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It is well known that there are at most four Moore graphs of diameter 2, i .e ., graphs of
diameter 2, maximum degree d, and d 2 + 1 vertices . The purpose of this paper is to
prove that with the exception of C4, there are no graphs of diameter 2, of maximum
degree d, and with d 2 vertices .

INTRODUCTION

The purpose of this paper is to prove that, with the exception of C 4 , there are no
graphs of diameter 2 and maximum degree d with d 2 vertices .
On one hand our paper is an extension of [4] where it was proved that there are at

most four Moore graphs of diameter 2 (i .e . graphs of diameter 2, maximum degree d,
and d2 + 1 vertices) . We also use the eigenvalue method developed in that paper .
On the other hand, our problem originated in [2] . The domination number of a

graph G is the smallest integer k such that G has a k-element subset, S, for which
every vertex of G either belongs to S or is adjacent to a vertex of S .
Authors of [2] constructed a number of graphs of diameter 2 which contained no

three of four-cycles and for which the domination number was arbitrarily large . As
a rule, the only lower bounds for the domination numbers were obtained from upper
bounds on the maximum degree .
This suggested the following question : How small may the maximum degree be

compared to the number of vertices in graphs of diameter 2?
Since a graph of a diameter 2 and maximum degree d may have at most d 2 + 1

vertices, the question can be formulated as follows : given non-negative numbers d
and S, is there a graph of diameter 2 and maximum degree d with d 2 + 1 - 5 vertices?
It was proved in [4] that if 5 = 0 then there are graphs corresponding to d = l, 3, and
7 and that, moreover, only one more case, namely of d = 57, is possible . The case
6 = 1 is solved in the next section, and the last section contains some comments con-
cerning the case 5 > l .
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THE RESULT

Theorem . If G is a graph of diameter 2 with n = d 2 (d >, 2) vertices and maximum
degree d, then G is isomorphic to a four-element cycle .

Proof:: First of all, let us notice that if G had a vertex of degree k < d, then G
would have at most 1 + k + k . (d - l) = 1 + k • d < d 2 vertices . Thus G must be
regular of degree d and in particular d must be even .
Since G has diameter two, the neighbors of any vertex dominate G. Thus, if G had

a triangle it would have at most 1 + (d - 2)(d - l) + 2(d - 2) < d 2 vertices . Conse-
quently, G is triangle-free and a similar argument shows that every vertex of G is
contained in at most one C4 .
On the other hand if G had a vertex contained in no C 4 , then G would have 1 + d +

d(d - l) >d 2 vertices .
Thus, for each vertex r of G there is exactly one vertex r' of G at a distance 2 from

r, such that there are exactly two paths of length 2 joining r and r'. Let K be the direct
sum of 2 X 2 matrices of the form

i .e .,K is the adjacency matrix of a l-factor .
Then if A is the adjacency matrix of G, we have

A 2 +A - (d - 1)I = J + K

	

(l)

where J is a matrix all of whose entries are l .
Since J is regular, A commutes with J, therefore with K, hence all matrices in (l) can

be simultaneously diagonalized . Since K has eigenvalues 1 and -l each of multiplicity
d'/2, and the eigenvalue +l of K is paired with eigenvalues d ofA and d2 of J, we see
from the fact that all other eigenvalues of J are 0, that the eigenvalues of A other than
d are roots a satisfying :

a2 + a - (d - l) = +l,

	

occurring d2 /2 - 1 times

	

(2)

or

a2 + a - (d-

	

occurring d2 /2 times .

	

(3)

Thus the remaining eigenvalues of A are

/3, = - l/2+s/4d-7/2and0 2 =-l/2- N/4d-7/2

with multiplicities m, and m 2 satisfying

ml +m2 =d 2/2
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and

-y, _ -l/2 +-/1 + 4d/2 and y 2 = - l/2 - Vl + 4d/2

with multiplicities n,, n 2 satisfying

n, +n 2 =d 2 /2- l .

Let p = s/4d - 7 and q = J4d + l .
From (2) x 2 +x - d is a factor of the characteristic polynomial of A . Therefore if G

is not an integer, n, = n2 , which would imply that d 2 /2 - 1 is even . This contradic-
tion shows that q is an integer .
If p is also an integer, then since q2 - p 2 = 8, we must have that p = I and q =3 .

Thus, d = 2 and in this case G is a cycle of length 4 .
Ifp is not an integer, then m, = m2 .
Since m, = m 2 , m, + m 2 = d 2 /2, n, + n2 = d2 /2 - 1, and the trace of A = 0 = sum

of eigenvalues of A, we have

0=d+m, -l+P +m2
-1 2 p+n, - l + q +n2 -12q

=d - I (MI +m2)-
2
(n, +n2 )+(n, -n2) 2

d 2

	

1

	

q
=d- 2 +2+(n,-n2)2 .

Since d = (q2 - 1)/4, we can conclude that

q4 - 10g2 - 16q(n, - n 2 ) - 7 = 0 .

Since q is an integer root of this equation, then q = 1 or q = 7, i .e ., d = 0 or d = 12 .
If d = 12 then G has eigenvalues

12

	

with multiplicity 1

-l + 41
2

3

	

with multiplicity 44

-4

	

with multiplicity 27

Since G is triangle-free, the trace of A 3 is 0. But

with multiplicity 36

with multiplicity 36

3trA =

	

~ 3
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where X are eigenvalues of A . The sum of cubes of the above eigenvalues, however, is
72 and thus there is no graph with d = 12 .
Thus the theorem is proved .
Let F be a finite field and P a projective plane over F, i .e ., elements of P are propor-

tional triples of nonzero elements of F 3 . Brown [ 1 ] defines two elements of P to be
adjacent iff their scalar product is zero . It is easy to see that if F has p elements then
the resulting graph has maximum degree p + 1, diameter 2, and p 2 + p + 1 vertices
(these graphs were introduced in a different form in [3] ) .
For our purposes, Brown's construction can be slightly improved . A vertex (x,y, z)

of Brown's graph has degree p iff the norm x 2 + y 2 + z2 = 0. Thus if F has character-
istic 2 and a * 0 then the vector (a, b, c) is adjacent to the vector (b + c, a + c, a + b),
which has norm 0 . If F has characteristic 2 then the function f(x) =x 2 is one-to-one
and hence onto . Thus, up to proportionality, Brown's graph has p + I vertices of
degree p . Adding a new vertex and joining it to all vertices of degree p we obtain a
(p + l) regular graph with p2 + p + 2 vertices .
We know only three examples of graphs in which 6 = 2, namely triangle, the 3-

regular R(3,3)-critical Ramsey graph, and the graph corresponding to p = 2 in the
above construction .

The second author wishes to acknowledge interesting conversations with Professor
Richard D. Sinkhorn .
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