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Let G l and G 2 be (simple) graphs . The Ramsey*number

r(Gl ,G 2 ) is the smallest integer n such that if one colors

the complete graph Kn in two colors I and II, then either

color I contains G 1 as a subgraph or color II contains G 2 .

The systematic study of r(Gl ,G2 ) was initiated by F . Harary,

although there were a few previous scattered results of

Generisér, Gyárfás, Lehel, Erdős, and others . For general

information on the subject, see the surveys C 1], 1 7], [ 8] .

We also note here that notation not defined follows Harary

[ 6 ] .

Chvátal [ 3] proved that if Tn is any tree on n

vertices, then

r(Tn,K£ ) = (£-1)(n-1) + 1

Trivially, then, if Gn is a connected graph on n points, we

have r(Gn,Kt) > (Z-1)(n-1) + 1 . It appears to be a general

principle that if such a graph is sufficiently "sparse",

equality holds . With this in mind, call a connected graph

Gn on n points 1-good if



We are preparing a systematic study of k-good

graphs [ 2] . We will not discuss the results of [ 2], but

we will mention the following interesting unsolved problem :

Let Qm be the graph determined by the edges of the m-dimen-

sional cube, so that Qm has 2m vertices, and m2 m-1 edges .

Is Qm Z-good if m is large enough?

one type of sparse graph not dealt with in (2 ]

Is that o£ subdivision graphs . If G is a graph, its sub-

division graph S(G) is formed by putting a vertex on every

edge of G . We will show that S(K n ), n > 8, is 3-good : In

fact, we will treat a denser graph than this . Denote by

K 11 (n) the subdivision graph of Kn , together with all the

edges of the original Kn . In other words, each edge of

the Kn is replaced by a triangle . This graph has

n + (2) _ ( n2 1 ) vertices and 3(2) edges . (for consistency,

we denote S(Kn ) by K'(n) .) We will prove the following

result .

Theorem 1 : If n > 8, then V(n) is 3-good,

that is

2

r(Gn ,K £ ) _ (£-1)(n-1) + 1 .

r(K"(n),K3) = n2 + n - 1 .
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The proof of this theorem is somewhat long and

we defer it . It appears likely that the method can be

extended to show that if Z is fixed, K'(n) is 1-good when

n is large enough, but we have not carried out the details .

Other possible extensions are discussed at the end of this

paper .

We now turn our attention in another direction .

Following Erdős and Hajnal [ 4], denote by Ktop (n) any

graph homeomorphic to Kn , that is a graph formed from Kn

by putting various numbers of extra vertices on its edges .

The paper [4) is reproduced in C9], pages 167-173 . Thus Kn

and K' (n) are both examples of a K top (n) . Note that a Ktop (n)

has n vertices of degree n-1 and anv number of degree 2 . Let

Ktop (n) be the class of all Ktop (n) . In [4] Frdds and

Hajnal investigate the Ramsey numbers r(K top (n),Ktop (n))

and r(Ktop (m),K9.

	

(Here we have slightly extended the

definition of r : If G 1 or G2 are classes of graphs, we are

satisfied if any number of a class appears in its appropriate

color .) They prove (in our notation) :

r(Ktop (n),K 3 ) > cn4/3(log n ) - 2/3 .

Our method will give, without much difficulty,

r(Ktop (n),K 3 ) < c ln 3/2 .
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Before we prove this, we need another result .

Denote by f(n) the largest integer for which there is a

graph G on f(n) vertices which has no triangle, and more-

over every induced subgraph of G has at least f(n) edges .

We prove the following result .

Theorem2 :

cn 4/ 3 (log n) -2/3 < f(n) < 2-112n3/2 .

Proof : The proof of the lower bound is implicitly con-

tained in [4-see pg . 1471 (and also in the proof of Theorem 3

which follows), so we only have to prove the upper bound .

Let G be a graph with f(n) vertices, all of whose n-vertex

induced subgraphs have at least f(n) edges . Let q be the

number of edges of G . Then, by a simple averaging argument,

we obtain

q > f(n)( f2n))(f(n)22)-1 = f 2 (n(nf( )-1) > f32(n) > nf(n)
n

if f(n) > 2 -1/2n 3/2 . Since G has f(n) vertices, it has a

vertex x of valency at least n . Since G has no triangle,

all the vertices adjacent to x are mutually nonadjacent .

But this contradicts (strongly) the assumption that any n

vertices induce at least f(n) edges, so necessarily

f(n) < 2-1/2n 3/2 , completing the proof .



Clearly, the constant 2-1/2 could be replaced by

a smaller one . However, we will not pursue this farther

since we believe that f(n) = 0(n3/2 ), although we don't

know how to prove it . We can now prove our result on

r(Ktop (n),K 3 ) .

