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Let the nodes be named 1,2, . . .,n in a graph G. Given a

function f on the nodes which assigns a positive integer f(j )

to node j, we'll require that the adversary put f(j) distinc t

letters on node j, for each j from 1 to n . Now we'll say that

G is f-choosable if, no matter what letters the adversary puts ,

we can always make a choice consisting of one letter from eac h

node, with distinct letters from adjacent nodes .

Using the constant function f(j)=k, we'll say that th e

choice number of G is equal to k if G is k-choosable but no t

(k-1)-choosable .

For the complete graph with n z 1, it is always true tha t

the choice number of K n is equal to n .

Since one of the things the adversary may do is put the

same k-set of letters on every node of G, it follows that th e

choice number = choice #G XG = the chromatic number of G . Here

is an example of a graph

which is 2-colorable (therefore has chromatic numbers 2) but no t

2-choosable (therefore has choice number > 2) . If the adversary

uses the pattern pictured below, then no choice of one lette r

from each node can have distinct letters from every adjacen t

pair of nodes .

EXAMPLE SCHEME SHOWING HOW CHOICE #G EXCEEDS X G

There is no bound on how much choice #G can exceed XG, a s

n increases . The complete bipartite graph K

	

is 2-colorable .
m, m
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/ 2k-1 ~
But if m=

	

k

	

, then Km,m is not k-choosable .

The adversary can construct a pattern to prove it as fol-

lows . Recall that m=(2kkl) represents the number of k-subsets o f

a (2k-1)-set . Picture Km,m with m nodes in the top row, and

m nodes in the bottom row, having an edge between two nodes if f

one is in the top row, and the other is in the bottom row . Let

the letters be the elements of a (2k-1)-set . Put each k-subset

of letters on one node of the top row, and on one node of th e

bottom row .
When we try to make a choice, we find it must include k

distinct letters from nodes of the top row - otherwise a k-se t

consisting of letters not chosen from any node would be the k -

subset of letters on some node in the top row . But now the

attempted choice must fail in the bottom row because some set o f

k distinct letters, already chosen from nodes in the top row ,

will be exactly the k-subset of letters put on some node of th e

bottom row .

Thus Km,m is not k-choosable, when m=( 2kk1) .

Here is the picture when k=3, m=(3)=10, and the set o f

letters is {1,2,3,4,5} . The dashed line is meant to suggest th e

100 edges which connect nodes of the top row with nodes of th e

bottom row .
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OPEN QUESTION

What is the minimum number N(2,k) of nodes in a graph G

which is 2-colorable but not k-choosable ?

BOUNDS FOR N(2,k)

A family F of sets has property B iff there exists a se t

B which meets every set in F but contains no set in F . In

other words F has property B iff there exists a set B such tha t

1. X(l B

2. X

	

B

	

J} for every X E F .

Mk is defined as the cardinality of a smallest family o f

k-sets which does not have property B . Although Mk is only

known exactly for k s 3, there are bounds for it . The crude

bounds

2k-1 < Mk< k2 2 k+ 1

will suffice here . Sharper bounds can be found in P . Erdős ,

On a Combinatorial Problem III", Canad . Math . Bull ., vol . 12 ,

no . 4, 1969 .

In what follows we shall prove tha t

Mk s N(2,k) s 2Mk .

To establish the upper bound, we argue that Km,m is no t

k-choosable when ma Mk . For the k-sets of letters on nodes o f

the top row the adversary can use a family F which does not hav e

property B, and use the same F on the bottom row . If C is any

set of letters chosen one from each node of the top row, then o f

course Xil C

	

for every XEF, and consequently there mus t

exist W E F such that W c C . But then in the bottom row no lette r

can be chosen from the node which has W .

To establish the lower bound, we argue that K b,t is k-

choosable when b+t < Mk . With t nodes in the top row, and b

nodes in the bottom row, let F be the family of k-sets of letters

assigned to the nodes . F will have property B because 1F1<M k ,

and we can use B to make our choices . First choose a letter o f

B from each node in the top row - the choice exists because B

meets each of them . Then choose a letter not in B from eac h
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node of the bottom row - that choice exists because B does no t

contain any of them . Two nodes are adjacent only when one i s

in the top row, and the other in the bottom row, and their

chosen letters are distinct because one is in B, and the othe r

is not in B .

That completes the proof . The following theorem summarize s

the above discussion .

THEOREM

2 k-1 < Mk s N(2,k) s 2Mk < k2 2k+2 .

Here is all we know regarding exact evaluation of N(2,k) .

