Correction of some typografical errors
of the paper P.ERDOS and P.VERTESI, On the almost
everywhere divergence of Lagrange interpolatory
polynomials for arbitrary system of nodes, Acta
Math. Acad.Sci.Hungar., 36/1-2/,/1980/, 7-89.

" $\left|\tau_{u_{1}(x)}\left(f_{1}, x\right)\right| \geq A_{1}>1^{3} \lambda_{N_{0}}^{2} \quad$ whenever $x \in s_{1}$.
Here $m_{1} \leq u_{1}(x) \leq n_{1}$. Now we take the polynomial $\varphi_{1}\left(f_{1}, x\right)$ of degree $\leq N_{2}, \quad\left\|\varphi_{1}\right\| \leq 32$, for which

$$
\left|L_{u_{1}}(x)\left(\varphi_{2}, x\right)\right| \geq A_{1}>1^{3} \lambda_{N_{0}}^{2} \quad \text { whenever } x \in_{S_{1}}
$$

/see 4.4.4/".
instead of:

$$
"\left|L_{u_{1}}(x)\left(f_{1}, x\right)\right| \geq A_{1}>1^{3} \lambda_{N_{0}}^{2} \quad \text { whenever } \quad x \in S_{1}
$$

/see 4.4.4/."

ON THE ALMOST EVERYWHERE DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS FOR ARBITRARY SYSTEM OF NODES

By

P. ERDŐS, member of the Academy and P. VÉRTESI (Budapest)

Dedicated to the memory of John Curtiss

1. Introduction

In a previous paper P. Erdős [1] stated without proof that if $X=\left\{x_{i n}\right\}$, $n=1,2, \ldots ; 1 \leqq i \leqq n$,

$$
\begin{equation*}
-1 \leqq x_{n n}<x_{n-1, n}<\ldots<x_{1 n} \leqq 1 \quad(n=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

is a triangular matrix then there is a continuous function $F(x),-1 \leqq x \leqq 1$, so that the sequence of Lagrange interpolation polynomials

$$
L_{n}(F, X, x)=L_{n}(F, x)=\sum_{k=1}^{n} F\left(x_{k n}\right) l_{k n}(x)
$$

diverges almost everywhere in $[-1,1]$, and in fact

$$
\lim _{n \rightarrow \infty}\left|L_{n}(F, X, x)\right|=\infty
$$

for almost all x. (Here, as usual,

$$
\begin{equation*}
l_{k n}(x)=\frac{\omega_{n}(x)}{\omega_{n}^{\prime}\left(x_{k n}\right)\left(x-x_{k n}\right)} \quad\left(k=1,2, \ldots, n ; \omega_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k n}\right)\right) \tag{1.2}
\end{equation*}
$$

are the corresponding fundamental polynomials,

$$
\begin{equation*}
\lambda_{n}(x)=\sum_{k=1}^{n}\left|l_{k n}(x)\right|, \quad \lambda_{n}=\max _{-1 \leqq x \leqq 1} \lambda_{n}(x) \quad(n=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

are the Lebesgue functions and Lebesgue constants of the interpolation, respectively.
We now prove this statement in full detail. The detailed proof turned out to be quite complicated and several unsuspected difficulties had to be overcome.

In the same paper P. Erdős also stated, that there is a pointgroup $\left\{x_{k n}\right\}$ so that for every continuous $f(x)(-1 \leqq x \leqq 1) \quad L_{n}\left(f, x_{0}\right) \rightarrow f\left(x_{0}\right)$ holds for at least one x_{0} for which $\varlimsup_{n \rightarrow \infty} \sum_{k=1}^{n}\left|l_{k n}\left(x_{0}\right)\right|=\infty$. This is perhaps true, but at this moment we cannot prove it (the original "proof" was probably incomplete). We hope to settle it on another occasion.

