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1 . Introduction . Let n6---> Vn) be a positive valued arithmetic

function which tends to infinity as n ---'> m. We shall say that the values of

* are uniformlydistributed in (O,w) (briefly, ii u .d . In (0,m)) if there

exists a positive constant 6 such that as y

	

> m

def
N(y) - N(y,~) - # {n : 0(n) < y }

	

őy.

The number ö will be called the density of values .

It is known (e.g. [1), [2], [4]) that Euler's function in u.d .

in (0,m), and the following general condition that a function * be u .d .

in (0,m) was given by Wooldridge [9] :

Theorem 0. Suppose that *(n) is a positive multiplicative

function and *(n)/n is strongly multiplicative (i .e . *(pa)/pa
-

*(P)/p

for each prime p and positive integer (i) . If

then ~ is u .d . in (0, , *) .

I (p- *(P) l log (p + CO) <
p

	

p 41(p)

* Research supported in part by a grant from the National Science Foundation .



We shall give other conditions for uniform distribution of

values of a multiplicative function . For certain classes of functions

conditions are both necessary and sufficient .

Our results are analogous to ones on mean values of muttiplicative

functions (cf . [3], [S], [8]) . There is one direct connection between the

two theories, involving the distribution of values of a function vt and

the mean value of the function n i > n/*(n) . We shall show when each of

these conditions implies the validity of the other .

We shall characterize the cases in which the distribution of

values of an arithmetic function has zero or infinite density. In conclusion

we shall give several examples showing the limitation o€ some of oui theorems .

We wish to record here our appreciation to Professor Gálor Halász

for all the help he gave us in preparing this article .

2 . Statement of Results

Theorem 1 . Let 0 be a positive valued multiplicatíve ftnctíon

satisfying

(1)

	

*(p) ` p as p

	

> -

and

(2)

Then

2 .

our

Z

	

~(pa) -1

p .a>2

~ isu.d.in (0,-) iff

(3)

	

F(a) d:f Y ~(n)-Q - ó1(a - 1)
n>1

< Co,

holds for some positive constant ó . The density of values

- d - lim

	

{(1 - p,) E «pa) -a } .
a-+l+ p

	

a>O
130 -



Corollary 1 . Let 4) beapositive valued multiplicative fui

satisfying (1) and (2) . Then ~ is u .d . in (O,re) iff

(4) 1 _ 1

P {~U(P)

	

p }

Suppose that the relation

set of primes . In this case we may be able

1 _ 1
(5)

	

~

	

I «P)

	

P I
j~(P)

	

PI > EP

converges .

t(p) - p fails to hold

(0,-) by a perturbation argument . Indeed we have

Theorem 2 . Suppose that ~ is a positive valued multiplica

function which satisfies (4) and for each e > 0 the series

to show that ~ is u .d . i 'i

converges .

If (2) holds then ~ is u .d . in (0,-) and has density

a

	

{(1 - 1) E «pa) -, } .
p

	

p a>0

It (2) does not hold, then N(y,*)/y

	

> - as y

	

> co .

Corollary 2 . If ip is a positive valued multiplicatív

which satisfies (2) and if, G IXO-1 - P-11 < -, then ~	u.d .

There are simple examples of uniform distribution whert

is seldom near 1 . If we consider functions * for which ~(p)

on a spar

"too small too often," then uniform distribution of the values of

equivalent to a condition on the generating function in the comple



(6)

Then 0 is u.d. in, (0,-) iffforeach, (fixed

	

T > 0

f7)

	

F(s) dsf G V (n) -8 -
861

+ o(Q11)
n>1

holds uniformly for -T < t < T as Q -> 1+. (Here and throughout

this article we adhere to the curious convention

number s as v + it with a and t real .)

Condition (7) is the analogue of the hypothesis of Halász's

theorem on mean values of multíplicative functions . Can one, by analogy

with that theory replace (7) by a condition on the generating function

on the vertical line a - 1? We have

Theorem 4 . Suppose that y is a positive valued multiplícative

function which satisfies (2) and

x/log x .

(8)

	

1 « IPW /p
«. 1.

Then ~ is u.d . in (0,-) iff

G p-1 - Re V(p)
-1-it

of denoting a complex

P

converges to a finite number for t - 0 and diverges to im for each

real t # 0 .

The generating function for uniform dístributioá of values

of * is
In>1 ~(n) -s ; that for the mean value of the function hsn i > n/*(n)

4 .

Theorem 3 . Let P be a positive valued multiplicative function

satisfying (2) and



S .

is In>1 nl-s/~(n), which is formally similar at s = 1 . The following

two theorems connect uniform distribution of the values of a multiplicat

function * with the existence of a mean value of the associated functi

These theorems contain different hypotheses upon the values of ~(p)/p,

and we shall show by examples that each theorem can fail with its hypoth

weakened .

Theorem 5 . Suppose that ~ is a positive valued multíplica

function which satisfies (2) and (8), and that for each prime p and ea(

real t

If the values of ~ are u .d . in (O,-), then hm ~--> n/~(n) has a mea,

value and the density of values of 4) equals the mean value of h .

Theorem 5 has an interesting consequence . Suppose ~ rest

to primes is a 1-1 mapping of the primes onto the primes and that

1 << 4(p)/p << 1 . In this case we say that

primes of bounded ratio .

Ya>O p-iat ~(pa) -1 # O .

~ is a rearrangement of t

Corollary3 . Let ~ be a completely multiplicative funct

which is a rearrangement of boundedratioon the primes . Then n/1y( :á)

a mean value and it is unity .

There is a converse of Theorem 5, valid with condition (8)

replaced by the more stringent condition *(p) - p .

- 333 -



6 .

Theorem 6 . Suppose that ~ is apositive valued multiplícative

functionwhichsatisfies (1) and (2) . If h :n ~----> n/~(n) has a mean value,

then ~ is u.d . in (0,-) and the density of values of ~ equals the

mean value of h .

The two preceding theorems give

Corollary 4 . Suppose that 1~ is completely multiplícative

and satisfies (1) and (2) . Then ~ is u .d . in (0,-) iff h has a

mean value .

We say that the values of a positive arithmetic function ~

are distributed with zero (respectively infinite) density in (0,-) if N(y)/y

tends to zero (respectively infinity) as y

	

> co. We have

Theorem 7 . Suppose that * is a positive multíplícatíve

function satisfying (2) and (6) . Then the values of ,P have zero density

in (0,-) if f

lím (a - 1) G t (n)
-a

= 0 .
a->1+

	

n> l

Theorem S . Suppose that 1P is a positive completely multiplí-

cative function satisfying (2) and

x « L

	

log ~(P) ;

	

G
lU(p) <x

	

~ (P) <x

1 g~(P) << log x .
iV(p)

Then the value of ~ have infinite density in (0,-) if f

fim (cr - 1) G ~(n)
-a

= ~ .
Q-•1+

	

n>l .



7 .

3 . Remarks on the distribution of values *(p) . Here

we shall compare the various hypotheses made upon the distribution of

values of -(p) . The only data relevant for the count N(y) are the

values {t(p) : p prime} (with appropriate multiplic.ities) ; the order of

occurrence does not play a role . The proof of Corollary 3 exploits this

fact .

However, we shall see that it is "easier" to establish uniform

distribution results for functions ~ for which y(p)/p is close to 1 .