M 1=l N(2,1)

	

= 2

M 2=3 N(2,2)

	

= 6

M3=7 12 s N(2,3)

	

s

	

14

Although it is most likely that N(2,3)=14, it would b e

quite a surprise if N(2,k)=2M k were to persist for large k . *

K77 7 is pictured below with the adversary's assignment

which shows it is not 3-choosable . Again the dashed line in-

dicates the 49 edges .

------------------------------------ -

*We know that t; k +l < N (2,k) , for k 1 .
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CHARACTERIZATION OF 2-CHOOSABLE GRAPHS

A graph is 2-choosable iff each connected component is 2 -

choosable, so we restrict our attention to connected graphs . To

start the investigation of which graphs are 2-choosable, conside r

a node of valence 1 . We can always choose one of its two letter s

after deciding which letter to choose from the one node adjacent .
The obvious thing to do is prune away nodes of valence 1, suc-

cessively until we reach the core, which has no nodes of valence
1 . A graph is 2-choosable iff its core is 2-choosable .

By definition let's say a 0 graph consists of two distin-

guished nodes i and j together with three paths which are node

disjoint except that each path has i at one end, and j at the

other end . Thus a 0 graph can be specified by giving the thre e

paths' lengths . Here are some examples .

01,2,2 01,2,3 ' 01,3, 3
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Here is a proof that
02,2,2m

is 2-choosable, for m � 1 . Le t

the assigned 2-sets be named as in the picture .

CASE I : Suppose A1=A2= . . .=Alm+l={x,y}
. From Ai choose x

when i is odd, y when i is even, so that x is chosen from bot h

Al and A2m+1
.

Complete the choice with a letter from B-{x}, an d

a letter from D-{xl .

CASE II : Suppose the Aj 's are not all equal . Find one

particular adjacent pair AiAi+l . Tentatively choose xi EAi-

Ai+l, and go in sequence choosing x
i_1 E Ai-1-{xi }, x i-2 EAi-2-

{x i-l }, . . . until x i E Al-{x 2 } . At this point we look ahead t o

A2m+i=fb,d}, and look at B and D . If {B,D}

	

{{xl,b},{xl,d}} ,

then there will exist a choice of x E A2m+l such that B-{x l ,x}# cD

and D-{xl,x}#(D, and so we can continue choosing x 2m EA2m-{x} ,

x2m-1EA2m-1-{x2m}, ••• until x i+l E Ai+l-{xi+2}, thereby com-
pleting the choice . But if {B,D}={{xi,b},{xl,d}}, then we g o

back to A i#Ai+l and start the other way . Start by choosing

y i+l E
Ai+l-Ai, and go in sequence choosing y i+2 E Ai+2-{Yi+l}'" '

until y E A2m+i-{Y2m}' Here y x l so we can choose x i E B and

x i E D, and continue with y l E Al-{x l }, y 2 E A2 -{y i-1 } . . • until w e

complete the whole choice at y i E

That completes the proof that
02,2,2m

is 2-choosable .

Since an even cycle C2m+2
is a subgraph of 0 2,2,2m , We also

know that all even cycles are 2-choosable .

At this point in the investigation, every 2-choosable graph

we know about has as its core a sub graph of some 02,2,2m . The
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remarkable fact that no others exist will be told as follows .

Let {K1' C2m+2' 02,2,2m : m s 1} = T .

THEOREM (A .L . Rubin )

A graph G is 2-choosable if, and only if, the core of G
belongs to T .

PROOF

Let G be the core of a connected graph .

The idea of the proof is to show, by exhausting the pos -

sibilities, that either G is in T, or else G contains a sub-

graph belonging to one of the following five types .

1. An odd cycle .

2. Two node disjoint even cycles connected by a path .

3. Two even cycles having exactly one node in common .

4. 0

	

where a#2 and b#2 .a,b, c

5 .

We start by assuming that G is not in T .

If G contains an odd cycle we are done . Thus we procee d

on the assumption that G is bipartite .

Let C l be a shortest cycle . Note that there must exist an

edge of G not in Cl , because otherwise G would be an even cycle .
If there is a cycle C 2 having at most one node in commo n

with C l , then we will be in case (2 .) or (3 .), and be done .

Let P I be a shortest path, edge disjoint from C l , and con-

necting two distinct nodes of Cl . (This is now known to exist . )

If C l u P I is not in T, then it must be in case (4 .), in

which case we are done .

Now suppose C 1 u P I is in T, so it must be a 02,2,2m, and

Cl must be a 4-cycle . Observing that there must be more to G ,

we can say the following .
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Let P 2 be a shortest path, edge disjoint from Cl U P I ,

connecting two distinct nodes of C1U
Pl .

