : Let 1, a, < . . . be a sequence which does not contain a complete
set of residues mod p2 for every p . Then there are infinitely many values of n for
which all the integers n + a k, ak < n are squarefree .

These conjectures just occurred to me, and perhaps some further condition on
the thinness of the sequence A={a k } may be needed . If true they are of course
hopeless for the primes and it seems to be hopeless for the square free numbers
too. On the other hand if the squares of primes are replaced by a sequence which
increases fast enough the conjecture becomes easy . Let n, < n 2 < • • • , (ni , ni ) = 1
tend to infinity sufficiently fast and let a, < a 2 < • • • be a sequence of integers
which does not contain a complete set of residues (mod ni ) for every i. Then there
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are infinitely many integers x so that

x + a, 0 (mod n;)

for every n; and a < < x .
Let me call attention to the following beautiful conjecture of Ostman which is

now about 25 years old : Prove that there do not exist two infinite sequences A
and B so that the sequence A + B differs from the set of primes in only a finite
number of elements . Hornfeck proved that the sets A and B must both be infinite .

Here is a problem which I did not state quite correctly in III : Let 1 6 a, < . . . <
ak , n . . . be a sequence of integers satisfying (a i, a;) = 1 . Is it true that there exists
an absolute constant C for which (p runs through the primes)

I
	I <C+ 1 1 .

n - uk

	

p <n p

I state some old problems which are perhaps not hopeless but which have been
neglected : Denote by f(k) the minimum number of terms of the square of a
polynomial of k terms. Sharpening a result of Rédei and Rényi, I proved that
f(k)<k'-'. Rényi and I conjectured that f (k) - as k tends to infinity . The
value of f(k) may depend what kind of coefficients we permit (integers, rationale,
real or complex numbers) . We believe that f (k) -- holds in all cases .
Let a,< . . . < a k < n be any sequence of integers, b, < b 2< . . . is the sequence

of integers no one of which is the multiple of any of the a's . Put B(x)=fib . <x 1 . Is
it true that for every m ~-:- n

B(m)<2B(n)?

	

(1)
M

	

n

It is easy to see that if (1) is true it is best possible . The a's consist only of a,,
n=2a,-1, m=2a, .

Roth conjectured that there is an absolute constant c so that to every k there
exists an n„ = n„(k) which has the following property : Let n > n o , split the integers
not exceeding n into k classes {a(E' )}, j = 1, . . . , k . Then the number of distinct
integers m -- n which for some j, j = 1, 2, . . . , k can be written in the form
a ,o ) + a(') is greater than cn .

Let a, < • • • < a„ be a set of integers . Consider the sums a, + a ; and products
a,a ; . I conjectured that there are more than n' - s distinct numbers amongst them .
This if true seems very difficult . It is possible that Szemerédi and I will be able to
prove that the number of distinct terms in this sequence is >n +` for some c >0 .

Graham conjectured : Let I a, < . . . < a p be p not necessarily distinct residues
mod p. Assume that JP , E,aj =-0 (mod p), E i = 0 or 1, and not all E, = 0 implies
ip_, E, = r. Does it then follow that there are at most two distinct residues mod p?

Szemerédi and I proved this if p > C i .e . for sufficiently large p .
The following old problem of mine still seems to be open : Let 1 --a,< . . . <

a, -- n be such that there are at most r a's which are pairwise relatively prime .
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Then we obtain max t by taking the multiples of the first r primes not exceeding n .
Graham and I have the following related problem : Let I < a, < az < • • • < ak = n,
(ai , a;) 1 . What is the maximum value of k? A reasonable guess seems to be that
either max k = n/p(n), where p(n) is the least prime factor of n, or it is the
number of integers of the form 2t, t_-zn, (t, n)# 1 . This problem is stated with
many confusing misprints in I (p . 123) .
Straus and I conjectured that for k > k o there always is an i = i(k) so that

Pk < Pk+iPk Pomerance recently proved that this conjecture is completely
wrongheaded and that if a„ I"-> 1, a"/n ~, then there are infinitely many values
of k so that for every i < k, we have

a k > a k+t a k , .

	

O2

This was in fact conjectured by Selfridge who always disbelieved our conjecture .
Pomerance and I tried unsuccessfully to prove that if the a's are the primes

then the density of the integers k for which (2) is satisfied for every i < k is 0 .
Sárközi and I proved that if a, < a 2 < • , • is an infinite sequence of integers

where no a divides sum of two greater a's, then this sequence has density 0 . We
could not prove that ` 1/a, <x . Also the following finite problem seems interest-
ing: Let I-- a,< . . . < a k - x be such that no a, divides the sum of two greater
a's . Then k--[,x]+1. Equality holds if X = 3n and the a's are :
2n, 2n + 1, . . . , 3n . The conjecture k < [3x]+ 1 is still open .