Moreover, some of our theorems involve p and ~(p) together . To

exploit such relations we may need to insure that Ilog ~(p)/pj is not

too large .

The following relations hold between the various hypotheses

upon ~(p) :

~PP) >>1=> I 1<< 1
g x

<_>

V~ (P) <x

G log VO << x => I

	

logW(P) << log x ;

~(Wx

	

V W <x
W (P)

~(P) <<1g>I

	

I>>	
XP

	

log x
*(P)<x

x 	<< I

	

1 = o(x) _> I

	

log ~(P) >> x.
log x

	

~(P)<x

	

W(p)<x

The proofs of these relations are immediate . Note that the last relation

will not hold if *(p) is small too often .



4 . Perturbation of multiplicative functions . It is convenient

to prove Theorems 1 and 3 for functions which are completely multiplícative

(c .m .) . Given a multiplícative function * we shall define a c .m . function

by altering 1P on the higher prime powers (and on any primes for which

to prevent the new function from being bounded on an infinite set) .~(p) < 1

Also, in the course of proving Theorem 2 we shall alter our multiplicative

function on a certain set of "bad" primes . In each case we show

values of the altered function are u .d . in (0,m) . Then we shall show that

the original function is u .d . in (0,-) by the following result .

Let U be a subset of {p a
:

that if pa E U, then pa+l E U . We say that a prime p

pa E U for some positive integer a .

multiplicative functions which satisfy

(9)

and ~* is u.d . in

and has density

Lemma 1 . Let U be as above . Suppose that ~ and t* are

(0, °°)

p prime, a > 1} with

V(Pa) _ *(Pa), if Pa ~ U

4)*(pa)
_ *

*(p)a, if p meets U

+ *(pa) -1

paEU

with density S* . Then

< CO

"meets U" if

* is also u .d . in (0,-)

ő = ő*TF

	

(a - *(P))
I

	 la
}-

p meetsU

	

an t(p )

8 .

that the

the property

i



N(Y1%)

	

> N(Y,V) as

Then

Proof . For v - 1,2, . . . define multiplicative functions ~
V

by setting

v

	

>

*(p
(l

) , if pa I U or p < v

~* (P) a , if pa E U and p > v .

We prove by induction that as y -> ~

We first show that each ~v is u .d . in (0,-) . Then we show that

(13)

	

N(Y, ~v) - d*Y -T -F

	

(1 - ~*~p))
I	la

.
p meets U

	

a>0 ~(p )
p < v

This relation holds for v = 1, since

	

Suppose that (13) holds for

u = v - 1 and suppose that v q is a prime which meets U . Letting yM(v)

denote the right side of (13) we have

1 = Y

	

1 - Y

	

1 - (1

	

~*(q) ) M(U)y .
Wu (n)y

	

~u (n) <y

	

~u (n) < (~V

	

)q~n

N(Y,Vw) _ Y

	

Y

	

1

	

E

	

Y

	

1
a>fl V+v (n)<y

	

a>0 Vw(n) .~y/iV(ga)

qa 1[n

	

q~n

(1
-
~*(q)) M(u)y ~ ~

(qa) -1 = M(v)y .
a>0

9 .



Now we show that {N(y,t V) - N(y,~))/y is small for v large .

The definition of
*V

implies that

where the dash indicates restriction of the sums to exclude integers n wi

pa iin, Pa E U, and p > v .

It remains to estimate

and the similarly defined AV , which has the upper bound

numbors :

Q(y) d`f

	

£

	

1 <

	

~'

	

1 < By
~0 (n).

	

~*(n)~y

pai i n-> PafU

D def

~, 1 -

	

~, 1,
«n) < y

	

%(n)<y

N(y,~) - Y' 1< Y

	

E

	

Y

	

1
(n)<y P>V a 1P(m) <yl«Pa)

paEU

	

(p,m) = 1

~V < I I

	

I

	

a 1
p>V a *V(m)<y4*(p )

P'EU

	

(p,m) = 1

We drop the (p,m) = 1 condition and estimate the resulting

expressions simultaneously and uniformly with respect to V. Let % be a

multiplicative function defined by

V O (pa) = min {VP(Pa ) . W* (Pa)) .

We make an O-estimate for the counting function of "U free"

10 .



for some absolute constant B and all y .

Next we make an 0-estimate for N(y,~ ) . We have

N(y,~o ) = Q(y) + y

	

y

	

y

	

y
>1 Pl< . . .<Pt al , . . .,aL

< B y

	

{1+ ~	 1 	}
p

	

a> l

< B y TF {1 + y ( 1+1) } = B'y .
p

	

a>_1

	

, (p°`)

	

*(pa)

paEU

Thus we have for all y

1
,N1 + IAv 1 < 2 y

	

N(y/bo(pa),%)
paEU
P>V

< 2 B' y G

	

~o (Pa) -1 < Ey

paEU

paEU
p > V

PiajEU

= Q(y) + y
>1 p1< . . .<pL

	

al , . . .a 91

piaie U

~o (Pa)

11 .

% (p la1 . . .P £a m)

(P1 . . .PR,m) _

q% m =_> qs ü

Q(

	

y

Yplal) . . .yo (



for given e > 0, provided that v is sufficiently large .

For such a v we have

and since each
4)v

is u .d . in (0,-), so is ~. The density of values

of ~ is lim M(V) .

	

#
v-~

IN(y,~ v) - N(y,V ), < ey,

5 . Proof of Theorem 1 . Let ~ be a positive multiplicatíve

function which is u .d . in (0,-) . We show first that (3) holds . Suppose

that

N(x) =

	

G 1-óx
t (n) <x

for some positive constant ó . Then

F(0) _

	

t~(n)
-a

~ X-5dN(x)
n>l

	

1-

= a
J

x-6-1N(x)dx ~ SRa-1) as
1

This relation and familiar facts about Euler products and the

zeta function imply that if * is u .d . in (0,-), then the density of values

equals

1im (v -1) F(a) = 1im TT {(1 - p-,) Y v(pa)
-Q

} .

"1+

	

Q-*1+ p

	

a>0

Now suppose that ~ is a positive multíplicatíve function

satisfying (1), (2) and (3) . We show that ~ is u .d . in (0,-) . We

L*itroduce a c .m. function ~* by setting

12 .



and

as p

	

> °°)

pa if Vp)
c 1

IP(P) a if ~ (p) > 1 .

The set U of Lemma 1 consists of

*(Py<l
{p' :

a > 1} U1P(P)>i {p
a : a > 2} .

It is easy to check that conditions (9), (10), and (11) of Lemma 1 hold,

and that ~* satisfies (1) and (2) . To show (3) for ~*, write

F*(a) _ Y ~*(n)
-a

= F(a){F(a)/F*(a) } -1~

n>l

F*
(a)

	

II

	

{, + ~(P) -a + V(P2)-a

	

P
-Q} .

Vp(P) <1

{i - 1U(P)-2a
+ ( l - ~(P) -a) (~(P2) -a + «P3)-a+ . . .) } .

«p»1

The first product extends over a finite number of primes p (since

and for each prime the series converges at

a = 1 ; the second product converges absolutely at a = 1 by (1) and (2) .

Thus F*(a) - d*/(a - 1) as a

	

> 1+ with

ö* = d -w {(1 - p-1 )(1 + «P) - 1 + W2)-1+ . . .)}-1
.

