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LAGRANGE'S THEOREM WITH N "3 SQUARES

S. L. G. CHOI, PAUL ERDÖS AND MELVYN B. NATHANSON 1

ABSTRACT. For every N > I we construct a set A of squares such that JA <
(4/log 2)N 1 / 3 log N and every nonnegative integer n < N is a sum of four squares
belonging to A .

Let A be an increasing sequence of nonnegative integers and let A(x) denote the
number of elements of A not exceeding x. If every nonnegative integer up to x is a
sum of four elements of A, then A(x)4 > x and so A(x) > x 1/4. In 1770, Lagrange
proved that every integer is a sum of four squares . If A is a subsequence of the
squares such that every nonnegative integer is a sum of four squares belonging to
A, then we say that Lagrange's theorem holds for A . Since there are 1 + [x 12]
nonnegative squares not exceeding x, it is natural to look for subsequences A of the
squares such that Lagrange's theorem holds for A and A is "thin" in the sense that
A(x) < cx" for some a < 1/2 .

Hartter and Zöllner [2] proved that there exist infinite sets S of density zero such
that Lagrange's theorem holds for A = {n2In 1 S) . It is still true in this case that
A(x) - x1/2. Using probabilistic methods, Erdös and Nathanson [1] proved that,
for every e > 0, Lagrange's theorem holds for a sequence A of squares satisfying
A(x) < cx (3/8)+e

In this paper we study a finite version of Lagrange's theorem . For every N > 1,
we construct a set A of squares such that JA < (4/log 2)N 1 / 3 log N and every
n < N is the sum of four squares belonging to A . This improves the result of Erdös
and Nathanson in the case of finite intervals of integers . We conjecture that for
every e > 0 and N > N(e) there exists a set A of squares such that JA < N (1 /4)+e

and every n < N is the sum of four squares in A .
Let JA denote the cardinality of the finite set A and let [x] denote the greatest

integer not exceeding x .

LEMMA. Let a > 1 . Let n > a2 and n 5~ 0 (mod 4) . Then either n - a2 or
n - (a - 1)2 is a sum of three squares .

PROOF . If the positive integer m is not a sum of three squares, then m is of the
form m = 4s(8t + 7). If s = 0, then m - 3 (mod 4) . If s > 1, then m - 0 (mod 4) .
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Since a - 1, a are two consecutive numbers, there exist i, j E {0, 1 } such that
a - i is even and a - j is odd, hence (a - i)2 == 0 (mod 4) and (a - j)2 = 1
(mod 4). If n =- 1 or 2 (mod 4), then

n - (a - i)2 - n - 1 or 2 (mod 4),
and son - (a - i)2 is a sum of three squares . If n - 3 (mod 4), then

n - (a - j)2 - n - 1 - 2 (mod 4),
and so n - (a - j) 2 is a sum of three squares . This proves the lemma.

THEOREM . For every N > 2 there is a set A of squares such that

JA I < 4 N 1/ 3 logN
( 1g

	 2 )

and every nonnegative integer n < N is a sum of four squares belonging to A .

PROOF . Let N > 6. Let A 1 = {a 210 < a < 2N 113 and a2 < N} and let A 2 consist
of the squares of all numbers of the form [k112N 1/31 - i, where 4 < k < N 1/3 and
i C {0, 1) . Then JA 1 I < 2N 113 + 1 and IA 2 1 < 2N I13 - 6 . Let A3 = A, U A2 .
Then IA3

1
< 4N 1/3 .

The set A, contains all squares not exceeding min(N, 4N 2/). Thus, if 0 < n <
min(N, 4N2/3), then n is a sum of four squares in A1 C A3 . We shall show that if
4N2 / 3 < n < N and n 0 (mod 4), then there is an integer b2 C A2 such that
0 < n - b2 < 4N 2/ 3 and n - b 2 is a sum of three squares . Since each of these
squares does not exceed 4N 2/3, it follows that n - b 2 is a sum of three squares in
A,, hence n is a sum of four squares in A1 U A2 = A3 •

Suppose 4N2 / 3 < n < N and n 0 (mod 4). Let k = [n/N 2/ 31 . Then 4 < k <
N 1/3. Let a = [k 112N 1/3 1 . Then a2 < n. Moreover, a2 E A2 and (a - 1)2 C A2 . By
the lemma, n - b2 is a sum of three squares for either b = a or b = a - 1. We
must now show that 0 < n - b2 < 4N 2/ 3 . Since kN2/ 3 < n < (k + 1)N213 and
a < k112N 1 / 3 < a + 1, it follows that

n - b 2 > n - a2 kN213 - (k112N 1/3)2 = 0.

Since k < N 1 / 3 and 4 < 3N 1 / 6 for N > 6, it follows that

n - b 2 < (k + 1)N 2/3 - (a - 1) 2

= N 2/ 3 + 4012N1/3

< N 2 / 3 + 4N 1/2

< 4N 2/3 .

Therefore, if 0 < n < N and n 0 (mod 4), then n is a sum of four squares
belonging to A 3.

Construct the finite set A of squares as follows :
A = {4'a2Ia2 E A3 , r > 0,4`a2 < N} .

< (k + 1)N2/3 - ( k112N 1/3 - 2)2

< (k + 1)N 2/3 - (kN2/ 3 - 4k112N 1/3)
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Then A 3 C A and
logN

J A I c log 4 + 11 I A 1 <
(2log4

4N 1/3

g

	

s

	

log

_ (1 g 2 )N 1/3 log N .

Let 0 < n < N. Then n = 4rm, where r > 0 and m 0 (mod 4) . Consequently,
m = ai + a2 + a3 + aá, where a; E A 3. Then

n = 4rm = 4ra ; + 4ra2 + 4ra 3 + 4'aá

_ (2a1) 2 + (2`a2)2 + (2a3
)2 + (2ra4)2

is a sum of four squares in A . This proves the theorem for N > 6.
For N < 6, it suffices to consider the set A = {0, 1} for N = 2, 3 and the set

A = {0, 1, 4} for N = 4, 5. This completes the proof .
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