Theorem3 : For some constants c and c l ,

en4/3(log n ) - 2/3 < r(Ktop (n),K3 ) < c 1n 3/2 .

Proof : We have already said that the lower bound

was proved in [4] . We prove the upper bound by showing

that

r(Ktop (n),K3 ) < f(n) + 3n - 5 .

Consider a graph G on f(n) + 3n - $ vertices such that d

has no triangle . Observe that if any vertex has degree

at least n in G, we are done, since otherwise we have even

a Kn in G . (In fact, this also is immediate from Ctav3ta1's

result .)

From the definition of f(n), we see that G has a

set of vertices A = {al., . . .,anI which induces fewer than

f(n) edges . We will develop a Ktop (n) in G for which A is

the set of vertices of degree n . These vertices already span

at least (2) - f(n) + 1 edges, so that at most f(n) - 1 must

be joined by other paths . We will in fact do so with paths

of length two, with the midpoints being distinct, of course .
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Suppose, on the contrary, that we have joined k

pairs of a's, k < f(n) - 1, but that we cannot join ai to

aj by a path of length two in G which avoids all vertices

already used . We have used n + k < n + f(n) - 2, leaving

a set B of at least 2n - 3 vertices . Since, by our assump-

tion, none of these are adjacent to both ai and aj in G,

either a i or aj is joined in d to at least n - 1 vertices

in B . Since we also have that ai and aj are adjacent in G,

we have a point of degree at least n in d . But this has

been shown to be impossible, which completes the proof .

It would be of great interest to estimate f(n),

or r(Ktop(n),K 3 ), as accurately as possible . At the moment

we cannot prove f(n) > n 4/3+E or f(n) _ O(n 3/2 ) . It might

not be out of the question to determine the existence and

value of

lim f(n)/log n .
n-> ,, »

To determine the exact value of f(n) or r(K top (n),K 3 ) is
probably hopeless .

Now we return to the proof of Theorem l . It is

very likely that this theorem actually holds for n > 3 .

Once or twice (for instance in Fact 4) we prove a trifle

more than necessary in what follows in the hope that this

will help eventually to fill in the missing cases .
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Proofof Theorem 1 : Of course, K 11 (n) has n + (2) = N

vertices, so we wish to show that r(K"(n),K3) < 2N - 1 . (That

r(K"(n),K3) > 2N-1 follows immediately from the fact that K"(n)

is connected .) Let G be a graph on 2N - 1 points and assume,

contrary to the theorem, that K"(n)

	

G and K 3 yt G .

It will be convenient to make the following defini-

tion of a partial K"(n) . Let A and B be disjoint sets of

vertices with JAI = n and with JBI < ( 2) . Then a K"(A,B) is

any graph consisting of a complete graph on A, together with

a pair of edges connecting each point of B with a different

pair of points of A . Such graphs are not unique in general,

but of course if IBI _ ( 2), a K"(A,B) is a K"(n) . Further-

more, if F is a K"(A,B), define HF to be the graph with A as

its vertices, with a pair of vertices joined in H F if they

are joined in F through a point of B . Moreover, call a

K"(A,B) in G maximal in a given graph if there exists no

K"(A,Bl ) in the graph with 'B l ' > JBI .

We will now prove a series of facts about G,

leading finally to a contradiction .

Fact l : If F is a maximal K"(A,B) then H F con-

tains no triangle .

To see this, assume to the contrary that a1a2 a 3

is a triangle in HF and let v be any vertex not contained

in F. Since no two ai can be joined through v in G, v is

connected to at least two a i in G. Let v1 be any other
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vertex not contained in F ; it, too, is connected to at least

two ai in G . Hence, for some a i , the edges aiv and ai vl are

both in d7. Since d contains no triangle, the edge vv1 must

be in G . But v and v l were arbitrary vertices not in F, so

these vertices span a complete graph in G . If F had as many

as N vertices, F would be a K"(n) ; so G contains a KN , which

is again a contradiction .

Fact 2 : G has no vertex of degree as large as L,

where L

there

L - n

Suppose that this is false ;

G must have a KL . Let A be a set of n vertices from the KL .
n 2]Omit for the moment the other [ , vertices of the K L , and

let F be a maximal K"(A,B) using the remaining part of G .

By Fact l, HF contains no triangle,
2

HF has no more than [-] edges,

(2) - [4J edges . Therefore,

are L-n unused vertices
2

[-nk-' . Therefore,
2

ÍB1Í = ( ), using [n

	

of

( 2) - 141 vertices from B .

and

IBI

since G has no triangle,

so by Turán's Theorem,

so HF has at least

- [M( 2 )
in the KL , where we have

we can form a K(A,B 1 ),

these unused vertices, and

Furthermore,

where

This contradiction establishes

Fact 2 .

