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On bases with an exact order
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Introduction . A set A of nonnegative integers is said to be an (asymp-
totic) basis of order r if every s ufficiently large integer can be expressed .
a s a sum of at most r integers taken from A (where repetition is allowed)
and r is the least integer with this property . In this case we write ord (A) = r .
A basis A is said to have exact order s if every sufficiently large integer
is the sum of exactly s elements taken from A (again, allowing repetition)
where s is the least integer with this property . We indicate this by writing
ord* (A) = s .

It is easy to find examples of bases A which. do not have an exact
order, e .g., the set of positive odd integers . Of course, if 0 e A and ord (A)
= r then ord *(A) = r as well. However, it is not difficult to construct
examples of bases A for which

ord* (A) > ord (A) .

For example, the set B defined by

where

has

ord(B) = 2 and ord*(B) = 3 .

In this note we characterize those bases A which have an exact order ..
It turns out that the only bases which do not have an exact order are
those whose elements fail to satisfy a simple modular condition . We also
estimate to within a constant factor the largest value ord * (A) can attain
given that ord(A) = r . (The reader may consult [1] for a survey of results
on bases .)
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Bases with an exact order
TRFoREm 1 . A basis A = {a11 a 2 , . . .} has an exact order if and only

g.c.d.{ak+1 -ak : k = 1, 2, . . .} =1 .

Proof. (Necessity). Suppose for some s that ord* (A) = s and assume
( *) does not hold, i.e .,

g.c.d . {ak+,-ak : k = 1, 2, . . .} = d > 1 .

Thus, for all k,

ak+, - a k (modd) .

Therefore, the sum of any s integers taken from A is always congruent
to sa t modulo d which contradicts the assumption that ord * (A) = s.

(Sufficiency). Denote ord(A) by r and assume (*) holds . Let mA
denote the set

{x1+x2 -f- . . . -f XM : xk CA} .

FACT. For some n,
nAn(n+1)A 0 .

Proof of Fact. It follows from (*) that for some t,

g. c . d . {ak+1-a k : 1 < k < t} = l .

Thus, for suitable integers c k we have

if
,( * )

t
{1)

	

ek(ak+i -%) = 1 .
k=

Define pk and qk by

ak+1

	

if

	

Ok > 0,

	

~ak
pk -

ak

	

if ek < o, qk
ak+1

(2)

Now consider the integer

Then (1) can be rewritten as
t

Y Ickl(A-9k) = 4
k-i

t

	

t

leklA = 1+

	

Icklgk •
k=1

	

k=1

INIMk

if ek > 0,

if

	

ek < 0 .
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Since

(3)

	

M

.and also

~4)

	

M =

(g)

t ICkIpk

	

t

gk E (,Y I ek l pk) A
k=1 i=1

	

k=1

t [eklgk

k=1

the Fact follows from (2) by taking

n

	

lekIgk
k=

It follows immediately from (2), (3) and (4) that

2M = M+M e2nAn(2n+l)An(2n+2)A

and, more generally, that for any w > 1,

p e (

	

Ieklgk) A 1
j=1

	

1 1

wM e n (wn+k)A .
k=o

r
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However, by hypothesis, every sufficiently large integer x belongs to
Thus, from (5) with w = r-1, we have

(6)

	

x+(r-1)M e ((r-1)n+r)A

for all sufficiently large x . This shows that A has an exact order and
in fact, that

ord* (A) < (r-1)n+r .

This proves Theorem 1 . e

Comparing ord(A) and ord* (A) . Define the function g : Z+ -* Z+
as follows :

g(r) -max{ord*(A) : ord (A) = r and A satisfies ( )} .

A crude analysis of the proof of Theorem 1 shows that g(r) exists and,
for example, g(r) < er' for a suitable constant c. The following result
.sharpens this estimate considerably .

THEOREM 2 . For all r,

(7)

	

j'(1+o(1))r2 < g(r) < 4(1+0(1))r 2 .

Proof. We first prove the upper bound. Assume ord(A) = r. Thus,
all sufficiently large x satisfy

r
xeUkAX

k-i

U iA.

i-1
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From (8) it follows that for any t,

r
(9)

	

tx e U tkA
k=z

for x sufficiently large .
It also follows from (8) that for some m and some c, 1 < c < rp

(10)

	

m e oAn(r+l)A .
Thus, letting

d = r+1-c
we have

2m e 2cAn(2c+d)An(2c+2d)A
and, more generally,

(11)

a special case being

(12)

Setting t = d in (9), we obtain

u

um e n (uc+id)A,
i=o

Ud
udm e n (udc + id),,.

i-o

r
dxcUdkA

k=i

for all sufficiently- large x. Therefore,

(14)

	

dx+2cdm c (dr+udc)A

for all sufficiently large x provided

(15)

	

ud > r-1

since for each dx e d kA, 1 < k < r, we also have Mm e (ude + (r - k) d) A .
In other words, if (15) holds then all sufficiently large multiples of d
belong to (r + uc) dA .

