Maximum Degree in Graphs of Diameter 2

Paul Erdös
Mathematical Institute of Hungarian Academy of Sciences, Budapest, Hungary
Siemion Fajtlowicz
Department of Mathematics, University of Houston, Houston, Texas 77004
Alan J. Hoffman
I.B.M. Thomas J. Watson Research Center, Yorktown Heights, New York 10598

It is well known that there are at most four Moore graphs of diameter 2, i.e., graphs of diameter 2 , maximum degree d, and $d^{2}+1$ vertices. The purpose of this paper is to prove that with the exception of C_{4}, there are no graphs of diameter 2 , of maximum degree d, and with d^{2} vertices.

INTRODUCTION

The purpose of this paper is to prove that, with the exception of C_{4}, there are no graphs of diameter 2 and maximum degree d with d^{2} vertices.
On one hand our paper is an extension of [4] where it was proved that there are at most four Moore graphs of diameter 2 (i.e. graphs of diameter 2 , maximum degree d, and $d^{2}+1$ vertices). We also use the eigenvalue method developed in that paper.

On the other hand, our problem originated in [2]. The domination number of a graph G is the smallest inieger k such that G has a k-element subset, S, for which every vertex of G either belongs to S or is adjacent to a vertex of S.
Authors of [2] constructed a number of graphs of diameter 2 which contained no three of four-cycles and for which the domination number was arbitrarily large. As a rule, the only lower bounds for the domination numbers were obtained from upper bounds on the maximum degree.

This suggested the following question: How small may the maximum degree be compared to the number of vertices in graphs of diameter 2 ?
Since a graph of a diameter 2 and maximum degree d may have at most $d^{2}+1$ vertices, the question can be formulated as follows: given non-negative numbers d and δ, is there a graph of diameter 2 and maximum degree d with $d^{2}+1-\delta$ vertices? It was proved in [4] that if $\delta=0$ then there are graphs corresponding to $d=1,3$, and 7 and that, moreover, only one more case, namely of $d=57$, is possible. The case $\delta=1$ is solved in the next section, and the last section contains some comments concerning the case $\delta>1$.

THE RESULT

Theorem. If G is a graph of diameter 2 with $n=d^{2}(d \geqslant 2)$ vertices and maximum degree d, then G is isomorphic to a four-element cycle.

Proof: First of all, let us notice that if G had a vertex of degree $k<d$, then G would have at most $1+k+k \cdot(d-1)=1+k \cdot d<d^{2}$ vertices. Thus G must be regular of degree d and in particular d must be even.
Since G has diameter two, the neighbors of any vertex dominate G. Thus, if G had a triangle it would have at most $1+(d-2)(d-1)+2(d-2)<d^{2}$ vertices. Consequently, G is triangle-free and a similar argument shows that every vertex of G is contained in at most one C_{4}.
On the other hand if G had a vertex contained in no C_{4}, then G would have $1+d+$ $d(d-1)>d^{2}$ vertices.

Thus, for each vertex r of G there is exactly one vertex r^{\prime} of G at a distance 2 from r, such that there are exactly two paths of length 2 joining r and r^{\prime}. Let K be the direct sum of 2×2 matrices of the form

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

i.e., K is the adjacency matrix of a 1 -factor.

Then if A is the adjacency matrix of G, we have

$$
\begin{equation*}
A^{2}+A-(d-1) I=J+K \tag{1}
\end{equation*}
$$

where J is a matrix all of whose entries are 1.
Since J is regular, A commutes with J, therefore with K, hence all matrices in (1) can be simultaneously diagonalized. Since K has eigenvalues 1 and -1 each of multiplicity $d^{2} / 2$, and the eigenvalue +1 of K is paired with eigenvalues d of A and d^{2} of J, we see from the fact that all other eigenvalues of J are 0 , that the eigenvalues of A other than d are roots α satisfying:

$$
\begin{equation*}
\alpha^{2}+\alpha-(d-1)=+1, \quad \text { occurring } d^{2} / 2-1 \text { times } \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha^{2}+\alpha-(d-1)=-1, \quad \text { occurring } d^{2} / 2 \text { times. } \tag{3}
\end{equation*}
$$