«p)<1

{i - «p) -2 + (1 - ~(P)-1)(~(P2)-1 + «P3)-1+ . . .)}-1 .
«P)>1

13

Thus, it suffices to prove Theorem 1for functions which are

completely multiplicative .



~(n)

	

> - as n

	

> - . Then

(14)

where A(m) = log ~(p) if m = pa and A'(m) - 0 otherwise .

we have

Our proof of Theorem 1 is based on an identity akin to

Chebyshev's formula of elementary prime number theory .

Lemma 2 . Let IP be completely multiplicative and

L log ~(k) =

	

L

	

A'(m),
~(k)<x

	

m,nE]N
~(mn)<x

Proof of Lemma 2 .

	

By the definition of A', for k =

	

pi
(Ii

log ~ (k) = G ai log ~ (Pi) = L A' (m) = G

	

A' (m)
i

	

m 1 k

	

mn=k

Summing over all k with ~(k) < x, we obtain (14) .

	

#

of (14) as

Returning to the proof of Theorem 1, we express the right side

1t)(n)<x S(x/P(n)), where

S(z) _ I

	

log W(P) + G

	

log IV(P) •
W(P)<z

	

p,oe2

~(P)a<z

Since w(p) > 1 for all p and ~(p)

	

> - as p

	

> OD, the ratio

of the second sum to the first tends to zero as y

	

> M.

~(p) - p, we have that S(z) - z as z

	

> m, and hence

I

	

log ~(k) _ (1 + o(1)) x I

	

1/~(n) .
~(Wx

	

*(n)<x

Also, since

14



G log t (k)

	

őx log x,
~M<x

and summation by parts yields N(y) - öy.

	

4~

Proof of Corollary 1 . If ~ is u.d . in (0,-), then

F(a) - 6/(Q-1) as cr > 1+ by Theorem 1, and so G *(p)
--or

+ log(cr-1)

15

Condition (3) and the Tauberian theorem of Hardy, Littlewood,

and Karamata [7, Theorem 981 imply that the last sum is asymptotic to

d log x as x

	

> - . Now we have

converges as a

	

> 1+. Then

is slowly oscillating because

as x

The function

L ~ (p) -a - p—a = c + 0(1) ,

f : x t--->

	

L

	

«p)-1
- p-1

p<exp x

p

f (u+rlu) - f (u) <<

		

Y

	

P-1 << n
u<log p<u+nu

as u

	

> -. We have noted above that r e-E:xdf(x) converges as
0

E: --> 0+. A Tauberian theorem of Hardy and Littlewood [7, Theorem 1051

asserts that f(x) converges to the same limit as x i .e . (4)

is valid .

Conversely, suppose (4) holds and a -' < t(p)/p < R . Now

i

	

c «p) -1 - £ «p) -1 1 <

	

B ° 0(1)
V(P)<x

	

p<x

	

x/6<p<sx P

co . Also, by (4), 1p 'P(p) -1 - p-1 converges . It follows that

G «p)-1

	

c -1

(p) <x

	

P<x
P

- 343 -
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Summation by parts now gives that

Thus F(a)

	

6/(a-1) for some positive 6 as CY

	

> 1+,

trivial implication of Theorem 1, ~ is u .d . in (0,-) .

6 .Proof of Theorem 2 . Suppose first that ~ satisfies (2) .

We begin by showing that the bad behavior of ~(p)/p is limited .

We have

Lemma 3 . Suppose that ~ satisfies (5) . Then for each E > 0

Proof . We divide the primes of the sum into two classes .

oo >
Y

$(P)<P- EP

00 >

	

«p) -P >

	

e/(l+c) >

	

G

	

e

	

#

~(p)>p+Ep

	

p~ (P)

	

~(P)>P+EP

	

p

	

~(P)>p+Ep
«p)

E «p)
-a

- P-,1

	

> c (a

	

> 1+) .
P

1

	

.1
V~ (P) + P

= PE < ~.

l~(P) -pl >EP

By the non-

16

P-~(p) >

	

F

	

E

	

>

	

E/(1-E
11

P«P)

	

t(P)<P-EP
«p)

	

t(p)<p-Ep

	

p

For each positive integer k define B(k) to be the smallest

positive number for which

l~(P)-pl>p/k
p > B (k)

-

~(P) + P ' 2 k .



We define a "bad set" E to consist of those primes p for which

~(p) < 1 and those primes p for which for some k > 2 we have

I~(P) - PI > P/k and p > B(k) .

For n a positive integer, let (n,E) denote the product

of all primes in E which divide n . We shall create a new multiplicative

function P* by altering ~ on E . Set

We shall show that Theorem 1 applies to t* and then use Lemma

to conclude that ~ is u .d . in (0,-) .

where

Suppose that

(pa ) , p ~ E

V~* (Pa ) _
a

, p E E .

integer k and some sequence pn

	

> - . All pn exceeding

lie in E . Thus (1) holds for ~* . Condition (2) is obvious .

To show (3) for ~*, write for a > 1,

L «p)-2 converges .

I~(pn) - pn 1 > Pn/k

F* (a) = L t * ( n) -0 = -FF, (a) - -T2 (a) ,
n>l

~1(a) _ IT (1 - ~y* (P) -a ) Y V * (pa) -' ,

p

	

a=0

Tr2
(a) _

-T~-
(1 - * (p)

P

holds for some positive

17

B(k) must

The first factor converges uniformly for a > 1 by (2) and the fact that



The second factor equals

C(a)

	

(1 - ~(P)-a)-1(1 - P-,)
E

~(a) exp { j'E V (p) -(7 -
p-o}

exp {

~E

a

-i
(V (P)

-aa - pao) },
~

a>2

The last sum converges uniformly for a > 1 by (2) .

To estimate the remaining sum we write

	1 	1 =

	

( 1 - 1 ) 1

	

+	 1 	{1 _ («P) )a-1} .
P E «p)a po

	

V (P)

	

p pa-1

	

P E~ (P) a

	

p

Since lip(p) - pf < p/2 for all sufficiently large p j E, the quantity

in brackets is 0(a - 1) and the last sum above is 0{(a - 1) log (a - 1)

> 0 as 0

	

> 1+ . Also

p

	

1 _ 1
E "P) P

and both sums on the right converge, the first by assumption and the

second by the fact that

(15)

	

pÉE ~(P) } p =
QM .

The Dirichlet continuity theorem guarantees that

1 _ 1) 1-a

JE (V (p)
p P

1

	

1

	

C

	

1

	

1

P ~(P)

	

p
pEE

V (P)

	

P

It follows that ~* satisfies (3) with

>

	

«1 -
p (a

	

> 1+) .

g* _ T-1(1)
Pw

(1 - V~(P))-1 (1 p)

_

	

{(1 - 1) Y «p5-1 },
p~E

	

P a> 0

- 346 -
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19

and so, by Theorem 1, N(y,t*) - d*y (y -> m) .

Now take U = {pa : p E E, a > 1} . It is clear that ~*

satisfies (9) and (10) . We deduce from (2) and (15) that ~* satisfies

(11) . Now Lemma 1 asserts that ip is u .d . in (0,-) and has density ó .

We conclude by showing the necessity of (2) in Theorem 2 .

