S. A. Burr City College, CUNY

P. Erd8s

Hungarian Academy of Sciences

Let G_{1} and G_{2} be (simple) graphs. The Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest integer n such that if one colors the complete graph K_{n} in two colors I and II, then either color I contains G_{1} as a subgraph or color II contains G_{2}. The systematic study of $r\left(G_{1}, G_{2}\right)$ was initiated by F. Harary, although there were a few previous scattered results of Generiser, Gyarfas, Lehel, Erdठs, and others. For general information on the subject, see the surveys [1], [7], [8]. We also note here that notation not defined follows Harary [6].

Chvatal [3] proved that if T_{n} is any tree on n vertices, then

$$
r\left(T_{n}, K_{\ell}\right)=(\ell-1)(n-1)+1
$$

Trivially, then, if G_{n} is a connected graph on n points, we have $r\left(G_{n}, K_{\ell}\right) \geq(\ell-1)(n-1)+1$. It appears to be a general principle that if such a graph is sufficiently "sparse", equality holds. With this in mind, call a connceted graph G_{n} on n points ℓ-good if

$$
r\left(G_{n}, K_{\ell}\right)=(\ell-1)(n-1)+1
$$

We are preparing a systematic study of ℓ-good graphs [2]. We will not discuss the results of [2], but we will mention the following interesting unsolved problem: Let Q_{m} be the graph determined by the edges of the m-dimensional cube, so that Q_{m} has 2^{m} vertices, and $m 2^{m-1}$ edges. Is $Q_{m} \ell$-good if m is large enough?

One type of sparse graph not dealt with in [2] Is that of subdivision graphs. If G is a graph, its subdivision graph $S(G)$ is formed by putting a vertex on every edge of G. We will show that $S\left(K_{n}\right), n \geq 8$, is 3-good. In fact, we will treat a denser graph than this. Denote by $K^{\prime \prime}(n)$ the subdivision graph of K_{n}, together with all the edges of the original K_{n}. In other words, each edge of the K_{n} is replaced by a triangle. This graph has $n+\binom{n}{2}=\binom{n+1}{2}$ vertices and $3\binom{n}{2}$ edges. (for consistency, we denote $S\left(K_{n}\right)$ by $K^{\prime}(n)$.) We will prove the following result.

$$
\text { Theorem 1: If } n \geq 8 \text {, then } K^{\prime \prime}(n) \text { is } 3 \text {-good, }
$$

that is

$$
r\left(K^{\prime \prime}(n), K_{3}\right)=n^{2}+n-1
$$

The proof of this theorem is somewhat long and we defer it. It appears likely that the method can be extended to show that if ℓ is fixed, $K^{\prime}(n)$ is ℓ-good when n is large enough, but we have not carried out the details. Other possible extensions are discussed at the end of this paper.

We now turn our attention in another direction. Following Erd8s and Hajnal [4], denote by $K_{\text {top }}(n)$ any graph homeomorphic to K_{n}, that is a graph formed from K_{n} by putting various numbers of extra vertices on its edges. The paper [4] is reproduced in [9], pages 167-173. Thus K_{n} and $K^{\prime}(n)$ are both examples of a $K_{\text {top }}(n)$. Note that a $K_{\text {top }}(n)$ has n vertices of degree $n-1$ and anv number of degree 2 . Let $K_{\text {top }}(n)$ be the class of all $K_{\text {top }}(n)$. In [4] Erdiss and Hajnal investigate the Ramsey numbers $r\left(K_{\text {top }}(n), K_{\text {top }}(n)\right)$ and $r\left(K_{\text {top }}(m), K_{\ell}\right)$. (Here we have slightly extended the definition of r : If G_{1} or G_{2} are classes of praphs, we are satisfied if any number of a class appears in its appropriate color.) They prove (in our notation):

$$
r\left(K_{\text {top }}(n), K_{3}\right)>\mathrm{cn}^{4 / 3}(\log n)^{-2 / 3}
$$

Our method will give, without much difficulty,

$$
r\left(k_{\text {top }}(n), K_{3}\right)<c_{1} n^{3 / 2} .
$$

Before we prove this, we need another result. Denote by $r(n)$ the largest integer for which there is a graph G on $f(n)$ vertices which has no triangle, and moreover every induced subgraph of G has at least $f(n)$ edges. We prove the following result.