Next we examine six cases to see what the end nodes of P2

might be . It will help to name the nodes of Cl as shown in

this picture of C1U Pl .

Case (i) . If the ends of P2 are two interior nodes of P I , then

we have a cycle disjoint from C l , and are in case (2 .) again .

Case (ii) . If the ends of P 2 are a and an interior-node of P I ,

then we have a cycle with exactly one node in common with C l ,

and are in case (3 .) .

Case (iii) . If the ends of P2 are b and an interior node of P I ,

then we have a path from a to b edge disjoint from CI , which

puts us in case (4 .) .

Case (iv) . If the ends of P 2 are a and b, we are put in cas e

(4 .) again, as we were in case (iii) .

Case (v) . If the ends of P 2 are a and a', and PI is of length

2, then we are in case (5 .) . If P I is of length >2, then we

are in case (4 .) .

Case (vi) . If the ends of P 2 are b and b', then by removin g

any edge of C I we find a 0 graph which puts us in case (4 .) .
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We now know that if G is not in T, then G contains one o f
the five types . Thus it only remains to show that any graph of
type 1 ., 2 ., 3 ., 4 ., or 5 . is not 2-choosable .

Type (1 .) is not even 2-colorable .

To deal with 2 ., 3 ., 4 ., 5 . we can use the following re-

duction . Remove a node b, and merge the nodes that were ad-

jacent to b . Any multiple edges that result can be made single ,

and no "loops" will appear, because the graph remains bipartite .

If the reduced graph G' is not 2-choosable, then G is not 2 -
choosable .

To prove it, suppose G' is not 2-choosable . Unmerge, and
assign the same {x,y} to b as to all the nodes adjacent to b .
If, say, x is the letter chosen from b, then y will have to b e

chosen from all the nodes adjacent to b, and therefore a choic e

for G would have worked just as well for G' . It is worth special
notice that this proof would not have worked for 3-choosability .

After repeated application of this reduction process, w e

will only need to verify that each of the following four par-

ticular graphs is not 2-choosable .

2 .

	

3 .

	

4 .

	

5 .
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No choice exists for the

That completes the proo f

2-choosable graphs .



assignments shown .

of the theorem characterizing



A THEOREM ON GRAPH STRUCTURE

The following theorem is due to Arthur Rubin . It will

lead to a characterization of D-choosability, and consequentl y
to a generalization of Brooks' theorem . But, apart from

choosability considerations, here is a remarkable theorem .

THEOREM R . If there is no node which disconnects G, then G i s

an odd cycle, or G=Kn , or G contains, as a node induced sub -

graph, an even cycle without chord or with only one chord .

PROOF . (by exhaustion, and induction on n )
Assume no node disconnects G, G is not an odd cycle, an d

G#Kn . Observe that a 0 graph either contains an even cycle a s

a (node) induced subgraph, or consists of an even cycle wit h

only one chord . Thus each subcase will be settled when we

find an induced even cycle in G, or find an induced 0 graph i n

G .

CASE I . There is a node of valence 2 . Call it N . Remove N ,

and prune nodes of valence 1 successively . Now look at what

is left .

1 .1 One node . G must have been a cycle (not odd) .

I .2 An odd cycle . G must have been a 0 graph .

I .3 K , where m � 4 . We find an induced 0 1,2,p , where p is th em

	

1,2,p '
length of the pruned off path .

I .4 If I .1, I .2, I .3 do not hold, and still the graph that re -

mains after pruning has no node which disconnects it, the n

we're done by the inductive hypothesis .

I .5 What remains has a node X which disconnects it . Name the

end nodes of the pruned off path A and B . First we argu e

that A could not disconnect what remains, because con-

trariwise it would have to have done so before pruning a s

well . Thus we know AX#B .
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What if A and B were connected by some path not through X ?

If this were so, then X would have disconnected G before pruning .

Thus all paths from A to B go through X .

Let a be a shortest path from A to B . The picture should

look something like the one below . Naturally a shortest pat h

cannot have any chords .

Let a be a shortest path from a node U adjacent to A ( U

not on a, A not on a), to a node Z adjacent to a-A .

If Z is adjacent to more than one node of a-A, let Y l and

Y2 be the two such closest to A along a . Then the nodes on th e

arc of a from A to Y 2 , and on s, induce a cycle with only on e

chord, that is, a 0 graph .

If Z is adjacent to only one node of a-A, then the node s

of a,a, and the path through N induce a 0 graph .

CASE II . There is no node of valence 2 . Delete one node N ,

and look at what is left .

II .1 It cannot be just one node .