Suppose that (4) and (5) hold but that (2) fails to hold . For v positive

define a multiplicative function
~v

by setting

(pa)
or pa < v

max(P",~(Pa)), a > 2 and
pa

Now
*v

satisfies (2), is u .d . in (0,-), and has density

öv _

	

{(1 - P) G l~(Pa )-1 }
p

	

a>0

1	 1	04~2	

~v (pa)-1
1

=-T (1 - P) (1 + ~ )

	

1 +	
1

P

	

P

	

1+ V (p)-

	

I .

The first product converges since ~(p) -1 - p-1 and 1/pt (p) are each

summable . The second product tends to - with v . Since ~V (n) > ;(n)

for each n and v, we have

1im 1YAO°
Y

{n ; ~( n) < y} > av -> ~, v

	

> ao, #

> v .

7 . Proof of Theorem 3 for completely multiplícative functions .

Suppose first that ~ is u .d . in (0,-), í .e . N(y) - őy for some

d > 0 . Then we have, uniformly for Re s > 1,

- 347 -



F(s)

	

x s dN(x) = s

	

xs-1
N(x) dx

1-

	

1

ős xs
(1 + o(l» dx -

gi + 0(a-ll) (a > 1+)

1

sől
+ o(al l ) (-T < t < T a

	

> 1+) .

Conversely, we shall estimate N(y,t) for a c .m . function t

satisfying >(p) > 1 for all p . We apply the Mellire inversion formula

to

I ~ M-s log W), Re s > 1,
n>l

as in Halász's mean value theorem for multiplícative functions [5] . We

shall sketch rather briefly those arguments which occur in [5] .

For a = Re s > 1 we have the formula

log ~ (n) log Y/W(n) -
2~ri

	

F' (s) Ys s-2 ds .

~G(n)y

	

(a)

If we set a = 1 + 1/log y and take K to be a (large) positive number,

then the integral can be broken into part I with jIm sl < K/log y, part II

with K/log v < 11m al < K, and part III with jIm sl > K .

In part I we apply Cauchy's formula to obtain the estimate

-F' (s) =

	

t5 2 + o(
	 [s1

2 ) '
(s-1)

	

(a-1)

uniformly for a > 1 . We integrate this expression to obtain

a+iK/log y

I=2-1

		

F'(s)ys s 2 ds-cylogy .
-íK/log y

20



For II we write

(a)

K(a-1)<Itl<K

e	2	 y
2

J

	

ÍF , (s)

4Tr2
(a)

I F(s)

2 2e 2 Ha - IIb, say,
47r

and estimate each o£ the two new integrals .

For Ha we use our assumption that ~(p) is not small too

often . For X real we have

-F'(s)

	

314

	

F(3) s

	

~2

F(s)

	

s-

	

514 y d I
s

s

2 jds3/2

	

~

	

jF(s)I5 /~dsl

ts~

	

(a)

	

(s~

K(a- 1) <1t1<K

(16)

	

S~(W)
def

L

	

~(Pa)-i
x

log -V(P) < SO (x)

~(P')<x

< log x

	

1 1<< log x 1 1<< x.

~(P)a<x

	

~(P)<x

Now, for o > 1 we write

_ r

	

_
F (s+i~) _

	

A' (n) (n)
-i~-s =

	

x sdS A (x),
n>l

	

1

l Frs

	

(s+i~) =

	

e-au
S~(eu) e itu du,

0

and apply a weak form of Plancherel's theorem to obtain

21



Thus

f
(a)

K( ,,'-1)< 1 ti <K

1/2 IF`

	

I 2 dt
fF(a+ix +it)i

2 2
t=-1/2

'

	

tll a +t

a+1/2

	

,

	

'2
iF(a+it)(

t=a-1/2

We estimate IIb by writing

	 IF(s)I2 Ids)
Isi

<

	

max

The hypothesis upon F implies that

~

	

2
IIa =

		

F(a + it)
	 2dt	

2
)
3/4

t=-CO (a + t

CO

	

2 -3/4 1<<

	

(1 + n)

	

a-1 « log Y '
n=-co

= IIc - IId, say .

IIc

	

a

	

1 11/2

{K(Gr-l) + o(a-1) f

We estimate IId with the aid of

Lemma 4 . Let 0 be a c .m . function which satisfies (3) and

a.-id let F(s) - L

	

ip(n)
-s

(a > 1) . For 0 < p < 1 set
n>l

C(s) = G(s,u) = F(s) u .

< 2Tr

	

e- 2a u sA (eu) 2 du,
0

dt «

« ,/log Y
K

22

IF(a+it)I
1/2 IF(s) 3/2 Idsj

K (a-1)<I t I<K I a+it
(a)

	

s 2
__

	

I I



Then G hasthe Dirichlet series

G(s,U)

	

g(n,u) W(n) s
n>l

where g(n) = g(n,p) (n - 1,2, . . .) are non negative coefficients and

Y(x,h) d=f I

	

g(n,u) << x (log x) u-11

t (n) <x

(The 0-constant may depend upon u .)

Proof of the lemma . We have

F(s,U) = exp {}1 Y
X(n) iP(n)

-s
},

n>l

where X(n) = 1/a for n = pa with a a positive integer and a(n) = 0

otherwise . If we develop the exponential in its Maclaurin series we obtain

the Dirichlet series (18) with each g(n,p) > 0 . (Indeed the g(n,O are

coefficients of the Dirichlet series of ~(s) u as can be seen by taking

*(n) = n .)

Now

(s) _ -u
F,

(s) = u L A'(.) W(.) -s ,
m>l

-G'(s) = G (g(n) Log V(n)) ~(n) -s -
n>l

The Dirichlet series identity theorem implies that

23



and so

g(n) lag «n) - U

	

A'(m) g(n)
W (n) <x

	

«mn)<x

By (6) the inner sum is << x/~(n), so

u

	

g(n)

	

L

	

A'(m) •
«n) <x

	

«m)<x/~(n)

I g (n) log ~ (n) << x X

	

g(n)/ t (n) .
~(n)<x

	

tW<x

Now

G g(n)/V(n) < e G(1 + loI x) << (log x)u ,
W)<x

G g(n) log ~(n) << x (log x) u •
~(n)<x

The claimed estimate follows by summation by parts .

	

#

Returning to the estimate of IId, we have

1 F(s) 314 =
F

e
Gu

y(eu , 314)e itu du .
s

	

0

Plancherel'4 theorem and the preceding estimate yield

f
t----~

	 { F(G+it){
312

dt = 2Tr
G2 +t2

~~ e-2Gu y(eu ,314) 2 du
0

<< (G-1)
-112

	

logy .

24



We estimate IIIb by using Lemma 4 again, this time with U = 1, and

applying Plancherel's theorem . We have

Thus IIIII

we obtain

Combining all the estimates of II we find that

II « y(log y)/K
1

µ .

For part III write

111112
l
1
27r í

2 22 IIIa • IIIb, say .
4n

We estimate IIIa by use of (17) and obtain

IIIa « G
log y « k-1 log y,

n>K n

IIIb = 2Tr

	

e
26u

y(eu ,1) 2 du « a1, = log y .FO
(y log y)/

If we take K large and combine the estimates I, II, and III,

1
F

(s) .
s

.
F(s)

ys ds1 2

2	 ~dsl
IF(S)

1 2

	

ds

ls~

	

c6)

	

ls~

(19)

	

1

	

log ~(n) log(yN(n))

	

Öy log y .

ip(n)<y

25



Setting L(x) -

of (19) is expressible as

s with a > 1 . Let

Z
~y (n) <x

log ~(n), we see that the left side

jy

	

log(y/t)dL(t) -
f
y L(t) t-1 dt .

t-1

	

1

26

Since L is increasing, an easy tauberian argument based on differencing

the last integral yields L(y) - d y log y and summation by parts gives

N(y) - öy .

