ACTA ARITHMETICA XXXVII (1980)

On bases with an exact order

by

P. ERDÖS (Budapest) and R. L. GRAHAM (Murray Hill, N. J.)

Introduction. A set A of nonnegative integers is said to be an (asymptotic) basis of order r if every sufficiently large integer can be expressed as a sum of at most r integers taken from A (where repetition is allowed) and r is the least integer with this property. In this case we write $\operatorname{ord}(A) = r$. A basis A is said to have exact order s if every sufficiently large integer is the sum of exactly s elements taken from A (again, allowing repetition) where s is the least integer with this property. We indicate this by writing $\operatorname{ord}^*(A) = s$.

It is easy to find examples of bases A which do not have an exact order, e.g., the set of positive odd integers. Of course, if $0 \in A$ and $\operatorname{ord}(A) = r$ then $\operatorname{ord}^*(A) = r$ as well. However, it is not difficult to construct examples of bases A for which

$$\operatorname{ord}^*(A) > \operatorname{ord}(A).$$

For example, the set B defined by

 $B = \bigcup_{k=0}^{\infty} I_k$

where

$$I_{k} = \{x : 2^{2k} + 1 \le x \le 2^{2k+1}\}$$

has

 $\operatorname{ord}(B) = 2$ and $\operatorname{ord}^*(B) = 3$.

In this note we characterize those bases A which have an exact order. It turns out that the only bases which do not have an exact order are those whose elements fail to satisfy a simple modular condition. We also estimate to within a constant factor the largest value ord^{*}(A) can attain given that ord(A) = r. (The reader may consult [1] for a survey of results on bases.) Bases with an exact order

THEOREM 1. A basis $A = \{a_1, a_2, \ldots\}$ has an exact order if and only if

(*)

) g.c.d.
$$\{a_{k+1}-a_k: k=1, 2, ...\} = 1.$$

Proof. (Necessity). Suppose for some s that $\operatorname{ord}^*(A) = s$ and assume (*) does not hold, i.e.,

g.e.d.
$$\{a_{k+1} - a_k: k = 1, 2, ...\} = d > 1$$
.

Thus, for all k,

 $a_{k+1} \equiv a_k \pmod{d}$.

Therefore, the sum of any s integers taken from A is always congruent to sa, modulo d which contradicts the assumption that $\operatorname{ord}^*(A) = s$.

(Sufficiency). Denote $\operatorname{ord}(A)$ by r and assume (*) holds. Let mA denote the set

 $\{x_1+x_2+\ldots+x_m:\ x_k\in A\}.$

FACT. For some n,

$$nA \cap (n+1)A \neq \emptyset$$
.

Proof of Fact. It follows from (*) that for some t,

g.c.d. $\{a_{k+1} - a_k: 1 \le k \le t\} = 1.$

Thus, for suitable integers c_k we have

(1)
$$\sum_{k=1}^{t} c_k (a_{k+1} - a_k) = 1.$$

Define p_k and q_k by

$$p_k = \begin{cases} a_{k+1} & \text{if} \quad c_k \geqslant 0, \\ a_k & \text{if} \quad c_k < 0, \end{cases} \quad q_k = \begin{cases} a_k & \text{if} \quad c_k \geqslant 0, \\ a_{k+1} & \text{if} \quad c_k < 0. \end{cases}$$

Then (1) can be rewritten as

$$\sum_{k=1}^{t} |c_{k}| (p_{k} - \underline{q}_{k}) = 1,$$

i.e.,

(2)
$$\sum_{k=1}^{t} |c_k| p_k = \mathbf{1} + \sum_{k=1}^{t} |c_k| q_k.$$

Now consider the integer

$$M = \sum_{k=1}^{l} |o_k| p_k q_k.$$

On bases with an exact order

Since

(3)
$$M = \sum_{k=1}^{t} \sum_{i=1}^{|c_k| p_k} q_k \in \left(\sum_{k=1}^{t} |c_k| p_k\right) A$$

and also

(4)
$$M = \sum_{k=1}^{t} \sum_{j=1}^{|c_k|q_k} p_k \in \left(\sum_{k=1}^{t} |c_k|q_k\right) A,$$

the Fact follows from (2) by taking

$$n = \sum_{k=1}^{t} |o_k| q_k.$$

It follows immediately from (2), (3) and (4) that

$$2M = M + M \in 2nA \cap (2n+1)A \cap (2n+2)A$$

and, more generally, that for any $w \ge 1$,

(5)
$$wM \in \bigcap_{k=0}^{w} (wn+k)A$$
.