Theorem 2:

$$
\operatorname{cn}^{4 / 3}(\log n)^{-2 / 3}<f(n)<2^{-1 / 2} n^{3 / 2}
$$

Proof: The proof of the lower bound is implicitly contained in [4-see pg. 147] (and also in the proof of Theorem 3 which follows), so we only have to prove the upper bound. Let G be a graph with $f(n)$ vertices, all of whose n-vertex Induced subgraphs have at least $f(n)$ edges. Let q be the number of edges of G. Then, by a simple averaging argument, we obtain
$q \geq f(n)\binom{f(n)}{2}\binom{f(n)-2}{n-2}^{-1}=\frac{f^{2}(n)(f(n)-1)}{n(n-1)}>\frac{f^{3}(n)}{n^{2}} \geq \frac{n f(n)}{2}$, if $f(n) \geq 2^{-1 / 2} n^{3 / 2}$. Since G has $f(n)$ vertices, it has a vertex x of valency at least n. Since G has no triangle, all the vertices adjacent to x are mutually nonadjacent. But this contradicts (strongly) the assumption that any n vertices induce at least $f(n)$ edges, so necessarily $f(n)<2^{-1 / 2} n^{3 / 2}$, completing the proof.

Clearly, the constant $2^{-1 / 2}$ could be replaced by a smaller one. However, we will not pursue this farther since we belleve that $f(n)=O\left(n^{3 / 2}\right)$, althoush we don't know how to prove it. We can now prove our result on $r\left(K_{\text {top }}(n), K_{3}\right)$.

Theorem 3: For some constants c and c_{1},

$$
\mathrm{cn}^{4 / 3}(\log n)^{-2 / 3}<r\left(K_{\text {top }}(n), K_{3}\right)<c_{1} n^{3 / 2} .
$$

Proof: We have already said that the lower bound was proved in [4]. We prove the upper bound by showing that

$$
r\left(K_{\text {top }}(n), K_{3}\right) \leq f(n)+3 n-5 .
$$

Consider a graph G on $f(n)+3 n-5$ vertices such that \bar{G} has no triangle. Observe that if any vertex has degree at least n in \bar{G}, we are done, since otherwise we have even a K_{n} in G. (In fact, this also is immediate from Chvatal's result.)

From the definition of $f(n)$, we see that \bar{G} has a set of vertices $A=\left\{a_{1}, \ldots, a_{n}\right\}$ which induces fewer than $f(n)$ edges. We will develop a $K_{\text {top }}(n)$ in G for which A is the set of vertices of degree n. These vertices already span at least $\binom{n}{2}-f(n)+1$ edges, so that at most $f(n)-1$ must be foined by other paths. We will in fact do so with paths of length two, with the midpoints being distinct, of course.

Suppose, on the contrary, that we have joined k pairs of $a^{\prime} s, k<f(n)-1$, but that we cannot join a_{i} to a_{j} by a path of length two in G which avoids all vertices already used. We have used $n+k \leq n+f(n)-2$, leaving a set B of at least $2 n-3$ vertices. Since, by our assumption, none of these are adjacent to both a_{1} and a_{j} in G, either a_{i} or a_{j} is joined in \bar{G} to at least $n-1$ vertices in B. Since we also have that a_{i} and a_{j} are adjacent in \vec{G}, we have a point of degree at least n in \bar{G}. But this has been shown to be impossible, which completes the proof.

It would be of great interest to estimate $f(n)$, or $r\left(K_{\text {top }}(n), K_{3}\right)$, as accurately as possible. At the moment we cannot prove $f(n)>n^{4 / 3+\varepsilon}$ or $f(n)=0\left(n^{3 / 2}\right)$. It might not be out of the question to determine the existence and value of

$$
\lim _{n \rightarrow \infty} f(n) / \log n .
$$

To determine the exact value of $f(n)$ or $r\left(K_{\text {top }}(n), K_{3}\right)$ is probably hopeless.

Now we return to the proof of Theorem 1. It is very likely that this theorem actually holds for $\mathrm{n} \geq 3$. Once or twice (for instance in Fact 4) we prove a trifle more than necessary in what follows in the hope that this will help eventually to fill in the missing cases.

Proof of Theorem 1: Of course, $K^{\prime \prime}(n)$ has $n+\binom{n}{2}=N$ vertices, so we wish to show that $r\left(K^{\prime \prime}(n), K_{3}\right) \leq 2 N-1$. (That $r\left(K^{\prime \prime}(n), K_{3}\right) \geq 2 N-1$ follows immediately from the fact that $K^{\prime \prime}(n)$ is connected.) Let G be a graph on $2 \mathrm{~N}-1$ points and assume, contrary to the theorem, that $K^{\prime \prime}(n) \notin G$ and $K_{3} \not \subset \bar{G}$.