	

#

8 . Vanishing of Euler product factors . In the preceding sect]

we proved Theorem 3 for c .m. functions . In order to extend the theorem to

multiplicative functions, we shall show that if ~ is a multiplicatíve

function which satisfies (7) and ~* is an associated c .m function, then

iP* also satisfies (7) .

Under the hypotheses of Theorem 3 at most a finite number of

factors

F(p,s) def 1 + W(p)-s + «P2) -s + . . .

of the Euler product of F(s) can have zeros in the closed half plane

fs : Re s > 1} . In this section we show that if we remove from F(s)

those factors F(p,s) which vanish or have small values somewhere in the

half plane, then the resulting function still satisfies (7) .

Lemma 5 . Let s = a + it . Suppose that ty satisfies (2)

and _ ::at (-) holds uniformly as a

	

> 1+ on any fixed interval -T < t < I

Let V be the (finite) set of primes p for which IF(p,s)1 < 112 for some



P(s) _ Tr Ev F(p,s) and G(s) = F(s)/P(s) .

Then G satisfies (7) with constant S' = 6/P(1)) uniformly as

Q -> 1+ on any fixed interval -T < t < T .

Proof . We have P(1) > 0, and each factor F(p,s) is analytic

at s = 1 . Thus 1/P(s) is analytic near 1 and

27

G(s) = PS~ _ {sal
+ o (Q11 ) } j P(1) +

(

	

0(j s-l I) r

d/P(1) + o(1)
s-1

	

0-1

holds uniformly as a

	

> 1+ for some interval -A < t < d .

If F(q,sV ) = 0 for some q E V and some s0 = Cr0 + it 0 with

60 > 1, then (10 = 1 for otherwise G would have a pole with real part

exceeding 1 . This is impossible, since for Q > 1

IG(s)I < G(a) < F(a) < - .

Now suppose that the lemma is false and there exists a sequence

a + it
n

, A < It
n

I < T, Q
n

+ 1 and a positive constant b such that
n

(20)

	

(G(0n + ítn)I > b/(Qn1) .

By compactness there is a convergent subsequence, which we also call t n,

having limit t0 , A < It0I < T . We have

	 b
Q -1
n

IF(6n+itn )I

	

o(1/(Qn-1))

IP(Gn+ítn )I

	

IP(Gn+itn )I

so P(1 + it0) - 0 and at least one factor F(p,s) vanishes at 1 + it 0'



In the remainder of the proof we show that the blow up of

G near 1 + it0 is repeated near 1 + 2ít 0 , 1 + 3 it0 , . . . I

exists some positive integer

be large near 1 + imt 0 in violation of (7) .

For Re s > 1 we have

log G(s) _

	

log {

	

-~
(pa ) -s }

V

	

a>0

(21)

We claim that

Re g(Gn + it tn) = log c[ 1 1 + o (1)
n

'~(P)
-s

+

	

(log { G ~0 0, ) -s } - yP(P)-s )
V

	

V

	

a>0

- 356 -

n

n

28

but that the

m for which P(1 + imt 0) ¢ 0 . Thus F wil

~(P)
_s

+ 0(1)
p

by (2), the finiteness of V, and the fact that C

	

-2Lp ~(p)

	

converges .

Let g(s)=~p ~ W-s . We have

g(G) = log G(G) +- 0(1) = log G11 + 0(1),

and for n = 1,2, . . .

Re g(Gn + itn ) > log G 1	 1 + 0(1) .

Since g(G) > Re g(G + it) for any a > 1 and any real t, it follows tha

Re g(Gn + ít n) = log G 1 1 + 0(1) .

holds for r = 2,3,4, . . ., where 0

	

may depend on r (but not on n) .



we obtain the inequality

(22)

Now

If we expand the relation

We use this inequality inductively for N = 1,2,4,8, . . .

For N = 1 we have cos 20 > 4 cos 0 - 3, so

Re g(Q
n
+21tn ) > 4 Re g(Qn+itn ) - 3g(a)

-

> log Q 1 1 + 0(l),

and (21) holds for r = 2 . Now suppose that (21) holds for all positive

integers r < 2k = N. Then (22) gives

2N

	

N
(2N+1 - r) Re g(Qn+irtn) > { G (2N + r + 1) -2N2-N} log a 1 1 +2(1 1

r=N+l

	

r=1

	

n

and for r = N + 1, . . .,2N

Re g((Y + irt) < g(6) = log Qll
+ 0(1) .

Thus (21) holds for N + 1 < r < 2N .

Now we show that P(1 + ímt0) # 0 for some positive integer m

Choose v sufficiently large that for each p E V,

0 < (N - cos 0 - cos 20

	

cos NO) 2 ,

N
(2N+1-r) cos r0 > Z (2N+r+1) cos r0 - 2N2 - N .

r=1

n

2N

	

N

Y

	

(2N+1-r) _ ~ (2N + r + 1) - 2N 2 - N
r=N+1

	

r=1

Y «p')-1 < 1/2 .
i>v

29



Then each factor in P(s) has the form

F(p .s) - 1 + IP(p)-s +. . .+ ~(pv)~ s + 0/2 jell < 1

Dirichlet's theorem on simultaneous approximation insures that there

is some positive integer m such that for each p E V and 1 < a < v

we have

cos(m t0 log ~(pa)) > 0 .

Thus each factor F(p,s) of P(s) satisfies

IF(p,l+imt 0 )1 > Re F(p,l+imt0) > 1/2,

lP(1+imt0 )1 > 2-IV I> 0 .

Now we have

I F(Qn + imtn)I _ JG(Qn + imtn)I IP(an + imtn)I

and so

Gíven

> 0A1 {IP(1 + imt0 )~ - 0 (1)}
n

(n

	

> -)

30

for some positive A, in violation of (7) . Thus G satisfies (7) uniformly

ca any interval (-T,T) .

	

#

9 . Proof of Theorem 3 for multiplícative functions .

a multíplicatíve function, the deduction of (7) from the

assumption that W is u .d . in (0,-) is made exactly as in §6 . To

prove the converse we introduce the c .m . function ip* defined by

~(p) if ~(p) > 1

V~* (p)

p if IP(p) < 1

- 358 -



and let

F*(s) _ Y
~
*(n) -s = `Tj {1 - ~*(p)-s } -1 .

n>l

	

p

We show first that ~* inherits property (7) from W .

Then ~* is u .d, by the special case of Theorem 3, and finally we

conclude that ~ is u .d, in (0,-) exactly as we did in proving

Theorem 1 .

Let K be a (large) positive number . We show that (7) holds

for ~* in the wedge

{s : a > 1, (t1 < K(Q-1) } .

Arguing exactly as we did in showing F*(6) - d*/(6-1) for Theorem 1,

we obtain

F* (s)
= F(s) F(S) _ { s d l +

o(Q1 1)} (c + a(1))

*

s-1 + ° (Q
1
-1 )

as s

	

> 1 in the wedge .

For the region {s : a > 1, K(Q-1) < Iti < T} we give an

o-estimate for F*(s) as 6

	

> 1+. Let

and

V = {p : I F(s,p) l < 1/2 for some s with a > 1} .