II .2 An odd cycle y . Note first that N must have been adjacent

to every node of y . If y were a 3-cycle, then G would

have been K 4 . Thus y is a larger cycle, and we find the

"diamond", 02,1,2, induced in G . It will look like this .
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I1 .3 If G-N is a complete graph, then since G is not K n , there

must be some node Y of G-N which is not adjacent to N .

In this case we find a diamond induced in G .

I1 .4 If not 11 .2, not I1 .3, and G-N has no node which dis-

connects it, then we're done by the inductive hypothesis .

I1 .5 Otherwise the graph G-N has a node X which disconnects it .

First we observe that the subgraph induced on nodes ad-

jacent to N cannot be a complete graph . If it were, then the

node X which disconnects G-N would also disconnect G .

Let a be a shortest path in G-N between two nodes A and B

which are adjacent to N, but not themselves adjacent .

If the number of edges of a is equal to 2, then we hav e

C 4 or °2,l,2' in the form :

or

Otherwise a has more than two edges, and we construc t

as follows .
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Let 6 be a shortest path in G-N, from a node C which i s

different from A and B but adjacent to N, to a node Z which i s

adjacent to a . (C=Z is possible )

In case Z is adjacent to two or more nodes of a, we ca n

identify two more nodes, as follows .

Let YA be adjacent to Z, along a, closest to A.

Let YB be adjacent to Z, along a, closest to B .

The picture below may help remember the above adjacencies .

If YA is not adjacent to YB , then the 0 graph we find i s

the induced subgraph on N, 13, the arc of a from A to Y A , and

the arc of a from B to YB .

If YA is adjacent to YB , and YB#B, then our G graph is in-

duced on N, , and the arc of a from A to YB .

If YA is adjacent to YB , and YB=B, then YA#A, so it i s

symmetric with the previous case .

Finally, if Z is adjacent to only one node of a, then our

0 graph is induced by N, a , and

The proof of theorem R is complete .
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CHARACTERIZATION OF D-CHOOSABILIT Y

To define a function D on the nodes of G, let D(j) = th e

valence of node j .

Thus the question of whether G is D-choosable, or not, i s

posed by specifying that the number of letters assigned to a

node shall be equal to the number of edges on that node . We

start by exploring graphs which are not D-choosable .

Supposing G and H are two separate graphs, take any node i

of G, and any node j of H, and merge them into a single nod e

to produce a new graph G ij H

	

It goes understood tha t

the node O disconnects G ij H .

Generate a family non D as follows . For every integer

n z 1, put Rn into non D . Put all odd cycles into non D . When-

ever GE non D and HE non D, put G ij H into non D . A typical

member of the family non D will look like this .

Since all complete graphs and odd cycles are not D -

choosable, it will become apparent that every graph in non D i s

not D-choosable, after we prove a quick lemma .

LEMMA

If G and H are both not D-choosable, then G ij H is no t

D-choosable .
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PROOF

Presume the adversary's assignments used different letter s

on G and H . Let A be the set of letters put on node i of G ,

and let B be the set of letters put on node j of H . Since

D ( ij )=D(i)+D(j), the adversary can assign A U B to the nod e

of G ij H, and keep the other assignments as before the merger .

When we try to choose a letter from ij , our choice will fail i n

G if we take a letter from A, and fail in H if we take a lette r

from B .

Next we explore graphs which are D-choosable, startin g

with 0 graphs .

Consider an arbitrary 0a,b,c with say, c 2 . Let the nodes

be named 1,2, . . .,n as shown in the picture .

Make the choices in sequence, starting at node 1 . Node 1

has three letters, so we can choose a letter not in node n . At

each node in sequence there will be more letters than adjacen t

earlier nodes, until we reach node n . Node n is adjacent t o

two earlier nodes, but neither of its two letters is exclude d

by the choice we made at node 1 . Thus every 0 graph is D -

choosable . Also, recalling our discussion of 2-choosability ,

we know that every even cycle is D-choosable .
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LEMMA

If G is connected, and G has an induced subgraph H whic h
is D-choosable, then G is D-choosable .

PROOF

Assuming G-H is not empty, find a node x, of G-H, whic h

is at maximal distance from H . This guarantees that G-x will b e
connected . Start the choice with any letter from x, and the n

erase that letter from all nodes adjacent to x . The choice ca n

be completed because G-x is an earlier case .

THEOREM

Assume G is connected . G is not D-choosable iff G E non D .

PROOF

Take G and look at parts not disconnected by a node . If

every such part is an odd cycle or a complete graph, the n

GE non D, and therefore G is not D-choosable .