2. Preliminary results

In his classical paper [2] G. Faber proved that for any matrix X

$$
\overline{\lim }_{n \rightarrow \infty} \lambda_{n}=\infty
$$

from where we immediately obtain that for every point group there exists a continuous function $f_{1}(x),-1 \leqq x \leqq 1$ (shortly $f_{1} \in C$) so that

$$
\varlimsup_{n \rightarrow \infty}\left\|L_{n}\left(f_{1}, x\right)\right\|=\infty
$$

(Henceforward $\|g(x)\|=\|g\|=\max _{-1 \leqq x \leqq 1}|g(x)|$ for $g \in C$.) Almost twenty years later, in 1931, S. Bernstein [3] showed that for every X with (1.1) there is an $f_{2} \in C$ and an $x_{0},-1 \leqq x_{0} \leqq 1$, such that

$$
\lim _{n \rightarrow \infty}\left|L_{n}\left(f_{2}, x_{0}\right)\right|=\infty .
$$

Another problem is to prove divergence theorem on a set of positive measure.
In his paper [14] S. Bernstein proved, that for the "bad" matrix $E=\{-1+2(k-1) /(n-1)\}$ and the function $|x|$

$$
\varlimsup_{n \rightarrow \infty}\left|L_{n}(|t|, E, x)\right|=\infty \quad \text { if } \quad x \in(-1,1), \quad x \neq 0 .
$$

Then, using the "good" Chebyshev matrix

$$
\begin{equation*}
T=\left\{x_{k n}=\cos \frac{2 k-1}{2 n} \pi ; k=1,2, \ldots, n ; n=1,2, \ldots\right\} \tag{2.1}
\end{equation*}
$$

G. Grünwald [4] got that there exists a function $f_{3} \in C$, for which

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(f_{3}, T, x\right)\right|=\infty \tag{2.2}
\end{equation*}
$$

holds for almost all x in $[-1,1]$. Later he and (independently) J. Marcinkiewicz proved that for a suitable $f_{4} \in C,(2.2)$ is true for every x from [$-1,1$] (see [5] and [6]).

Very recently A. A. Privalov [7] settled the case of Jacobi matrices

$$
X^{(\alpha, \beta)}=\left\{x_{k n}^{(\alpha, \beta)}, k=1,2, \ldots, n ; n=1,2, \ldots\right\}, \quad \alpha, \beta>-1
$$

(see e.g. [8], Part 2), showing that with a certain $f_{4} \in C$

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(f_{4}, X^{(\alpha, \beta)}, x\right)\right|=\infty \quad \text { a.e. on }[-1,1], \tag{2.3}
\end{equation*}
$$

where "a.e." stands for almost everywhere. (He considered some further point groups, too.) His proof strongly depends on the properties of the Jacobi roots $x_{k n}^{(\alpha, \beta)}$, Finally, he proved (2.3) for the whole $(-1,1)$ (see [13]).

3. Result

As indicated above we are going to prove (2.2) for any fixed point group X, i.e. we state

Theorem. For any matrix X with (1.1) one can find a function $F(x) \in C$ such that

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}(F, X, x)\right|=\infty \text { for almost all } x \text { in }[-1,1] . \tag{3.1}
\end{equation*}
$$

On the other hand, considering the special matrix

$$
\begin{aligned}
& x_{1} \\
& x_{1}, x_{2} \\
& x_{1}, x_{2}, x_{3}
\end{aligned}
$$

we can say that (3.1) generally is not true for all $x \in[-1,1]$ (see P. Turán [9], Problem III).

Finally, let us remark that the "lim" cannot be replaced by "lim" or "lim". Indeed, as P. Erdős showed, one can construct a point group so that for every $f \in C$ and every $x_{0} \in[-1,1]$ there exists a sequence n_{k} (depending on f and x_{0}) so that

$$
\lim _{k \rightarrow \infty} L_{n_{k}}\left(f, x_{0}\right)=f\left(x_{0}\right)
$$

(see [1], p. 384).