We have

F(s,p) = 1 + ~(p) -s +
V(p2 )

-s
+. . .

31



a > 1 .

F*(S) - -TT (1 - ~*(p)-s)-1 - T-
F(s,P)/ TF (1 - ~*(P)-s)F(s,P)

PEV

	

p~V

	

p V

I { l (s) 11 2 (s)/ T~, (s),

Each factor of
-FF3

say .

There are only a finite number of factors in -Tl , and each

is bounded for a > 1 . Thus I -T1(s) I < Bl for a > 1 . By Lemma S

rT2 (s) =
ő'/( s-1)

+
c)( "«'- '»

uniformly for -T < t < T as Q

	

> 1+. Thus

1 - T2 (s) 1 < d'K 1/(a-1) + o(1/(a-1))

f :r- s`--i) ' ' ti < T as e

	

> 1+ .

is bounded below in modulus for a > 1.

We remove the finite number of factors for which t(p) < 1 and note that

~W3' (s) s

	

{1 - ~ (p)-2s + (1-~ (P) -s) (~ (P2)
-s

+ «P3)
-s
+. . . }

V
~(P)>1

is uniformly bounded below for Q > 1 . Thus

	

7T3(s)
I > 113 > 0 for

For K(a-1) < (t, < T and any e > 0 we now have

IF*(s)) <-Bl {R(oa 9 + 0(1 1)}/B3 < QE1

32

provided that K is sufficiently large and Q-1 sufficiently small .

Thus t* satisfies (7) uniformly on [-T,T] as a

	

> 1+.

Now t* is u .d . in (0,-) and so 1P is also u .d . in (0,-) .

	

#



10 . Proof of Theorem 4 . Suppose first that ~ is u .d . in

(0,-) . The trivial implication of Theorem 3 implies that

IP(P) -a = log
all

+ c , + 0(1)

	

(a

	

> 1) .
P

The condition log t(p)/p = 0(1) gives

L~pa -

	

1a=IV(P)-a{(~(pP)
)a-1-1}

P

	

~ (P)

	

P

< < (a-1) G P-a _ (a-1) log all

	

0 .
P

These estimates and an elementary zeta function relation yield

1 _ 1 1-a _
p (~ (P)

	

p ) P

As in the proof of Corollary 1, it follows that

(23)

	

~ 1/V (P) - 1/p = c .
P

For t ¢ 0 we have

c + o(1) (a

	

> 1+) .

G 1 - Re
	 1	

= G 1 - 1 + X
1

(1 - Re
P P

	

4)(P)1+it p p V (P)

	

p CO

33

The first series on the right converges as we have seen. The terms of the

second series are non negative and thus equal

(24)

	

lim G ~(p)
-a

{1 - Re t(p) -it } .
C~*1+ p

By the easy implication of Theorem 3 .. (a-1)jF(Q+ít)I

	

> 0



as a

	

> 1+ for each t # 0 . It follows that

p

Also,
LP

-(p)
-a

- p
a

converges to a finite limit as

follows that the limit in (24) is +- and thus

(25)

^ t # 0

P
1 - Re ~ (p) 1+it -P

cE ID t=0 .

(26)

	

G ~(p)-s
-

P-S

	

> -e
p

L P-0 - Re t (p)-c7-it

Y V (P) -1 - P-1
p<x

- > + ao

	

(a

	

> 1+) .

Now suppose that (25) holds . We shall show that condition

of Theorem 3 holds uniformly for each compact interval -T < t < T as

a --> 1+ and thus deduce that ~ is u .d . in (0,-) . Suppose that

r,> log y(p)/pj for all p . Given e > 0 we divide the rectangle

((7>I) x (0<t<T)t into three ranges :

0<t< 2-1 ,
a

E:
1
<t<lln, and l/n<t<T .

(The estimates will be valid for [-T,0] by symmetry .)

Suppose that 0 < t < (a-1)/e . If we can show that

uniformly as s

	

> 1 in- the wedge, then we will have

log F(s) = log
sŐl

+ o(l)

and hence (7) holds uniformly as s

	

> 1 within the wedge .

3t assumption

a

	

> 1+ .

> - e (x

	

> °°) 3

It

34 .
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and arguing as in the proof of Corollary 1 we show that

Summation by parts implies that (26) and hence (7) holds for ItI < (0-1)/e .

Now suppose that 1/n< t < T . The two conditions of (25)

together imply that

L ~(P) -1 {1 - Re

	

+-
P

holds for each t 0 0 . Since the terms of this series are non negative

continuous functions of t, Dini's theorem insures that the series sums

uniformly to +- for 1/n < t < T . We then have by partial summation that

uniformly as

by the estimate for (tl <

uniformly for 1/n< t < T .

For (0'-1) /c <

region .

Y

	

1 - Y 1

(p) <x V (P)

	

p<x P

log{F(CI)/IF(Q + it)i}

	

> +-

Q

	

> l+. Since log F(a) - log Qsl

	

> 0 as 6

	

> 1+

((~-1)/e, we have

uniformly as Q

	

> 1+. For Q > 1 we have

> - c (x

	

> 00) .

F(Q + it) = o{1/(Q-1)}

t < 1/n we shall show that (Q-1) I F(s) I

	

> 0

log F((J ) - log I F(s) I = G ~(P)
-Q

{1 - Re ~(p)-it} + 0(1),
P

and we show the right side to be uniformly large as a -> 1+ in the
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and s o

Let v = 1 + 1/log x . Then

The inequalities imply that

G

	

Re *(P)-it} > c
p

For a near 1 we have

x

	

1/P >

	

I

	

G

	

1/P
p<x

	

0<n<.lt log x

	

a <log p<b
cos (t logIP(p))<0

	

r -

	

n

	

n

Now

bn-an _	n -2nt	1log bn - log an

	

b

	

2nn + 3n/2-nt > 2n(n+l)'n

p<x
cos(t lóg~(p))<0

L
p<x

cost log t (p))<0

since ~(p) (Y-1 < (xen) CT-1 << 1 . Now cost log *(p)) < 0 for

1/p

an = t 1 (2nn + n/2) + n < log p < t 1 (2nn + 3n/2) - n = bnb

>

	

log bn - log an - c/a 2 .

0<n< .lt log x

Go
1/p > 2n

	

n - c't2 L (n + 1/4) -2

1<n< .lt log x

	

n=0

> -I-2 log {tl(a-1)} - c"
n

> 1 log lle - c" .

I F(s) l < Bel/2n/(o-1)

36 .



holds for (Q-1)/E ' t < 1/n and all a sufficiently near 1+. Here B

Is a number depending on U but not on a or E .

Thus (7) holds uniformly for 0 < t < T, and by symmetry for

-T< t < 0 as well . Now Theorem 3 insures that W is u .d . in (0,-) .

	

#

11 . Connections with the mean value of n/~(n) .

def
Let h(n) = n/t(n) . In this section we shall prove Theorems 5 and 6 .

The first of these asserts that if ~ is a "reasonable" multiplicative

function whose values are u .d . in (0,-), then h has a mean value . We shall

show by example (§13) that this theorem is false if condition (8)

(1 << ~(p)/p << 1) is omitted . Another example (§13) shows that the

converse Theorem 6 is not valid if condition (1) (c (p) - p) is replaced by

(8) .