If some such part is neither an odd cycle nor- a complet e

graph, then Theorem R tells us that G must contain, as a nod e

induced subgraph, an even cycle or a particular kind of 0 graph .

By the preceding lemma this means that if G non D, then G i s
D-choosable .

SAME THEOREM

Assume G is connected . G is D-choosable iff G contain s

an induced even cycle or an induced 0 graph .

COMMENT

As a consequence of this characterization, we can prov e

that, for large n, almost all graphs are D-choosable .

DIGRESSION INFINITE GRAPHS

Consider the infinite asteris k
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It is not D-choosable, because the adversary can use e, the
set of positive integers, thus :

On the other hand, if we disallow infinitely many edge s

on any one node, we get the following .

THEOREM

Let G be a countably infinite connected graph with finit e
valence . Then G is D-choosable .

PROOF

Let the nodes of G be named with the positive integers .

At each node the number of letters put there by the adversar y
will be no less than the number of edges on that node . Choose

letters by the following rules - with í the smallest name d

node from which a letter has not yet been chosen .

1. If erasing i does not leave a finite component dis-

connected from the rest of the graph, choose a letter x fro m

node i . Erase x from the nodes adjacent to i, and remove i

from further consideration .

2. If erasing i would disconnect a finite component, deal

with each such finite component before dealing with i . In each

finite component start with a node at maximal distance from i ,

to be sure it will not disconnect the component .

By following rules 1 . and 2 . we can choose a letter from

node j for every jE Z + , and never take the same letter from tw o

adjacent nodes .
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COROLLARY :	 BROOKS' THEOREM

The infinite case of Brooks' Theorem is an immediate con -

sequence of the theorem just proved . The finite case is a

consequence of Rubin's characterization of D-choosability .

Refer to R .L . Brooks, "On Colouring the Nodes of a Network" ,

Proc . Cambridge Philosophical Soc ., vol . 37 (1941) .

Here is the statement of his original theorem, verbatim .

"Let N be a network (or linear graph) such that at each nod e

not more than n lines meet (where n >2), and no line has bot h

ends at the same node . Suppose also that no connected com-

ponent of N is an n-simplex . Then it is possible to colour

the nodes of N with n colours so that no two nodes of the sam e

colour are joined .

An n-simplex is a network with n+l nodes, every pair o f

which are joined by one line .

N may be infinite, and need not lie in a plane . "

Of course for D-choosable graphs, Brooks' theorem hold s

a fortiori .

Now consider GE non D . Pick one node j of G, and define

a new function J D thus : let 3D(j)=1+D(j), and let 3 D(i)=D(i )

if ij . We can see that G is 3 D-choosable by attaching an

infinite tail at j, as in the picture .

Lastly, with the observation that the only regular (D(i) =

constant) graphs in non D are complete graphs or odd cycles ,

we have a choice version which covers the finite case .
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THEOREM

If a connected graph G is not Kn , and not an odd cycle ,

then choice #G s max DO) .

END DIGRESSION

According to a well known result of Nordhaus and Gaddum ,

XG+XGs n+l . Before proving the choice version, we state a

lemma which may prove useful elsewhere .

A CHOOSING FUNCTION LEMM A

Let the nodes of G be labeled 1,2, . . .,n, as usual . In
that order define a choosing function g, as follows .

g(j)=1+1{i :lsi<jsn, and {i,j} is an edge of G}~ .

A choosing function has four immediate properties .

1. G is g-choosable .
2. choice #G s max g(j )
3. g(j) s j

4. g(j) s 1+G valence j

THEOREM

Choice #G + choice Os n+ l

PROOF

Label the nodes 1,2, . . .,n in such a way that G valence i z

G valence j if is j . Let g be the choosing function whic h

results from that labeling . Let g be the reverse in defined

by g(i) = l+1{j :ls i < j s n, and {i,j} is an edge of G}l .

Properties 1 ., 2 ., and 4 . still hold for .4- and

	

while

property 3 . becomes 3 . q(i) s n+l-i .

Observe that, because of the special labeling, G valence j +

G valence is n-1, whenever j a i . When j s i, we have g (j)+ 5- (i) s

j+n+l-i s n+l . When j z i, we have g (j) +g-(i ) s 1+G valence j+ 1 +

G valence i s n+l .

Hence max g(j) + max g(i) s n+l .

The proof is finished by property 2 . .

ls j s n
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OPENQUESTION

Does there exist >0 such that for large n ,

nI5+ < choice #G + choice fd ?