To finish let me state four more problems : Is it true that almost all numbers n
have two divisors d, and d 2 satisfying d, < d 2 < 2d, . This is one of my oldest
conjectures and I offer 300 dollars for a proof or disproof . I only proved that the
density of these integers exists . I claimed once that I have a proof that the density
is 1 . I unfortunately have to withdraw this claim .

The second question is only a few days old . Divide the integers into two classes
n,< . . . and m, < m 2 < • • • . Denote by N, < N2 < • • • and respectively M, < MZ
the integers which are distinct sums of the n's respectively the m's . It is easy to
see that either the (N,) or the (M;) must have upper density 1 (both can of course
have lower density 0) . It is not clear to me at present how large

lim sup 1max ( I 1 I	 1 )
log x

	

N, <x Ni ' ,. . Mi

must be. It is easy to see that it can be less than I, but I expect it to be greater
than z

(lim sup( I	I 1/a,)
log x u, <x

is called the upper logarithmic density of the sequence A ) . Here I mention a
theorem and problem of Davenport and myself on the existence of logarithmic
density. Let a, < a2< . . . be any sequence of integers, b, < b 2< . . . is the sequ-
ence of integers not divisible by any of the a's . Then the b's have logarithmic
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density. Now to our problem: To each ai make correspond an arbitrary set of
residues {x,"J, j = l, 2, . . . , ti . Let b, < bz < be the sequence of integers for
which

b u xJ' 1 (mod a,), j= l, 2, . . , ti

always holds if bu > a, . Is it true that the b's have a logarithmic density? Perhaps
this question is not very difficult as far as I know it has not been attacked really
seriously .

A sequence of integers A = Ia, < az < . . . I is said to have property P if

Hai =F1a;
i

	

i

(where each product runs over a subset of the a's) is possible only if the number
of factors on both sides of the equation is the same . Clearly the integers =2
(mod 4) have property P. I asked: is there a sequence with property P having
density > 1- e ? Is there a finite sequence 1 < a, < . . . < a k _ n having property P
and satisfying k>(I-£)n? Ruzsa showed that the answer to both questions is
negative . Ruzsa in fact shows that if A is an infinite sequence with property P
then its upper density is less than 1 /e . This is best possible . Also if 1 _ a,< . . . <
ak < x has property P, then A (x) < (1- c)x for an absolute constant c > 0 . The
best value of c is not known .

Finally let me tell of a problem where I somewhat made a fool of myself .
Herzog and Stewart studied visible lattice points i .e. lattice points {u, v}, satisfying
(u, v) = l . One joins two visible lattice points if they are neighbours i .e . if they
differ in only one coordinate and there by tl . Herzog and Stewart prove that
there is only one infinite component and they conjecture that (a, p) azt0 (mod p),
p prime, always belongs to the infinite component . Last year when I gave a talk at
Michigan State University I asked : Is there an infinite path through visible points
no coordinate of which is 1 . I though that the answer will be not too hard, and
affirmative, and follishly offered 25 dollars for a proof . In the evening Stewart
gave the simple proof : IN, Pk+ll can be joined to {pk+l, Pk+2} by Tchebicheff's
theorem which gives the path in question . Perhaps I should have asked : Is there a
path going to infinity which avoids points both coordinates of which are primes
and also points one coordinate of which is 1 . We could further demand that the
path is monotone i .e. every step increases the distance from the origin . Is there a
monotone path where we change direction after a bounded number of steps?

The following result surely holds, but there are some technical difficulties in
giving a rigorous proof : To every s there is a k so that for all but en 2 lattice
points {a, b}, 0 -- a, b -- n there is a sequence of visible lattice points {u k, v k },
k = 1, 2, . . . , (u(, = vo = 1), where u o < u, < • •

	

v o < v, < . . . and 0 _ u k+1 - uk <
C 0 , vk+, - v k < C In other words infinity can be reached with jumps of
bounded length .
The following beautiful conjecture is due to Gordon and Motzkin : Is there a
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sequence of distinct Gaussian primes P,, Pz	for which I P, ,, - P1z I < C for

some absolute constant C. The answer is almost certainly negative .
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Finally I would like to call attention to a forthcoming monograph of R .L .

Graham and myself entitled "Old and new Problems and Results in Combinator-
ial Number Theory" which will soon appear in L'Enseignement Math . See further

the forthcoming book of R .L. Graham, B . Rothschild and J. Spencer, Ramsey

Theory (Wiley, New York, 1980) .
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