Thus the remaining eigenvalues of A are

$$
\beta_{1}=-1 / 2+\sqrt{4 d-7} / 2 \text { and } \beta_{2}=-1 / 2-\sqrt{4 d-7} / 2
$$

with multiplicities m_{1} and m_{2} satisfying

$$
m_{1}+m_{2}=d^{2} / 2
$$

and

$$
\gamma_{1}=-1 / 2+\sqrt{1+4 d} / 2 \text { and } \gamma_{2}=-1 / 2-\sqrt{1+4 d} / 2
$$

with multiplicities n_{1}, n_{2} satisfying

$$
n_{1}+n_{2}=d^{2} / 2-1 .
$$

Let $p=\sqrt{4 d-7}$ and $q=\sqrt{4 d+1}$.
From (2) $x^{2}+x-d$ is a factor of the characteristic polynomial of A. Therefore if G is not an integer, $n_{1}=n_{2}$, which would imply that $d^{2} / 2-1$ is even. This contradiction shows that q is an integer.
If p is also an integer, then since $q^{2}-p^{2}=8$, we must have that $p=1$ and $q=3$. Thus, $d=2$ and in this case G is a cycle of length 4 .
If p is not an integer, then $m_{1}=m_{2}$.
Since $m_{1}=m_{2}, m_{1}+m_{2}=d^{2} / 2, n_{1}+n_{2}=d^{2} / 2-1$, and the trace of $A=0=$ sum of eigenvalues of A, we have

$$
\begin{aligned}
0 & =d+m_{1} \frac{-1+p}{2}+m_{2} \frac{-1-p}{2}+n_{1} \frac{-1+q}{2}+n_{2} \frac{-1-q}{2} \\
& =d-\frac{1}{2}\left(m_{1}+m_{2}\right)-\frac{1}{2}\left(n_{1}+n_{2}\right)+\left(n_{1}-n_{2}\right) \frac{q}{2} \\
& =d-\frac{d^{2}}{2}+\frac{1}{2}+\left(n_{1}-n_{2}\right) \frac{q}{2} .
\end{aligned}
$$

Since $d=\left(q^{2}-1\right) / 4$, we can conclude that

$$
q^{4}-10 q^{2}-16 q\left(n_{1}-n_{2}\right)-7=0 .
$$

Since q is an integer root of this equation, then $q=1$ or $q=7$, i.e., $d=0$ or $d=12$. If $d=12$ then G has eigenvalues

12	with multiplicity 1
$\frac{-1+\sqrt{41}}{2}$	
$\frac{-1-\sqrt{41}}{2}$	
with multiplicity 36	
3	
-4	with multiplicity 36
	with multiplicity 44

Since G is triangle-free, the trace of A^{3} is 0 . But

$$
\operatorname{tr} A^{3}=\sum_{i} \lambda_{i}^{3}
$$

where λ_{i} are eigenvalues of A. The sum of cubes of the above eigenvalues, however, is 72 and thus there is no graph with $d=12$.
Thus the theorem is proved.
Let F be a finite field and P a projective plane over F, i.e., elements of P are proportional triples of nonzero elements of F^{3}. Brown [1] defines two elements of P to be adjacent iff their scalar product is zero. It is easy to see that if F has p elements then the resulting graph has maximum degree $p+1$, diameter 2 , and $p^{2}+p+1$ vertices (these graphs were introduced in a different form in [3]).
For our purposes, Brown's construction can be slightly improved. A vertex (x, y, z) of Brown's graph has degree p iff the norm $x^{2}+y^{2}+z^{2}=0$. Thus if F has characteristic 2 and $a \neq 0$ then the vector (a, b, c) is adjacent to the vector $(b+c, a+c, a+b)$, which has norm 0 . If F has characteristic 2 then the function $f(x)=x^{2}$ is one-to-one and hence onto. Thus, up to proportionality, Brown's graph has $p+1$ vertices of degree p. Adding a new vertex and joining it to all vertices of degree p we obtain a $(p+1)$ regular graph with $p^{2}+p+2$ vertices.
We know only three examples of graphs in which $\delta=2$, namely triangle, the 3 . regular $R(3,3)$-critical Ramsey graph, and the graph corresponding to $p=2$ in the above construction.

The second author wishes to acknowledge interesting conversations with Professor Richard D. Sinkhorn.

References

[1] W. G. Brown, "On graphs that do not contain a Thompsen graph," Can. Math. Bull., v.g. 281-285 (1966).
[2] P. Erdös and S. Fajtlowicz, "Domination in graphs of diameter 2," in preparation.
[3] P. Erdös and A. Renyi, "On a problem in a theory of graphs," Publ. Math. Inst. Hung. Acad. Sci., 7/A, 623-641 (1962), (in Hungarian with English and Russian Summaries).
[4] A. J. Hoffman and R. R. Singleton, "On Moore graphs with diameters 2 and 3," IBM J. Res. Dev. 4, 497-504 (1960).

Received January 1979