GRAPH CHOOSABILITYIS NP-HARD

This result is due to A .L . Rubin . For background, and th e

terminology of III-completeness, please refer to the book ,

Computers and Intractability by Michael R . Garey and David S .

Johnson .

To show that graph choosability is III-complete, we no w

describe a logical statement which is prototypical in a R3-

complete class . This will be encoded into a graph G with a

function f, such that the logical statement is true iff G is

f-choosable .

The logical statement is this :

VU
. . .

dU 3U

	

. . . 3 U (C1 A C 2 A . . . A Cm )
1

	

k k+1

	

r

where each Ci is of the form (Xil V Xi2 Y Xi3 ) and each Xi .

is US or IIS .

The basic ideas of constructs for the graph involve "prop -

agators", "half-propagators", "multioutput propagators", an d

"initial graphs", with some nodes designated as input nodes, an d

some nodes designated as output nodes . In the following picture s

a number on a node will be the value f takes on that node whe n

G is formed . The value on an in node will be acquired when i t

gets merged with an out node .
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PROPERTIES

O . A 2-coloration will give the out node opposite colo r

to the in node .

1. For any choice of a letter from the in node, and n o

matter what letters are put on nodes other than the in node ,

there is a compatible choice of letters from the remainin g

nodes of the half-propagator .

2. For any assignment of letters to nodes other than th e

in node, for any choice of a letter from the out node, there i s

at most one choice of letter incompatible with it on the in

node . (This is a direct consequence of 02,2,2 being 2-choosable )

3. There is an assignment of letters, and a choice of i n

letter, such that only one choice of letter from the out node i s

compatible with it .

PROPAGATOR

It can be made by merging the out node of any half-prop -

agator with the in node of any other half-propagator .

PROPERTIES

O . A 2-coloration will give the out node the same color a s

the in node .

1. Same as for half-propagator .

2. For any assignment of letters, there is at most on e

choice of letter for the in node which is incompatible with som e

letter on the out node . (Every other letter on the in node i s

compatible with all letters on the out node . )

3. Same as for half-propagator .

MULTIOUTPUT PROPAGATOR

OUT

	

OUT

	

OUT
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PROPERTIES

O . A 2-coloration will give the out nodes opposite colo r

to the in node .

1. Same as for half-propagator .

2. For any assignment of letters, there is at most on e

choice of letter for the in mode which is incompatible with some

combination of letters from the out nodes . (Every other lette r

in is compatible with all letters out . )

3. There is an assignment of letters, and a choice of i n

letter, such that only one combination of choices from the ou t

nodes is incompatible with it .

INITIAL GRAPHS

A "3-graph" is :

PROPERTIES

O . A 2-coloration gives all out nodes the same color .

1. For all assignments of letters, take any letter from

any out node, and find that a compatible choice exists for the

rest of the 3-graph .

2. There is an assignment of letters such that any letter

from any out node is compatible with only one letter from the

other out node .

OUT
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PROPERTIES

O . A 2-coloration gives out nodes the same color .

1. For any assignment of letters, at least one of the ou t

nodes has the property that for either choice of letter fro m

the out node, there is a compatible choice for the rest of th e

graph .

2. For either out node, there is a choice of letters suc h

that only one choice of letter from that out node is compatibl e

with a choice from the rest of the graph .

The graph G consists of the following .

For each i from 1 to k, we have a d-graph, with the ou t

nodes named U i and U .
For each i from k+l to r, we have a 3-graph, with the ou t

nodes named U i and IIi .

We think of the Ci 's as clauses, and think of us and

	

asas

literals . For each literal v we connect a multioutput prop -

agator to the node named V, identifying the in node of the prop -

agator with V . All the multioutput propagators look alike

having 3m output nodes, one for each ij where is ism and is j s 3 .

Now we add m new nodes (each with f( Ci )=3) named Cl , C2 , . . .

Cm . For each i from 1 to in, and each j from 1 to 3, connect C i

to the ij node of the multioutput propagator attached to th e

node named X .

That describes the graph . Now the graph can be pruned b y

taking off nodes which have valence less than f value . The

final G will have valences only 2,3, or 4, and it will be bi-

partite (that is, 2-colorable) . The f value at any node wil l

be 2 or 3 .

It should be verifiable from the properties of the con -

structs, that G is f-choosable iff the logical statement is true .
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THE RANDOM BIPARTITE CHOICE NUMBER

Now we present a theorem which tells that there exis t

constants Cl and C 2 such that an m X m random bipartite grap h

will have choice number between C l log m and C2 1og m . The proo f

will be self contained, with the aid of a lemma .