The proof of Theorem 5 depends upon the following two lemmas

which together gives estimates of H(s) = G h(n)n s in a neighborhood of
n>1

the line a = I .

Lemma 6 . Suppose that ~ is multiplicative and satisfies (2)

and (8) . Given any positive

where

K and E there exists n > 0 such that

IH(s)/F(s) - lI < E holds uniformly on the wedge shaped region

(S . 1 < a < 1 + n,

	

Itl < K(G-1)} .

Proof of the lemma . For a > 1, write

H(s) _ II {, + H(p) - F (p) }
F(s)

	

p

	

F(p)

	

'
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H(p) - H(p,s) -
G p(1-s)a/~(pa),

a>0

F(p) = F(p,s) = G IU(pa) -s •
a>0

For all sufficiently large primes p we have

jF(p,s)Í > 1 - G «pa)-1 > 1/2
a>l

uniformly on {s : Q > D . For small primes p we note that F(p,l) > 1

and so IF(p,s)l > 1/2 for all s sufficiently near 1 by continuity .

If n is sufficiently small then jF(p,s)j > 1/2 for all p and all s

in the wedge .

To complete the proof of the lemma it suffices to show that

Ip JH(p,s) - F(p,s)j is uniformly small throughout the wedge . We have

a(1-s)

L IH(p,s) - F(p,s)J < L
Ip	

a

	

- V(pa)-s1 a

P

	

p,a ~ (P )

Y1
Q

I (~(P))s-1 - 1~ + Y
	 la a(1-s)

_ « P
a) 1-s I

p ~ (P)

	

p

	

P,a>2 «p )

=
11

+ 12 , say .

Now log ~(p)/p is bounded and we have

j(«p)/p)s-1 - 11 < Bis-11 < B(K+1)(Q-1)

: :,r all s in the wedge . It follows that

~1 < B(K+1) (C-1)
	 1a

p (ap)
< B'K(o-1) log 1

Q-1
> 0
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uniformly as s -> 1 in the wedge .

The absolute value expression in 12 is bounded for

1 < a < 2 for all pairs p,(x . (An upper bound for the expression is 2 for

all pairs p,a except possibly for at most ;i finite number of cases where

W(pa ) < 1 .) Since we have assumed that Ip,a>2 y(pa') -1 converges, it

follows that 12

	

> 0 uniformly as s

	

> 1 in the wedge .

Thus, for n sufficiently small, the ratio of the generating

functions is within a of 1 for all points s within the wedge .

	

#

Lemma 7 . Suppose that ~ is multiplicative and satisfies

and (8) . Let K and T beanypositive numbers . Then there exist

positive numbers y, M and n such that for 1 < Q < 1 + n and

K(Q-1) < I t I < T we have

(27)

	

1H(s)1 < M H(Q)K
-Y .

where

39 .

(2)

Proof . For at most a finite number of primes p will we have

1H(p,s) - 11 > 1/2 at any point s with v > 1 . Since all factors

H(p,s) of H(s) are bounded for 1 < 6 < 2 and H(p,6) > 1 for

each p, it suffices to prove the lemma under the condition that

1H(p,s) - 11 < 1/2 holds for all primes p and all s with a > 1 .

For Q > 1 write

log H(s) = G log { G pa (1-s)mpa) }
p

	

a>0

= ~l + ~2 + ~3'
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L1 I log {
G P,

(1-s)
Mpa ) l -

pl-sN

(p) +

p

	

a>0

~2
P

~(P)-a
{(~(P))(1-1 - 1}p-it

P

~3
= L P

it
W(P) -a .

P

40 .

The first sum converges absolutely for o > 1, as we see by

considering the Taylor series of log (1 + z), and is bounded on this half

plane . The second sum is small for a near 1 by the estimate of 11 of

the preceding lemma .

We estimate the third sum by exploiting the fact that for t # 0

the values of p-it are well distributed mod 21r . By calculations like

these used in the end of §10, we find that

Re 13 < log M + log H(a) - Y log K,

and thus (27) holds for 1 < a < 1 + n and K(6-1) < Itf < T. #

Proof of Theorem 5 . By [Halász, Satz 3], it suffices to show

that

(28)

side of (28) is less than elsl/(Q-1) uniformly as o

	

> 1+ on each

of three regions .

_ 8

	

O (Isi)H(s)

	

s-1

	

v-1

mífornly as c

	

> 1+. Let e > 0 be given . We show that the right



~ . We have, trivially,

for 1<a< some a1

First, take T = 36/e, where 6 is the density of values of

IH(s) - s6 1 I < H(a)
+ 0

61 < a-1 < a
Cisi

-1

provided a is near enough to 1 that

H(a) ~ F(a) - 6 < 26
a-1 a-1

and I t I > T = 36/c .

Next, choose K so large that KY > 3 6M/E: and K > 2 6 /E ,

where M and y are constants from Lemma 7 .

Lemmas 7 and 6 imply that

IH(s)I < 3ő H(a)

	

3(a-1) < 2(a-1)

and K(a-1) < Iti < T . Thus

(H(s)

	

ső1

	

IH(S)I + It
8

	

6

	

61 < 2(a-1) + K(a-1) < 0-1

holds uniformly for K(a-1) < Itl < T, 1 <

E	 <	 e
3 (a-1)

	

2(a-1)

a < a1 .

Finally, for Itl < K(a-1) we apply Lemma 6 . Write

jH(s) - F(s)I = I F (s)

	

lI IF(s)I < 36 F(a)

4 1



for 1 < a < some a 2 and It I < K(Q-1) . Also, by the easy assertion

of Theorem 3 we have that

Lemma 6 guarantees that

IF(s) - 61(s-1)I < e1s,/(2a-2)

for 1 < a < some a3 and all t . Thus (28) holds also for 'tI < K(a-1) .

The other hypotheses of Halász's theorem on mean values are

easily seen to be satisfied . Thus h has mean value ö .

	

#

Proof of Corollary 3 . The c .m, function tP assumes each

positive integer value exactly once . Thus ~ is u .d . in (0,-) with

density 1 . Now Theorem 5 applies and we conclude that n F- > n/y(n)

has a mean value, which also equals 1.

	

#

Proof of Theorem 6 . Since h has a mean value we have

h (n)n

	

1+) .
n>1

G y(n)
-a

	

h(n)n
a

n>1

Together these relations imply that ~ satisfies condition (3) of

Theorem 1, and by that result ip is u .d . in (0,-) with density ö .

	

#

12 . Zero and infinite densities . Here we prove Theorems 7 and 8 .

Proof of Theorem 7 .

	

If the values of ~ have zero density

in (0,-), then summation by parts shows that (a-1)F(a)

	

> 0. (The

bound on S is not needed here .)
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For the converse we proceed as in the proof of Theorem 1 .

We first introduce a c .m. function

give

W*

assumed properties of W and satisfies the conditions of Lemma 1 (with

the obvious interpretation of ~) . Then we prove the theorem for a c .m .

function . In place of the tauberian theorem of Hardy, Littlewood, and

Karamata we use the following simple inequality . Let a = 1 + 1/log y .

Then

~U(n) < e F(Q) = o(a-1)-1 = o (log Y) .