4. Proof

4.1. In what follows, sometimes omitting the superfluous notations, let $x_{0 n}=1, x_{n+1, n}=-1$ and

$$
\begin{equation*}
\Delta x_{k n}=x_{k n}-x_{k+1, n} \quad(k=0,1, \ldots, n ; n=1,2, \ldots) . \tag{4.1}
\end{equation*}
$$

Let us define the index-sets $K_{1 n}$ and $K_{2 n}$ and sets $D_{1 n}$ and $D_{2 n}$ by

$$
\left\{\begin{array}{lll}
\Delta x_{k n}\left\{\begin{array}{lll}
\leqq \frac{1}{\ln n} \stackrel{\text { def }}{=} \delta_{n} & \text { iff } & k \in K_{1 n} \\
>\delta_{n} & \text { iff } & k \in K_{2 n} \\
D_{1 n}=\bigcup_{k \in K_{1 n}}\left[x_{k+1},\right. & \left.x_{k}\right], & D_{2 n}=[-1,1] \backslash D_{1 n}
\end{array} .\right. \tag{4.2}
\end{array}\right.
$$

If $\Delta x_{k} \leqq \delta_{n}$ (which means $k \in K_{1 n},\left[x_{k+1}, x_{k}\right] \subset D_{1 n}$) we say that the interval $\left[x_{k+1}, x_{k}\right]$ is short; the other ones are long.

The fact that for any given positive numbers A and ε the measure of those x ($-\infty<x<\infty$) for which

$$
\lambda_{n}(x) \leqq A
$$

holds if $n \geqq n_{0}(\varepsilon, A)$, is less than ε, was shown by the first of us in [1]. But here we need a stronger statement. Namely, if

$$
I_{l m}=\left[-1+\frac{2(l-1)}{m},-1+\frac{2 l}{m}\right) \quad(l=1,2, \ldots, m),
$$

then for the short intervals we prove
Lemma 4.1. Let $A>0$ be an arbitrary fixed number. Then with arbitrary $m \geqq \max \left[\exp \left(8 A^{3}\right), \exp (\exp 100)\right] \stackrel{\text { def }}{=} m_{0}(A)$, for any $n \geqq n_{0}(m)$ there exists a set $H_{1 n} \subset D_{1 n}$ for which $\mu\left(H_{1 n}\right) \leqq 1 / \ln \ln m$. Further, whenever $x \in D_{1 n} \backslash H_{1 n}$,

$$
\begin{equation*}
\sum_{\substack{1 \leq k \leq n \\ x_{k n} \in D_{1 n} \\ x_{k n} \Psi_{j(x)}(x), m \\ k \not K_{3 n}}}\left|I_{k n}(x)\right| \geqq(\ln m)^{1 / 3} \geqq 2 A \quad \text { if } \quad n \geqq n_{0}(m) . \tag{4.3}
\end{equation*}
$$

Here $x \in I_{j(x), m}(1 \leqq j \leqq m), K_{3 n}$ is a certain index-set having $\sqrt{\ln n}$ elements at most, $\mu(\ldots)$ stands for the Lebesgue measure.
4.1.1. The proof of this lemma, which is one of the most important parts of our theorem, consists of severals steps.

First we settle Lemma 4.2 regarding both short and long intervals.
Let us introduce the following notation.

$$
J_{k}(q)=J_{k n}(q)=\left[x_{k+1}+q \Delta x_{k}, x_{k}-q \Delta x_{k}\right], \quad J_{k}=J_{k}(0)=\left[x_{k+1}, x_{k}\right],
$$

for $0 \leqq q \leqq 1 / 2,0 \leqq k \leqq n$. If $z_{k}=z_{k n}(q)$ is defined by

$$
\begin{equation*}
\left|\omega_{n}\left(z_{k}\right)\right|=\min _{x \in J_{k}(q)}\left|\omega_{n}(x)\right|, k=0,1, \ldots, n \tag{4.4}
\end{equation*}
$$

(obviously, z_{k} is one of the endpoints of $J_{k}(q)$), we state
Lemma 4.2. If $x_{k} \leqq x_{r+1}(1 \leqq r<k<n)$ then for arbitrary $0<q \leqq 1 / 2$

$$
\begin{equation*}
\left|l_{k}(x)\right|+\left|l_{k+1}(x)\right| \geqq q^{2} \frac{\left|\omega_{n}\left(z_{r}\right)\right|}{\left|\omega_{n}\left(z_{k}\right)\right|} \frac{\Delta x_{k}}{x_{r}-x_{k+1}} \quad \text { if } \quad x \in J_{r}(q) . \tag{4.5}
\end{equation*}
$$