Having fixed m top nodes, and m bottom nodes, let Rm,m
denote any one of the bipartite graphs whose edges constitut e

a subset of the m2 possible top-to-bottom edges . We think o f

Rm,m as having been chosen at random . Also we think of a "txt "

as any pair consisting of a t-subset of top nodes and a t -

subset of bottom nodes .

LEMMA

Suppose t z logg2 , and let f be the event that an Rm,m ha s

an empty induced subgraph on at least one txt .

Then f has probability <	 1	
(t!) 2

PROOF OF LEMMA
2

The number of possible R m m 's is 2m . The number of txt' s

m l2

	

'

	

2 -t2
is ( t/ . Each possible edge empty txt is contained in 2m

	

of

the Rm,m 's . Thus, the number of Rm,m 's which contain at leas t

.one empty txt is < 2 m
2 -t2 (m 12t

Therefore f has probability < 2
m2-t2

(t) 2	 =	 (t/2

t/2 t 2
(7)2

	

(2t/2)2

	

_
t !

t	 	
1

s	 	 - 	 2	

2 t2

	

2t2

	

2 t2

	

(t!) 2

THEOREM

Suppose log	 6 > 121, and t= I 2 logg 2m

2
t

	

2m

	

2t
2
	 1

With ms 2 2 , we calculate as follows .

1 50



Then with probability >1- 	 12 , we have
( t!) '

log m < choice # Rlog 6

	

m,m < 3 iogg 6

PROOF

For the upper bound, we know from the discussion of N(2,k )

that if 2k-3 < m s 2k-2 , then choice # Km,m s k . This tells us that

to m

	

310 mchoice #Rm, ,n s choice #Km,m < logg 2 + 3 < lög–6

To derive the lower bound, let k=llo
mo

	

J >120 . Using the

fact that ek >kk/k!, and a calculator if necessary, we obtain :

m z 6k > 7k2 2kek > 7k2 (2kkk)> 7k2 (2k_l) > t • k . (2k1) .

Harmlessly supposing m=t•k•(2kk11 we next describe an assignment

of letters the adversary can use

/

to show that almost all Rm m
have choice number > k .

(2kk1)
is the number of k-subset s

of letters from {1,2, . . .,2k-1} . Each k-subset is put on k•t o f

the top nodes, and likewise on the bottom nodes . Now conside r

what must happen when a choice is attempted .

First we argue that on top there must beak letters, eac h

chosen from a t nodes . Because otherwise, ifs k-1 letters wer e

chosen a t times each, we could look at a k-subset of remainin g

letters . That k-subset was put on k•t top nodes, therefore on e

of the letters in it must have been chosen z k•t/k = t times .

Similarly there must be k letters, each chosen from z t

bottom nodes . But then, since only 2k-1 letters were used ,

there must be one letter simultaneously chosen from t top node s

and t bottom nodes . The attempted choice fails if this txt ha s

an edge . Now, according to the lemma, in almost all possibl e

R11 m's every txt does have an edge . Thus the lemma tells u s

that choice #R m ~ m >k, with probability > 1- 	 12

	

In other
(t! )

words, we have proved the lower bound :
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	 rrLwith probability >1-

	

, we have choice #Rm m > lo
g 6 '

(t!)

	

g

THE RANDOM COMPLETE GRAPH - OPEN QUESTION S

We do not know good bounds for the choice number of th e

random complete graph . Having fixed n nodes, let Rn denote

any one of the graphs whose edges constitute a subset of the( n )
2

possible edges . We think of R n as having been chosen at random ,

and look for bounds L(n) and U(n) for which we can prove tha t

L (n) < choice #Rn < U (n) ,

with probability -*1 as n gets large .

From the known bounds for X Rn , we know that there exists a

constant c such that log n s L(n) . On the upper side we merel y

know that U(n) s n .

Thus a specific open problem is to prove that with proba-

bility -. 1, choice #R n ; 0

	

as
n,*, .

n

It would be even better to find good bounds for K
m* r

K

	

where the number of nodes is n=rm, and m is abou t
m,m, . . .,m

the size of log n .

We do know that choice #K 3*r > r+c .

The only one of this kind for which we know the exact valu e

is K2*r , which may be of interest because it is the only example

we have whose proof uses the P . Hall theorem .

THEOREM

Choice #K2*r= r .

PROOF

Starting at r = 2, we already know that choice # K2*2= 2 .

(it is the 4-cycle) .

To induct, suppose r > 2, and suppose we know the theore m

for all cases <r . Let the adversary put r letters on every node .

If some letter is on both nodes of a nonadjacent pair, we ca n

choose that letter from both nodes of that pair, and delete i t
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from all other nodes . We can complete the choice by induction

in this case .