Fact 3 : Any two points of G are joined by at least

2N - 2L - 1 different paths of length 2 .

This fact follows immediately from Fact 2 .
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Fact4 : Let n > 7 and let F = K"(A,B) be maximal .

Suppose that al ,a 21 a 3 be distinct vertices invA, and suppose

that a i and aj are connected through b ij e B. Let ul u 2 be

any edge in HF . Then G does

the form uib jk*
(Note

fact is false,

C be the set of

K"(A,B U fc }),

not contain all six edges of

that ui = aj is permitted .) Assume this

so that G does contain s such edges . Let

A or B, so ICI > N . Let •vertices not in

c c C . Suppose G had two edges ca, and ca j . Then G would

contain the two paths ai caj and u1b ij u2 . In F, adjoin these

two and delete the path a ib ij aj . This new graph is a

contradicting the maximality of F . Thus

for any c e C, there is at most one edge from c to al ,a 2 ,a 3 .

Therefore, at least 2N edges join the a i to C in G, and

hence some ai has degree at least 2N/3 . It is easy to see

that this contradicts Fact 2' if n > 7 .

Fact 5 : Kn C G .

This fact follows easily from the well-known result

that r(Km,Kn ) < (mmn12), already proved in effect in [ 5 ~ •

(The paper [57 is reproduced on pages 5-12 of [9) .)

We are now .ready to complete the proof of Theorem 1 .

By Fact 5, G contains a K"(A,(0}) for some A . Let K"(A,B) = F

be maximal . By hypothesis, JBI < N ; this will lead to a

contradiction. Let ulu 2 be an edge of HF . By Fact 3,

U1 and 112 are joined by at least 2N - 2L - 1 different paths

of length 2, the midpoints of which all must lie in A U B,
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by the maximality of F . Of these midpoints, n-2 lie in A .

Thus 2N - 2L - 1 - (n-2) of these are in B, and therefore

correspond to edges in HF . It is easy to check that

2N - 2L - 1 - (n-2) > [-n2-, if n > 8 . Because of this, some

three of these midpoints correspond to a triangle a la 2 a 3 in

HF , the midpoints being of course b 121 b23' b 31 . But this is

just the configuration prohibited by Fact 4 . This contra-

diction completes the proof of Theorem 1 .

Now we prove one final result which is very simple,

but interesting . Let G be a graph with 2n-1 vertices such

that K 3 V G and Kn ¢ G . Then G has diameter 2 . To see this,

note, as we have before, that d7 cannot have a vertex of

degree as large as n . Hence every vertex of G has degree

at least n - 1 . From this it is immediate that any two

vertices are either adjacent or joined by a path of length 2 .

We close with some remarks about improvements and

generalizations of Theorem 1 . We have already conjectured

that Theorem 1 actually holds for n > 3, and we have indeed

proved it for n = 3 . The cases 4 < n < 7 remain open .

Although the methods of this paper would certainly help,

dealing with these cases is likely to be tedious without

at least one new idea . A more important direction is

replacing .K3 by KR . Standard estimates of r(Kn,KL ) show

that_K"(n) cannot be £-good if Z > 3, but there is every

reason to believe that for each Z, K' (n) is £-good when n



is large enough . In fact, as we have said, it should be

possible to extend the proof to this case fairly directly,

but we have not carried this out .

Another interesting generalization would be to

consider the subdivision graphs, or the modification we

have treated here, of arbitrary graphs, rather than just

K'(n) or K"(n) . This may be easy, but it would not be

surprising if new difficulties arise . One might also

consider higher-order subdivision graphs S 2 (Kn),S3(Kn), . .K

this 3s probab-ly straightforward . It may be more difficult

to deal with arbitrary, but fixed, members of Ktop (n), even

with the requirement that all the paths joining the n special

points have lengths at least two . (Of course, some such

requirement is necessary, since Kn E Ktop (n), and Kn is

certainly not even 3-good .)

One further generalization of K'(n) is of interest .

Let {a,, . . .,anI be a set of vertices, and for each triple

{ai ,aj ,ak I of them, join each to a new vertex b ijk . It

seems certain that if Z is fixed, all large graphs of this

form are R-good, and similarly for the obvious generaliza-

tions . Parts of our proof of Theorem 1 generalize easily ;

some may not, especially those using Turan's Theorem, since

these seem to need hypergraph versions of that theorem, and

such versions are not nearly as precise as for graphs .
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