To prove (4.5), first we use

$$
\begin{equation*}
\left|l_{s}(x)\right|=\left|\frac{\omega(x)}{\omega^{\prime}\left(x_{s}\right)\left(x-x_{s}\right)}\right|=\frac{|\omega(x)|}{\left|\omega\left(z_{r}\right)\right|} \frac{\left|z_{r}-x_{s}\right|}{\left|x-x_{s}\right|}\left|l_{s}\left(z_{r}\right)\right| \geqq q\left|l_{s}\left(z_{r}\right)\right| \tag{4.6}
\end{equation*}
$$

if $s=k, k+1$ and $x \in J_{r}(q)$

(because $\left.z_{r}-x_{s} \geqq q \Delta x_{r}+\left(x_{r+1}-x_{s}\right) \geqq q\left(\Delta x_{r}+x_{r+1}-x_{s}\right) \geqq q\left(x-x_{s}\right)\right]$, from where

$$
\begin{gather*}
\left|l_{k}(x)\right|+\left|l_{k+1}(x)\right| \geqq q\left[\left|l_{k}\left(z_{r}\right)\right|+\left|l_{k+1}\left(z_{r}\right)\right|\right]= \tag{4.7}\\
=q \frac{\left|\omega\left(z_{r}\right)\right|}{\left|\omega\left(z_{k}\right)\right|}\left[\left|l_{k}\left(z_{k}\right)\right| \frac{x_{k}-z_{k}}{z_{r}-x_{k}}+\left|l_{k+1}\left(z_{k}\right)\right| \frac{z_{k}-x_{k+1}}{z_{r}-x_{k+1}}\right] \geqq \\
\geqq q \frac{\left|\omega\left(z_{r}\right)\right|}{\left|\omega\left(z_{k}\right)\right|} \frac{\Delta x_{k}}{x_{r}-x_{k+1}} \frac{\min \left(z_{k}-x_{k+1}, x_{k}-z_{k}\right)}{\Delta x_{k}}\left[\left|l_{k}\left(z_{k}\right)\right|+\left|l_{k+1}\left(z_{k}\right)\right|\right] \geqq \\
\geqq q^{2} \frac{\left|\omega\left(z_{r}\right)\right|}{\left|\omega\left(z_{k}\right)\right|} \frac{\Delta x_{k}}{x_{r}-x_{k+1}} \quad\left(x \in J_{r}(q)\right),
\end{gather*}
$$

using that $l_{k}(u)+l_{k+1}(u) \geqq 1$ if $u \in J_{k}$ (see [11], Lemma IV).
Similar estimation holds when $x_{r} \leqq x_{k+1}$.
4.1.2. We construct the set $H_{1 n}$ for $n \geqq n_{0}(m)$.
a) Any of $J_{0 n}, J_{n n}$ contained in $D_{1 n}$ should belong to $H_{1 n}$. Further, if $J_{k n} \subset D_{1 n}$ intersecting two $I_{l m}(1 \leqq l \leqq m)$ or whenever either k or $k+1 \in K_{3 n}$, it should also belong to $H_{1 n}$. The measure of these intervals $J_{k n}$ is $\leqq 2 \delta_{n}+(m-1) \delta_{n}+\sqrt{\ln n} \delta_{n} \leqq$ $\leqq(\ln \ln m)^{-2} \xlongequal{\text { def }} \varepsilon_{m}^{2}$, if, e.g. $n \geqq \exp \left(m^{2}\right)=n_{0}(m)$.
b) Let $q=q_{m}=\varepsilon_{m} / 8$. The intervals $J_{k n}(q)$ or $J_{k n}$ from $D_{1 n}$ not considered at a) will be called exceptional if there exists an $x=x(k, n) \in J_{k n}(q)$ for which the estimation (4.3) does not hold. The exceptional $J_{k n}$'s should also belong to $H_{1 n}$. If $\sum_{k}^{\prime} \mu\left(J_{k n}(q)\right)=2 c$ (where the dash indicates that the summation is extended only over the exceptional $J_{k n}$'s), we state that $c=c(n, m) \leqq \varepsilon_{m}^{2}$ if $n \geqq n_{0}(m)$ (whence the aggregate measure of the exceptional intervals $J_{k n}$ is $<3 \varepsilon_{m}^{2}$).