Otherwise every nonadjacent pair has a disjoint pair o f

sets of letters . Any union of s r of the sets of letters o n

nodes will have z r letters . Any union of >r of the sets wil l

have � 2r letters, because it will include a disjoint pair . The

conditions for the P . Hall theorem are satisfied, so ther e

exists a system of distinct representatives . That is, the
choice exists .

Here are some more specific numbers which are easily proved .

Kk-1,m is k-choosable for all m, all k z 2 .

k-choosable for m <kkKk,m

	

is not k-choosable form z kk .

PLANAR GRAPHS

Since every planar graph has a node of valence s5, it fol -

lows easily that every planar graph is 6-choosable . Perhap s

some mathematicians, who are dissatisfied with the recent com -

puter proof of the 4-color theorem, still sense that there ar e

some things we ought to know, but do not yet know, about th e

structure of planar graphs . Here we offer two conjecture s

which may incidentally add interest to that exploration .

CONJECTURE

Every planar graph is 5-choosable .

CONJECTURE

There exists a planar graph which is not 4-choosable .

QUESTION

Does there exist a planar bipartite graph which is not 3 -

choosable ?

Here is a graph which is planar, and 3-colorable, but no t

3-choosable .
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Ga :b)-CHOOSABILITY

Suppose a is the number of distinct letters on each node ,

put there by the adversary, and we want to choose a b-subse t

from each node, keeping the chosen subsets disjoint wheneve r

the nodes are adjacent . G will be (a :b)-choosable if such a

choice can be made no matter what letters the adversary puts .

In terms of (a :b)-choosability we can say that if ther e

does exist a planar bipartite graph which is not 3-choosable ,

it will have been a very close call in the following sense . I f

a/b < 3, then there exists a planar bipartite graph which is no t

(a :b)-choosable . In fact K2,(a ~2 will be not (a :b)-choosable .

b

OPEN QUESTION

If G is (a :b)-choosable, does it follow that G is (am :bm) -

choosable ?

OPEN QUESTION
c, a

If G is (a :b)-choosable, and a S , does it follow that G

is (c :d)-choosable?

COMPOSITION LEMMA

Suppose H is obtained from G by adding edges . Let S be the

subgraph consisting of those edges and their nodes .

If S is (d :a)-choosable, and G is (a :b)-choosable, then H

is (d :b)-choosable .

PROOF

Let the adversary put d letters on each node . First mak e

a choice consisting of an a-subset from each node, with disjoin t

a-subsets on S-adjacent nodes . This first choice can be mad e

because S is (d :a)-choosable . Next make a choice consisting o f

a b-subset from each node's a-subset, with disjoint b-subsets o n

G-adjacent nodes . This second choice can be made because G i s

(a :b)-choosable . The resulting choice makes the b-subsets dis-

joint on adjacent nodes of H . Thus H is (d :b)-choosable .
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COROLLARY

If H is not 2k-choosable, and G is obtained from H b y

erasing disjoint edges, then G is not k-choosable .

Here is just one more theorem - a direct consequence of th e

fact that for given k and g there exists a family F of k-set s

with the following three properties .

1. F does not have property B

2. For any two distinct X,YEF, IXfYl s 1 .

3. The smallest cycle has length >g, in the graph whic h

has nodeset = F, with an edge between nodes X and Y if f

IX n Y l= 1 .

For a proof of the above fact, please refer to P . Erdős and A .

Hajnal, "On Chromatic Numbers of Graphs and Set Systems", Acta

Math . Acad . Sci . Hungar ., 17 (1966), pp . 61-99 .

THEOREM

For given k and g, there exists a bipartite graph G suc h

that the smallest cycle in G has length >g, and choice #G>k .

PROOF

Let F be a family of 2k-sets with properties 1 ., 2 ., 3 .

above . Let H be the bipartite graph having the 2k-sets of F a s

top nodes, and likewise as bottom nodes, with an edge betwee n

a top node X and a bottom node Y iff X fl Y # Q~ .

First observe that H is not 2k-choosable, because F doe s

not have property B . Any choice including one from each top

node would use all the letters belonging to some 2k-set on th e

bottom .

Next obtain G by erasing those edges of H which connect tw o

nodes having the same 2k-set . Thus G will inherit from F th e

property of having smallest cycle length > g .

The corollary to the composition lemma tells us that G i s

not k-choosable .
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Jeffrey Dinitz is a mathematician at Ohio State University . At the
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Raton in April 1979 he posed the following problem .
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To the best of our knowledge Jeff Dinitz problem remain s

unsolved for m z 4 .
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