However, by hypothesis, every sufficiently large integer x belongs to $\bigcup_{i=1} iA$. Thus, from (5) with w = r-1, we have

(6)
$$x + (r-1)M \in ((r-1)n + r)A$$

for all sufficiently large x. This shows that A has an exact order and in fact, that

 $\operatorname{ord}^*(A) \leqslant (r-1)n+r$.

This proves Theorem 1.

Comparing ord(A) and ord^{*}(A). Define the function $g: \mathbb{Z}^+ \to \mathbb{Z}^+$ as follows:

 $g(r) \equiv \max \{ \operatorname{ord}^*(A) \colon \operatorname{ord}(A) = r \text{ and } A \text{ satisfies } (*) \}.$

A crude analysis of the proof of Theorem 1 shows that g(r) exists and, for example, $g(r) < cr^4$ for a suitable constant c. The following result sharpens this estimate considerably.

THEOREM 2. For all r,

(7)
$$\frac{1}{4}(1+o(1))r^2 \leq g(r) \leq \frac{5}{4}(1+o(1))r^2.$$

Proof. We first prove the upper bound. Assume $\operatorname{ord}(A) = r$. Thus, all sufficiently large x satisfy

.

(8)
$$x \in \bigcup_{k=1}^{r} kA$$

From (8) it follows that for any t,

$$tw \in \bigcup_{k=1}^{r} tkA$$

for *w* sufficiently large.

It also follows from (8) that for some m and some $c, 1 \leq c \leq r$,

(10) $m \in cA \cap (r+1)A.$

Thus, letting

d = r + 1 - c

we have

$$2m \in 2cA \cap (2c+d)A \cap (2c+2d)A$$

and, more generally,

(11)
$$um \in \bigcap_{i=0}^{u} (uc+id)A$$

a special case being

(12)
$$udm \in \bigcap_{i=0}^{ua} (udc+id)A$$

Setting t = d in (9), we obtain

$$dx \in \bigcup_{k=1}^{r} dkA$$

for all sufficiently large x. Therefore,

 $(14) \qquad \qquad dx + udm \in (dr + ude)A$

for all sufficiently large x provided

 $(15) ud \ge r-1$

since for each $dx \in dkA$, $1 \leq k \leq r$, we also have $udm \in (udc + (r-k)d)A$. In other words, if (15) holds then all sufficiently large multiples of d belong to (r+uc)dA.

Our next task is to find a number $w = o(r^2)$ so that wA contains a complete residue system mod d. Let $\overline{A} = \{l_1, \ldots, l_d\}$ denote the set of distinct residues modulo d which occur in A. Since A satisfies (*) by hypothesis, we can assume that a_i and l_i are labelled so that $a_i \equiv l_i \pmod{d}$ and, for some t,

(16)
$$G_1 > G_2 > \ldots > G_t = 1$$

where

$$G_i \equiv \text{g.c.d.} \{l_2 - l_1, l_3 - l_2, \dots, l_{i+1} - l_i\}.$$

204

On bases with an exact order

Since G_{i+1} divides G_i for all *i*, it follows at once that

(17)
$$t \leq \frac{\log s}{\log 2} \leq \frac{\log d}{\log 2} \leq \frac{\log r}{\log 2},$$

Thus, for any $z \pmod{d}$ there exist integers $o_k = o_k(z)$ with $0 \leq o_k < d$ so that

(18)
$$\sum_{k=1}^{t} c_k (l_{k+1} - l_k) \equiv \sum_{k=1}^{t} c_k (a_{k+1} - a_k) \equiv z \pmod{d}.$$

It follows from (18) that all residue classes modulo d are in (t+1)dA.

Finally, using this together with (14), we see that (provided (15) holds) all sufficiently large integers belong to d(r+uc+t+1)A. To satisfy (15) it is enough to take $u = \left\lceil \frac{r-1}{d} \right\rceil$.

An easy calculation (using (17)) shows that the maximum value the coefficient $d\left(r+c\left[\frac{r-1}{d}\right]+t+1\right)$ achieves is $(1+o(1))r^2$. Thus,

$$g(r) \leq \frac{5}{4}(1+o(1))r^2$$

which is the upper bound of (7).

To obtain the lower bound of (7), consider the following set $A_r(m)$ defined by

$$A_r(m) \equiv \{x > 0 \colon x \equiv i \pmod{n} \text{ for some } i, \ rm \leq i \leq (r+2)m\}$$

where n = rm(r/2+2) and we assume r is even. Reduced modulo n, $A_r(m)$ is simply the *interval* of residues $\{rm, rm+1, ..., rm+2m\}$.