Indeed, supposing $c>\varepsilon_{m}^{2}$ we shall obtain a contradiction.
Let us order the ψ_{n} exceptional $\bar{J}_{1}(q), \bar{J}_{2}(q), \ldots, \bar{J}_{\psi_{n}}(q)$ such that

$$
\left|\omega\left(\bar{z}_{i}\right)\right| \geqq \omega\left(\bar{z}_{k}\right) \quad\left(1 \leqq i \leqq k \leqq \psi_{n}\right),
$$

where \bar{z}_{k} stands for the corresponding minimum in $\bar{J}_{k}(q)$ (see (4.4)). Then for a certain $\varphi_{n}, 1 \leqq \varphi_{n} \leqq \psi_{n}$,

$$
\left\{\begin{array}{lll}
\left|\omega\left(\bar{z}_{1}\right)\right| \geqq\left|\omega\left(\bar{z}_{k}\right)\right| \geqq(\ln m)^{-1 / 2}\left|\omega\left(\bar{z}_{1}\right)\right| & \text { if } & 1 \leqq k \leqq \varphi_{n}, \tag{4.8}\\
\left|\omega\left(\bar{z}_{1}\right)\right|>(\ln m)^{1 / 2}\left|\omega\left(\bar{z}_{k}\right)\right| & \text { if } & \varphi_{n}<k \leqq \psi_{n} .
\end{array}\right.
$$

By a simple computation

$$
\begin{equation*}
\sum_{i=\varphi_{n}+1}^{\psi_{n}} \mu\left(\bar{J}_{i}(q)\right) \leqq c \quad \text { if } \quad n \geqq n_{0}(m) \tag{4.9}
\end{equation*}
$$

(if, of course, $\varphi_{n}<\psi_{n}$).
Indeed, otherwise, using that

$$
\sum_{i=\varphi_{n}+1}^{\psi_{n}}=\sum_{\substack{i=\varphi_{n}+1 \\ J_{i} \cap I_{j m}=\emptyset}}^{\psi_{n}}+\sum_{\substack{i=\varphi_{n}+1 \\ J_{i} \cap I_{j m} \neq \emptyset}}^{\psi_{n}} \xlongequal{\text { def }} \sum^{(1)}+\Sigma^{(2)}
$$

where $\bar{z}_{1} \in I_{j m}=I_{j\left(\bar{z}_{1}\right), m}$, we obtain

$$
\sum^{(2)} \mu\left(\bar{J}_{i}(q)\right) \leqq 2 m^{-1}<\varepsilon_{m}^{2} / 2<c / 2,
$$

from where $\sum^{(1)} \mu\left(\bar{J}_{i}(q)\right)>c / 2$. Then by (4.5) and (4.8) for any $x \in \bar{J}_{1}(q)$ the sum (4.3) can be estimated as follows

$$
\begin{aligned}
& \sum_{\ldots}\left|l_{k}(x)\right| \geqq \frac{1}{2} \sum^{(1)}\left[\left|l_{i}(x)\right|+\left|l_{i+1}(x)\right|\right] \geqq \frac{q^{2}}{2} \sum^{(1)} \frac{\left|\omega\left(\bar{z}_{1}\right)\right|}{\left|\omega\left(\bar{z}_{i}\right)\right|} \frac{\Delta \bar{x}_{i}}{\left|\bar{x}_{i+1}-\bar{x}_{1}\right|} \geqq \\
& \quad \geqq \frac{q^{2}}{4}(\ln m)^{1 / 2} \sum^{(1)} \Delta \bar{x}_{i} \geqq \frac{q^{2} c}{8}(\ln m)^{1 / 2}>\frac{\varepsilon_{m}^{4}}{8^{3}}(\ln m)^{1 / 2}>(\ln m)^{1 / 3}
\end{aligned}
$$

