P. Erdös and E. Howorka ${ }^{*}$

The distance $d_{G}(u, v)$ between vertices u, v of a graph G is the least number of edges in any $u-v$ path of $G ; d_{G}(u, v)=\infty$ if u and v 1ie in distinct components of G . A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is dietance-aritioal, if for each $x=V$ there are vertices u, v (depending on x) such that $d_{G}(u, v)<{ }_{d_{G}-x}(u, v)$. Let $g(n)$ denote the largest integer such that $|\mathrm{E}| \leq\left({ }_{2}^{\mathrm{n}}\right)-\mathrm{g}(\mathrm{n})$ for every distance-critical graph on n vertices. It follows from the results of this note that $g(n)$ in of the order of magnitude of $\mathrm{n}^{3 / 2}$; possibly, one has $\mathrm{g}(\mathrm{n}) \sim \sqrt{2} \mathrm{n}^{3 / 2}$. THEORM 1. A graph $G=(V, E)$ is diatanoe-aritioal iff to each vertex x of G there oorresponde a paip $\{u, v\}$ © V moh that wi $i s$, and fyucE and $y v e B) \leftrightarrows y=x$ for each $y E V$.

More generally, we are interested in the graphs $G=(V, E)$ satiafying the following condition, where $[\mathrm{V}]^{\mathrm{r}}$ denotes the collection of the r-subsets of V :
(*) There is a mapping if from an n-element subset S of V into $[V]^{r}$ such that $[y v \in E$ for each veM $(x)] \leftrightarrow y=x$.

Let $f_{1}(r, n)$ denote the largest integer such that $\left|[V]^{2}-E\right| \geq f_{1}(r, n)$ for every graph satisfying (*). THEOREM 2. For each r thare ia $a a_{r}>0$ ouch that $f_{1}(r, n)=$ $\left[o_{r}+o(1) 1 \cdot n^{2+1 / p}\right.$.
Proof: It fs convenient to prove a slightly stronger statement: For each r there is $N_{r}, c_{r}^{\prime}>0$, such that if G satiefies (*) with $n \geq N_{r}$

[^0]then $\mid\left\{\right.$ uvi $E: \quad$ uvn $S \neq \emptyset| | \geqslant c_{r}^{\prime} n^{1+1 / r}$. The proof in by induction on r. The assertion clearly holds for $x=1$. Let $k \geq 2$ and suppose that the assertion holds for $r=k-1$. Let $G=(V, R)$ be a graph satisfying (*) With $r=k$. Let S_{o} be a maximal subset of S with the property that the k-sets $M(x)$, $x \in S_{o}$, are pairwise disjoint.
CASE It $\left|s_{0}\right| \geq n^{1 / k}$. By assumption, for each fixed $x c s_{0}$ and each $y \operatorname{si-}(M(x) \cup f x))$, at least one of the edges joining y and an element of $M(x)$ is missing, Since the sets $M(x)$, $x \in S_{o}$, are pairwise diajoint, at least $n^{1 / k} \cdot\left[n-(k+1) n^{1 / k}\right] \sim n^{1+1 / k}$ edges are missing.
CASE II: $\left|S_{0}\right| \leq n^{1 / k}$. Let $A=U\left(M(x) ; x \in S_{o}\right)$. Thus $|A| \leq \mathrm{kn}^{1 / k}$. By the maximality of $S_{o}, A n M(y)$ for each $y \in S$. Let a be a function $S+A$ such that $a(y)$ em (y) for each $y \in S$. Let A_{o} denote the set $\left\{a c A:\left|a^{-1}(A)\right| \geq N_{k-1}\right\}$. Let $S^{\prime}=u\left(a^{-1}(a): a A_{0}\right)$. Since $\left|S^{\prime}\right| \geq n-M_{k-1} k n^{1 / k}$, we have $\left|S^{\prime}\right|=n+o(n)$. Consider a fixed acA. The mapping M_{a} : $x \mapsto M(x)-\{a\}$ defined on $a^{-1}(a)$ satisfies the condition of (*) with $r=k-1$. By induction hypothesia, $\quad\left|\left\{x y \notin E: x y \cap \alpha^{-1}(a)+\phi\right\}\right| \geq c_{k-1}^{\prime} n^{k /(k-1)}$ for sufficiently large n . Summing over all acA and dividing by 2 (because each edge is counted at most twice) we obtain by an elementary estimate:
 This completes the proof.

Let $f_{2}(x, n)$ denote the largest integer such that $|E| \leq\left(\frac{n}{2}\right)-f_{2}(x, n)$ for every graph $G=(V, E)$ satisfying $(*)$ with $S=V$ and $[M(x)]^{2} \cap E=\emptyset$ for each $x \in V$. Clearly, $f_{1} \leq f_{2}$ but we were not able to eatablish a better upper bound for f_{1} then the following one for f_{2} :

THEOREM 3. For $r \geq 2, f_{2}(r, n) \leq\left[(r l)^{1 / 4}+o(1)\right] n^{1+1 / 4}$.
Proof: Let $r \geq 2$, n be given. Let $G_{o}=\left(V_{o}, E_{o}\right)$ be a regular graph of degree r containing no triangles, with $\left|v_{o}\right|$ nearly equal $(r!n)^{1 / r}$. Let $M_{0}(x)=\left\{y: y x \in E_{0}\right\}$ for each $x \in V_{0}$. Let V_{1} be a set, $\nabla_{1} \cap V_{0}=\emptyset$, such that there is a bijection
$M_{1}: V_{1}+\left\{W E\left[V_{0}\right]^{n}:[W]^{2} \cap E_{0}=\emptyset\right.$ and $W \neq M_{0}(x)$ for any $\left.x \in V_{0}\right\}$.
Let $G=(V, E)$ be a graph defined by $V=V_{o} u V_{1}$ and $E=E_{o} u\left[V_{1}\right]^{2} u$ \{xy: $\left.x \in V_{1}, y \in M_{1}(x)\right\}$. Then G and $M=M_{0} u M_{1}$ satisfy the conditions stated above. Moreover, $|\mathrm{V}| \sim \mathrm{n}$ and $\left.\binom{\mathrm{n}}{2}-|\mathrm{E}| \sim(\mathrm{r})\right)^{1 / \mathrm{r}}$. The details are left to the reader.

$$
\text { We conjecture that for } r \geq 2 \text {, }
$$

$\lim f_{1}(r, n) / n^{1+1 / r}=\lim f_{2}(r, n) / n^{1+1 / r}=(r l)^{1 / r}$.
However, the optimal constants c_{X} calculated from our proof of Theorem 2 form a sequence converging to 0 . In particular, one has $c_{2}=1 / \sqrt{2}$. Since $f_{2}(2, n)=g(n)$, we have: COROLLARY. $[1 \sqrt{2}+0(1)] n^{3 / 2} \leq g(n) \leq[\sqrt{2}+o(1)] n^{3 / 2}$. \square

We suspect that, in fact, $g\left(\frac{1}{2} k(k-5)+k\right)=\frac{1}{2^{k}}{ }^{3}-3 k^{2}+\frac{7}{2} k$. An example of a distance-critical graph realizing this bound is obtained from the proof of Theorem 3 by taking $r=2$ and $G_{o}=$ cycle of length k.

Hungarian Academy of Sciences and University of Florida

University of Florida.

[^0]: * The second author was supported by NSF Grant No. MSC75-21130.