It will be convenient to make the following definition of a partial $K^{\prime \prime}(n)$. Let A and B be disjoint sets of vertices with $|A|=n$ and with $|B| \leq\binom{ n}{2}$. Then a $K^{\prime \prime}(A, B)$ is any graph consisting of a complete graph on A, together with a pair of edges connecting each point of B with a different pair of points of A. Such graphs are not unique in general, but of course if $|B|=\binom{n}{2}$, a $K^{\prime \prime}(A, B)$ is a $K^{\prime \prime}(n)$. Furthermore, if F is a $K^{\prime \prime}(A, B)$, define H_{F} to be the graph with A as its vertices, with a pair of vertices joined in H_{F} if they are joined in F through a point of B. Moreover, call a $K^{\prime \prime}(A, B)$ in G maximal in a given graph if there exists no $K^{\prime \prime}\left(A, B_{1}\right)$ in the graph with $\left|B_{1}\right|>|B|$.

We will now prove a series of facts about G,
leading finally to a contradiction.
Fact 1: If F is a maximal $K^{\prime \prime}(A, B)$ then \bar{H}_{F} contains no triangle.

To see this, assume to the contrary that $a_{1} a_{2} a_{3}$ is a triangle in $\overline{\mathrm{H}}_{\mathrm{F}}$ and let v be any vertex not contained in F. Since no two a_{i} can be joined through v in G, v is connected to at least two a_{1} in \bar{G}. Let v_{1} be any other
vertex not contained in F; it, too, is connected to at least two a_{i} in \bar{G}. Hence, for some a_{i}, the edges $a_{1} v$ and $a_{1} v_{1}$ are both in \bar{G}. Since \bar{G} contains no triangle, the edge $v v_{1}$ must be in G. But v and v_{1} were arbitrary vertices not in F, so these vertices span a complete graph in G. If F had as many as N vertices, F would be a $K^{\prime \prime}(n)$; so G contains a K_{N}, which is again a contradiction.

Fact 2: \bar{G} has no vertex of degree as large as L, where $L=\left[\frac{n^{2}}{4}\right]+n$.

Suppose that this is false; since \bar{G} has no triangle, G must have a K_{L}. Let A be a set of n vertices from the K_{L}. Omit for the moment the other $\left[\frac{n^{2}}{4}\right]$ vertices of the K_{L}, and let F be a maximal $K^{\prime \prime}(A, B)$ using the remaining part of G. By Fact $1, \bar{H}_{F}$ contains no triangle, so by Turán's Theorem, \vec{H}_{F} has no more than $\left[\frac{n^{2}}{4}\right]$ edges, and so H_{F} has at least $\binom{n}{2}-\left[\frac{n^{2}}{4}\right]$ edges. Therefore, $|B| \geq\binom{ n}{2}-\left[\frac{n^{2}}{4}\right]$. Furthermore, there are $L-n$ unused vertices in the K_{L}, where we have $\dot{L}-n=\left[\frac{n^{2}}{4}\right]$. Therefore, we can form a $K\left(A, B_{1}\right)$, where $\left|B_{1}\right|=\binom{n}{2}$, using $\left[\frac{n^{2}}{4}\right]$ of these unused vertices, and $\binom{n}{2}-\left[\frac{n^{2}}{4}\right]$ vertices from B. This contradiction establishes Fact 2.

Fact 3: Any two points of G are joined by at least $2 N^{-}-2 L-1$ different paths of length 2 .

This fact follows imnediately from Fact 2.

Fact 4: Let $\mathrm{n} \geq 7$ and let $\mathrm{F}=\mathrm{K}^{\prime \prime}(\mathrm{A}, \mathrm{B})$ be maximal. Suppose that a_{1}, a_{2}, a_{3} be distinct vertices in A, and suppose that a_{i} and a_{j} are connected through $b_{i j} \varepsilon B$. Let $u_{1} u_{2}$ be any edge in \bar{H}_{F}. Then G does not contain all six edges of the form $u_{i} b_{j k}$.
(Note that $u_{i}=a_{j}$ is permitted.) Assume this fact is false, so that G does contain s such edges. Let C be the set of vertices not in A or B, so $|C| \geq N$. Let. $c \varepsilon c$. Suppose G had two edges $c a_{i}$ and $c a_{j}$. Then G would contain the two paths $a_{i} c a_{j}$ and $u_{1} b_{i j} u_{2}$. In F, adjoin these two and delete the path $a_{i} b_{i j} a_{j}$. This new graph is a $K^{\prime \prime}(A, B \cup\{c\})$, contradicting the maximality of F. Thus for any c εc, there is at most one edge from c to a_{1}, a_{2}, a_{3}. Therefore, at least $2 N$ edges join the a_{i} to C in \bar{G}, and hence some a_{i} has degree at least $2 N / 3$. It is easy to see that this contradicts Fact 2 if $n \geq 7$.

Fact 5: $K_{n} \subset G$.

This fact follows easily from the well-known result that $r\left(K_{m}, K_{n}\right) \leq\binom{ m+n-2}{m-1}$, already proved in effect in [5]. (The paper [5] is reproduced on pages 5-12 of [9].)