which is a contradiction, i.e. (4.9) is true. (Here \bar{x}_{i+1} and \bar{x}_{1} are the "farthest" points of the corresponding intervals.)
4.1.3. Consequently, using the fact that the total measure $\gamma c(1 \leqq \gamma \leqq 2)$ of the exceptional $\bar{J}_{1}(q), \ldots, \bar{J}_{\varphi_{n}}(q)$ is bigger than ε_{m}^{2}, we should obtain a contradiction. Notice that for \bar{J}_{l} we have (4.8), each \bar{J}_{l} is in exactly one $I_{k m}$; if $i=0, n$, or when i or $i+1 \in K_{3 n}$, then J_{i} cannot be exceptional. Obviously $\varphi_{n} \geqq c \ln n$.

Dropping \bar{J}_{l} containing the middle point of $[-1,1]$ and bisecting the same interval $[-1,1]$, we have (say) in $[0,1]$ a set of measure $\geqq\left[c-\mu\left(\bar{J}_{t}\right)\right] / 2 \geqq\left(c-\delta_{n}\right) / 2$, consisting of certain $\bar{J}_{l}(q)$'s $\left(1 \leqq l, t \leqq \varphi_{n}\right)$.

At the k-th bisection we obtain that interval of length 2^{1-k} which contains certain $\bar{J}_{l}(q)$'s $\left(1 \leqq l \leqq \varphi_{n}\right)$ of aggregate measure $\geqq 2^{-k} c-\delta_{n} \geqq 2^{-k-1} c$, if e.g. $1 \leqq k \leqq[\log m]+2 \stackrel{\text { def }}{=} p=p_{m}$.

Consider these intervals $L_{1}^{*}, L_{2}^{*}, \ldots, L_{p}^{*}$.

Fig. 1
Obviously $\mu\left(L_{k}^{*}\right)=2^{k-p}$, each L_{k}^{*} contains at least k exceptional $\bar{J}_{l}(q)$'s, further

$$
\sum_{J_{l}(q) \subset L_{k}^{*}} \mu\left(\bar{J}_{l}(q)\right) \geqq 2^{k-p-2} c \quad\left(1^{\prime} \leqq k \leqq p_{m}, 1 \leqq l \leqq \varphi_{n}\right) .
$$

Let $L_{1}=L_{1}^{*}$, further $L_{k}=L_{k}^{*} \backslash L_{k-1}^{*}\left(2 \leqq k \leqq p_{m}\right)$ (see Fig. 1). It is easy to see that $(2 m)^{-1} \leqq \mu\left(L_{1}\right) \leqq m^{-1}$. Let us choose any fixed point x from any exceptional
$\bar{J}_{l_{0, n}}(q)$ contained in $L_{1}\left(1 \leqq l_{0} \leqq \varphi_{n}\right)$. Then, by (4.5) and (4.8) the sum (4.3) can be estimated as follows

$$
\begin{align*}
\sum\left|l_{t}(x)\right| & \geqq \frac{1}{2} \sum\left[\left|l_{t}(x)\right|+\left|l_{t+1}(x)\right|\right] \geqq \sum_{k=1}^{p} \sum_{\substack{l \\
J_{l}(q) \subset L_{k}}} q^{2} \frac{\left|\omega\left(\bar{z}_{l_{0}}\right)\right|}{\left|\omega\left(\bar{z}_{l}\right)\right|} \cdot \frac{\Delta \bar{x}_{l}}{\left|\bar{x}_{l+1}-\bar{x}_{0}\right|} \geqq \tag{4.10}\\
& \geqq q^{2}(\ln m)^{-1 / 2} \sum_{k=1}^{p} \sum_{\substack{\prime}} \frac{\Delta \bar{x}_{l}}{\left|\bar{x}_{l+1}-\bar{x}_{0}\right|} \stackrel{\text { def }}{=} q^{2}(\ln m)^{-1 / 2} B
\end{align*}
$$

where \bar{x}_{l+1} and \bar{x}_{0} are the "farthest" points of the corresponding intervals, $1 \leqq l$, $l_{0} \leqq \varphi_{n}$, the dash means that we exclude k whenever $I_{j(x), m} \cap L_{k} \neq \varnothing$. To estimate B, let

$$
\begin{equation*}
\sum_{\substack{l \\ J_{l}(q) \subset L_{k}}} \Delta \bar{x}_{l} \stackrel{\text { def }}{=} c \alpha_{k} \tag{4.11}
\end{equation*}
$$