Our next task is to find a number w = o (r 2 ) so that wA contains
a complete residue system mod d . Let Á = {h, . . ., Ij denote the set
of distinct residues modulo d which occur in A . Since A satisfies (*) by
hypothesis, we can assume that a i and li are labelled so that a i - li (mod d)
and, for some t,

(16)

	

Gz>G2> . . .>G, =1
where

Gi -g.c.d.{12-11, 13 -127 . . ., li+ ~ -li} .



Since Gí+1 divides G í for all i, it follows at once that

and

r(rm+2m) = n-} Lr(rm)

then all residues modulo n belong to

jr-A,. (m) u (r /2 +1) A,.(m) v . . . v rA,.(m)

and consequently

(19)

	

ord (A, (m)) < r .

k=1
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logs

	

logd

	

logr
t

log2
< log2

	 <
log2
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Thus, for any z (mod d) there exist integers ek = ek (z) with 0 < ck < d
so that

t
(1g)

	

Ck( 1k+1 - lk) _ ~,ek(akA-1-ak) =z (mod d) .
k=1

It follows from (18) that all residue classes modulo d are in (t+l-)dA.
Finally, using this together with (14), we see that (provided (15)

holds) all sufficiently large integers belong to d (r + ue + t +1) A . To satisfy
r-1

(15) it is enough to take vu -	
d

An easy calculation (using (17)) shows that the maximum value the

coefficient d (r + c C	rd11 + t +1) achieves is (1 + o (1)) r 2 . Thus,

9(r) < 4(1+o(1»r 2

which is the upper bound of (7) .
To obtain the lower bound of (7), consider the following set A,.(m)

defined by

A,. (m) - {x > 0 : x -i (mod n) for some i, rm < i < (r +2) m}

where n = rm(r/2-}-2) and we assume r is even. Reduced modulo n,
A,. (m) is simply the interval of residues {rm, rm+1, . . ., rm+2m} .

On one hand, since

2r
(rm+2m) =

r2
+rm =

	

{ 1) rm
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On the other hand, for any k, kA,,(m) reduced modulo n forms an interval
of length 2mk +1 . Therefore,

(20)

	

ord* (Ar(m)) > n	=
r2
+r- 1

2m

	

4

	

2m

Taking m large, it follows from (19) and (20) that

g(r) > 1 (1+0(1))r 2

which is the lower bound of (7). This completes the proof of Theorem 2 . a

Concluding remarks . We mention here several questions related to
the preceding results which we were unable to settle .

1. Show that lim g (r) exists, and, if possible, determine its value .
,-.~ r2

To obtain the exact value of g (r) seems very difficult. It can be shown
that g(2) = 4 . However, at present we do not even know the value off
g(3) . (It is at least 7 .)

2 . For a set A, let A.(x) denote ImAr) {1, . . ., x} 1 . If A is a basis

and A, (x) = o (x) is it true that lim A
2	 (x) = oo

. ... A, (x)
3. By the restricted order of A, denoted by ordB(A), we mean the

least integer t (if it exists) such that every sufficiently large integer is the
sum of at most t distinct summands taken from A. As pointed out by
Bateman, for h > 3 the set Ah = {x > 0 : x -1 (mod h)} has ord(A) = is
but has no restricted order. However, Kelly [2] has shown that ord (A) = 22
implies ordR(A) < 4 and conjectures that, in fact, ord,(A) < 3 is true .

(i) What are necessary and sufficient conditions on a basis A to
have a restricted order?

(ü) Is there a function f (r) such that if ord (A) = r and ordR(A
exists then ordR(A) < f (r) 2

(iii) What are necessary and sufficient conditions that ord (A)
= ord,(A) 2 Even for sequences of polynomial values, the situation is
not clear. For example, for the set S, _ {n 2 , n > 1}, ord(Sl) = 4 (by
Lagrange's theorem) : and ord,(S,) = 5 (by Pall [3]), whereas for the set
S2= {(n2 +n)/2 : n > 1},

ord(S 2 ) = ordR(S2 ) = 3 .

(iv) Is it true that if for some r, ord (A -F) = r for all finite sets F,
then ordR(A) exists? What if we just assume ord(A-F) exists for all
finite F ?

4. Let n xA denote the set fail + . . . +ai. : aik are distinct elements of
A} . Is it true that if ord (A) - r then r xA has positive (lower) density?
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If sA has positive upper density then s xA must also have positive upper
density?

5. Given k and m, when does there exist a set A C Z. so that A, 2A, . . .
. . ., kA form a disjoint cover of Z„ t2 For example, for k = 2, m = 3t-1, .
the set A = {t, t+1, . . ., 2t-1} works .

Of course, many of the preceding questions could be formulated for
ord*(A) (defined in the obvious way) . However, we leave these for a later
paper J WL) .
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