On one hand, since

$$\frac{r}{2}(rm+2m) = \frac{r^2m}{2} + rm = \left(\frac{r}{2} + 1\right)rm$$

and

(19)

$$r(rm+2m) = n + \frac{1}{2}r(rm)$$

then all residues modulo n belong to

$$\frac{1}{2}rA_r(m)\cup (r/2+1)A_r(m)\cup\ldots\cup rA_r(m)$$

and consequently

ord
$$(A_r(m)) \leq r$$
.

205

On the other hand, for any k, $kA_r(m)$ reduced modulo n forms an interval of length 2mk+1. Therefore,

(20)
$$\operatorname{ord}^*(A_r(m)) \ge \frac{n-1}{2m} = \frac{r^2}{4} + r - \frac{1}{2m}.$$

Taking m large, it follows from (19) and (20) that

$$g(r) \ge \frac{1}{4}(1+o(1))r^2$$

which is the lower bound of (7). This completes the proof of Theorem 2.

Concluding remarks. We mention here several questions related to the preceding results which we were unable to settle.

1. Show that $\lim_{r\to\infty} \frac{g(r)}{r^2}$ exists, and, if possible, determine its value. To obtain the exact value of g(r) seems very difficult. It can be shown that g(2) = 4. However, at present we do not even know the value of g(3). (It is at least 7.)

2. For a set A, let $A_m(x)$ denote $|mA \cap \{1, ..., w\}|$. If A is a basis and $A_1(x) = o(x)$ is it true that $\lim_{x \to \infty} \frac{A_2(x)}{A_1(x)} = \infty$?

3. By the restricted order of A, denoted by $\operatorname{ord}_{R}(A)$, we mean the least integer t (if it exists) such that every sufficiently large integer is the sum of at most t distinct summands taken from A. As pointed out by Bateman, for $h \ge 3$ the set $A_h = \{x > 0 : x \equiv 1 \pmod{h}\}$ has $\operatorname{ord}(A) = h$ but has no restricted order. However, Kelly [2] has shown that $\operatorname{ord}(A) = 2$ implies $\operatorname{ord}_{R}(A) \le 4$ and conjectures that, in fact, $\operatorname{ord}_{R}(A) \le 3$ is true.

(i) What are necessary and sufficient conditions on a basis A to have a restricted order?

(ii) Is there a function f(r) such that if $\operatorname{ord}(A) = r$ and $\operatorname{ord}_R(A)$ exists then $\operatorname{ord}_R(A) \leq f(r)$?

(iii) What are necessary and sufficient conditions that $\operatorname{ord}(A) = \operatorname{ord}_R(A)$? Even for sequences of polynomial values, the situation is not clear. For example, for the set $S_1 = \{n^2, n \ge 1\}$, $\operatorname{ord}(S_1) = 4$ (by Lagrange's theorem): and $\operatorname{ord}_R(S_1) = 5$ (by Pall [3]), whereas for the set $S_2 = \{(n^2 + n)/2 : n \ge 1\}$,

$$\operatorname{ord}(S_2) = \operatorname{ord}_R(S_2) = 3.$$

(iv) Is it true that if for some r, $\operatorname{ord}(A - F) = r$ for all finite sets F, then $\operatorname{ord}_R(A)$ exists? What if we just assume $\operatorname{ord}(A - F)$ exists for all finite F?

4. Let $n \times A$ denote the set $\{a_{i_1} + \ldots + a_{i_n}: a_{i_k} \text{ are distinct elements of } A\}$. Is it true that if $\operatorname{ord}(A) = r$ then $r \times A$ has positive (lower) density?

206

If sA has positive upper density then $s \times A$ must also have positive upper density?

5. Given k and m, when does there exist a set $A \subseteq \mathbb{Z}_m$ so that $A, 2A, \ldots$..., kA form a disjoint cover of \mathbb{Z}_m ? For example, for k = 2, m = 3t-1, the set $A = \{t, t+1, \ldots, 2t-1\}$ works.

Of course, many of the preceding questions could be formulated for $\operatorname{ord}_{R}^{*}(\mathcal{A})$ (defined in the obvious way). However, we leave these for a later paper (IWL).

References

- H. Halberstam and K. Roth, Sequences, Vol. 1, Clarendon Press, Oxford 1966.
- [2] John B. Kelly, Restricted bases, Amer. Journ. Math. 79 (1957), pp. 258-264.

[3] G. Pall, On sums of squares, Amer. Math. Monthly 40 (1933), pp. 10-18.

MATHEMATICS INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES Budapest, Hungary BELL LABORATORIES Murray Hill, New Jersey, U.S.A.

Received on 11. 8. 1977

(979)