SW
def I log ~W

~ (P) a<z

G

	

log ~(Q =

	

G

	

S(x/t(n)) > ax

	

L

	

~(n)-1
W)<x

	

W)<x

	

W)<x

4 3

and verify that it inherits the

Proof of Theorem 8 . If the values of ~ have infinite

density in (0,m), then summation by parts shows that (a-1)F( (Y )

(The bound on S is not used here .)

For the converse we use an argument occurring in an unpublished

manuscript of Halász on large deviations of additive arithmetic functions,

generalizing results in [6] .

Lemma 2 and the lower bound assumptions on

> ax{F(a) -

	

U(n)-Q }

	

(0 > 1) .
~ (n) >x



Then

The hypothesis

and we have

We now find an upper bound for the last sum. Let a* - (a+1)/2 .

holds for all u > 1 and so

We find that

VP(n)C' <
x-(a-1)/2

Y

	

-a*
< x

-(a-l)/2
ty(n)

	

F(a*) .
W (n) >x

	

~(n)>x

I log ~(p) Mp) << log x implies that
~W<x

V

	

c
- -F-F (u) = L M (n)~(n)

-u
< A/(u-1)

n>l

log{F(a*) /F(a)} _
Ja

-

	

u) du < a* 1 (a - a*) = A.
a*

t (n)_'3' < eA
x

(cr-1)/2 F(a)
~(n)>x

If we choose a = 1 + (2A + log Q /log x, then eA x-(a-1)1/2 = 1/2

log w(n) > ax F(a)/2 ax log x

	

(a-1)2(2A+log 4) -1)
F(a) .

~(n)<x

Now

x 1 1 1> 1

	

G log ~ (n)

	

>
t (k) <x

- x logx ~(k)<x

as x

	

> -, sínce (a-1) F(a)

	

> - as a

	

> 1+.

	

#
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c .m . and for k = 0,1,2, . . set

~ (p) = bk, Rbk <
p < Sbk+1 .

For 0 < u < 1 we have

G
	 1

	

1

Sbk < p < Bb
k+u ~(P)

	

P

For u = 1, this sum = 0(k 2), which is summable on k. For 0 <'u < 1, the

above sum tends to zero as k

	

> - . It follows that

Gp «p)-1 - P-1 converges .

Since ~(p) -s = V(P)-S- 2Tri/log b holds for each prime p, we

have

13 . Examples .

Example 1 . ~ not u .d . in (0,-) . Let b > 1, a = (log b)/(b-1),

R(bu-1) _ u + 0 .
k log b k = k

(-::2P

F(s) def G «n)-s = F(s + 2ui/log b) .
n>1

In particular

F(6 + 27rí/log b) A o(F((Y)),

and by Theorem 3, ~ is not u .d . in (0,-) .

Remarks . If b is a number rather near 1, then ~(p)/p is

quite close to 1 . Thus Theorem 1 is false if condition (1) is weakened .

Also, in this case, condition (5) of Theorem 2 holds (vacuuously) for any

E > (b-1 - log b)/log b, but not hold for smaller E . Thus Theorem 2 is

false if (5) is required only for a fixed positive E .

4 5



value . Let H(s) _ In>1 h(n)n s (o > 1) and

where

With W as above, the function h : n F--> n/~(n) has a mean

log H(s) = G
pl-Q-it h (p) + R(1) 0 > 1) .

P

The arguments used in the proof of Theorem 4 to show that (7)

holds for F for It) < (Q-1)/E and for ((j-1)/E < Itl < 1/n can be

adapted (simplified!) to show that H satisfies (7) as a

	

> 1+,

uniformly for -T < t < T, any fixed T . Thus h has a mean value even

though ~ is not u .d . in (0,-) . This shows that Theorem 6 is false without

condition (1) .

Example 2 . ~ u .d . in (0,-), h has no mean value .

	

Let ~
2n 2n+1

be the c .m. function which rearranges the primes in each interval [2 ,2

	

)

in decreasing order, í .e . if pe < . . .< pm are all the primes in such an

interval, then t(P e) = Pm' . . .'t(Pm) = pe* (This rearrangement is not of

bounded ratio in the sense of Corollary 2 .)

Since 4) assumes each positive integer value exactly once,

is u .d . in (0,-) . We suppose that h : n F > n/~(n) has a mean value

and show a contradiction .

Chebyshev's identity of elementary prime number theory asserts

that

log n = G

	

A(k) .
j k=n
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The identity

implies that

Now

a<~<a2

log p i f k= pa , a E N

0, otherwise .

If we multiply by the c .m. function h and sum we get

I h(n) log n = G w

	

k) A(k)
n<x

	

jk<x

kA (k)

k<x 4)(k) j :xjk

	

)

-
L

p log p cx

P<x
'J (P)

	

P

for some positive number c .

2

	

2
N-I

Consider an interval (a,a ), where a = 2

	

> 4 . Recalling

the definition of ~ and summing in reverse order, we obtain

x

	

log p =
L

	

log r(p)
a,.~Sp

<a2

	

~ (P)

	

a~p<a2

	

P

Tr(a 2 ) - Tr(~ (P)) = Tr(P) - Tr(a) - 1

log ~(p) - log(a2 + a - p)

	

(a < p < a2) .

log(a2 +a- p)

	

log (a2 +a- a3/2)

	

log a
p

	

a<<a
3/2

	

p

	

+ 3/2

	

2 P

- (log 3) log a .

(a<p<a2)

47
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v
Thus, for xv - 22 we have

would give

Now

while for a > 1,

N
h(n) log n - c xN I

	

E

n<xN

	

m-1 xm-p
< xm

Example 3 .

N
> (log 3 + o(1))c x,,,, 1 2M- log 2

- (log 3)c xN log xN.

However, if h had a mean value, then summation by parts

h(n) log n - c xN log x.,
h<~

log ~(P)
F

m-1

in contradiction to the preceding estimate . Thus h does not have a

mean value .

48

F (O) = oQG-l)-2 }, lim N(y)/y > 0. Let ~

be c .m . with ~(2) = 2 and for p > 3, define ~ on the k th prime by

kk for G
c eü < k < L

C

	

ü
V~(PR) a e

	

e
1<i<k

	

1<i<k

N(ekk) > Y eü > ekk ,
1<í<k

~

	

k

	

k
log F(v) << I IP(P)

-a
<

2_a +

	

(ek + 1)e ak

P

	

k-1

<< (log a1 l )/(log log al 1) ) .



Example 4 . (a-1)F(a) > -, lim N(y)/y < -. We create a

c . m . function t with ~(p) = vn , a constant, on blocks of the form

xn < p < xn+1' For n = 1, 2, . ., define

Nn(y) _ # {k:p l k => p < xn and ip(k) < y) .

Let xl = 2 and suppose *(p) is determined for all

y = yn be a number which is so large that Nn(y) < y'

exists since each N
n grows like some power of log .

By construction N(y)/y = N n (y)/y < 1 for a sequence

Next choose an integer z = zn so large that

It follows that for Qn+l < CT < an

1 - v -1-2 -n < e -1/z
11n

and take xn+l such that
7T(xn+l) _ n(xn) + zn . Now for an = 1 + 2-n

we have

F(a) >

	

((1-v .-an)-zj >

	

1-v -1- -j2 ) -zj > en ,
n

	

j.<n

	

j<n

	

j

(a-~)F(a) > (an+l-1)F(an) = 2 (Qn-1)F(an)

	

> W .

49

P < xn . Let

Such a number y

Choose vn = y + 1 .

y = y
n

---->00 .
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