We are now. ready to complete the proof of Theorem 1. By Fact 5, G contains a $K^{\prime \prime}(A,(\varnothing))$ for some A. Let $K^{\prime \prime}(A, B)=F$ be maximal. By hypothesis, $|B|<N$; this will lead to a contradiction. Let $u_{1} u_{2}$ be an edge of \vec{H}_{F}. By Fact 3, u_{1} and u_{2} are joined by at least $2 N-2 L-1$ different paths of length 2 , the midpoints of which all must lie in $A \cup B$,
by the maximality of F. of these midpoints, $n-2$ lie in A. Thus $2 N-2 L-1-(n-2)$ of these are in B, and therefore correspond to edges in H_{F}. It is easy to check that $2 N-2 L-1-(n-2)>\left[\frac{n^{2}}{4}\right]$ if $n \geq 8$. Because of this, some three of these midpoints correspond to a triangle $a_{1} a_{2} a_{3}$ in H_{F}, the midpoints being of course b_{12}, b_{23}, b_{31}. But this is just the configuration prohibited by Fact 4. This contradiction completes the proof of Theorem 1.

Now we prove one final result which is very simple, but interesting. Let G be a graph with $2 n-1$ vertices such that $K_{3} \not \subset \bar{G}$ and $K_{n} \not \subset G$. Then G has diameter 2. To see this, note, as we have before, that \bar{G} cannot have a vertex of degree as large as n. Hence every vertex of G has degree at least $\mathrm{n}-1$. From this it is immediate that any two vertices are either adjacent or joined by a path of length 2.

We close with some remarks about improvements and generalizations of Theorem 1. We have already conjectured that Theorem 1 actually holds for $\mathrm{n} \geq 3$, and we have indeed proved it for $\underline{n}=3$. The cases $4 \leq n \leq 7$ remain open. Although the methods of this paper would certainly help, dealing with these cases is likely to be tedious without at least one new idea. A more important direction is replacing. K_{3} by K_{ℓ}. Standard estimates of $r\left(K_{n}, K_{\ell}\right)$ show that. $K^{\prime \prime}(n)$ cannot be ℓ-good if $\ell>3$, but there is every reason to belleve that for each $\ell, K^{\prime}(n)$ is ℓ-good when n
is large enough. In fact, as we have said, it should be possible to extend the proof to this case fairly directly, but we have not carried this out.

Ancther interesting generalization would be to consider the subdivision graphs, or the modification we have treated here, of arbitrary graphs, rather than just $K^{\prime}(n)$ or $K^{\prime \prime}(n)$. This may be easy, but it would not be surprising if new difficulties arise. One might also consider higher-order subdivision graphs $S_{2}\left(K_{n}\right), S_{3}\left(K_{n}\right), \ldots$; this is probably straightforward. It may be more difficult to deal with arbitrary, but fixed, members of $K_{\text {top }}(n)$, even with the requirement that all the paths joining the n special points have lengths at least two. (Of course, some such requirement is necessary, since $K_{n} \varepsilon K_{\text {top }}(n)$, and K_{n} is certainly not even 3-good.)

One further generalization of $K^{\prime}(n)$ is of interest.
Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of vertices, and for each triple $\left\{a_{i}, a_{j}, a_{k}\right\}$ of them, join each to a new vertex $b_{1 j k}$. It seems certain that if ℓ is fixed, all large graphs of this form are ℓ-good, and similarly for the obvious generalizations. Parts of our proof of Theorem 1 generalize easily; some may not, especially those using Turan's Theorem, since these seem to need hypergraph versions of that theorem, and such versions are not nearly as precise as for graphs.

REFERENCES

[1] S. A. Burr, Generalized Ramsey Theory for Graphs A Survey, Graphs and Combinatorics, Springer, Berin 1974, 52-75.
[2] S. A. Burr and P. Erdis, Generalizations of a Ramsey-Theory Result of Chvátal, to appear.
[3] V. Chvátal, Tree-Complete Graph Ramsey Numbers, J. Graph Theory 1 (1977), 93.
[4] P. Erdos and A. Hajnal, On Complete Topological Subgraphs of Certain Graphs, Ann. Univ. Sci. Budapest. Ebtvos Sect. Math. 7 (1964), 143-149.
[5] P. Erdos and Gy. Szekeres, A Combinatorial Problem in Geometry, Compositio Math. 2 (1935), 463-470.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[7] F. Harary, A Survey of Generalized Ramsey Theory, Graphs and Combinatorics, Springer, Berlin 1974, 10-17.
[8] F. Harary, The Foremost Open Problems in Generalized Ramsey Theory, Proc. Fifth British Combinatorial Conference, Aberdeen, 1975, Utilitas Math. Pub. Inc., Winnipeg, 269-282.
[9] J. Spencer (ed.), Paul Erdibs: The Art of Counting, MIT Press, Cambridge, Mass., 1973.