Using the construction, it is easy to see that

$$
\begin{equation*}
c \sum_{k=1}^{i} \alpha_{k} \geqq 2^{i-p-2} c \quad(1 \leqq i \leqq p), \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\left|\bar{x}_{0}-\bar{x}_{i}\right| \leqq 2^{k-p} \quad \text { if } \quad \bar{x}_{0} \in L_{1} \quad \text { and } \quad \bar{x}_{i} \in L_{k} \quad(1 \leqq k \leqq p) . \tag{4.13}
\end{equation*}
$$

By induction

$$
\begin{equation*}
\alpha_{k} \leqq 2^{k-2} \alpha_{1} \quad(2 \leqq k \leqq p) . \tag{4.14}
\end{equation*}
$$

(Indeed, by construction $\alpha_{2} \leqq \alpha_{1}, \alpha_{3} \leqq \alpha_{1}+\alpha_{2} \leqq 2 \alpha_{1}, \ldots$, from where we get (4.14).)
Now, by (4.13), (4.11), (4.12), the Abel transformation and (4.14) we can write

$$
\begin{gathered}
B \geqq c 2^{p} \sum_{k=1}^{p} 2^{-k} \alpha_{k} \geqq c 2^{p}\left[\sum_{k=1}^{p} 2^{-k} \alpha_{k}-4 \max _{1 \leqq k \leqq p} \frac{\alpha_{k}}{2^{k}}\right] \geqq \\
\geqq c 2^{p}\left[\sum_{k=1}^{p-1}\left(\sum_{i=1}^{k} \alpha_{i}\right) \frac{1}{2^{k+1}}+\left(\sum_{i=1}^{p} \alpha_{i}\right) \frac{1}{2^{p}}-4 \alpha_{1}\right] \geqq \\
\geqq c 2^{p}\left[\sum_{k=1}^{p-1} \frac{2^{k-p-2}}{2^{k+1}}+\frac{1}{2^{p+2}}-\frac{4}{m c}\right] \geqq c \frac{\log m}{16}-16 \geqq \frac{c \ln m}{20},
\end{gathered}
$$

i.e., in virtue of (4.10),

$$
\sum\left|l_{t}(x)\right| \geqq \frac{\varepsilon_{m}^{4}(\ln m)^{1 / 2}}{8^{2} \cdot 20}>(\ln m)^{1 / 3} \quad\left(n \geqq n_{0}(m)\right),
$$

i.e. for any $x \in \bar{J}_{l_{0}}(q)$ we have (4.3). But then $\bar{J}_{l_{0}}(q)$ is not exceptional which is a contradiction. So $c \leqq \varepsilon_{m}^{2}$, as it was stated.
4.1.4. c) Clearly, for any point $x \in J_{k n}(q)\left(J_{k n} \subset D_{1 n}\right)$ considered neither at a) nor at b), the estimation (4.3) will be true. For these $J_{k n}$ the sets $J_{k n} \backslash J_{k n}(q)$
of aggregate measure c_{1} should belong to $H_{1 n}$, too. Obviously, c_{1} can be estimated as follows

$$
c_{1} \leqq \sum_{k \in K_{1 n}}\left[\mu\left(J_{k n}\right)-\mu\left(J_{k n}(q)\right)\right]=2 q \sum_{k \in K_{1 n}} \Delta x_{k} \leqq \frac{\varepsilon_{m}}{2} .
$$

So by a), b) and c)

$$
\mu\left(H_{1 n}\right) \leqq \varepsilon_{m}^{2}+3 \varepsilon_{m}^{2}+\varepsilon_{m} / 2 \leqq \varepsilon_{m}
$$

which proves Lemma 4.1.
4.2. Here we introduce an important definition. The interval $I_{k m}$ and its index k will be called good for a certain $n \geqq n_{0}(m)$ if

$$
\sum_{J_{i n} \subset H_{1 n}}^{\prime} \mu\left(I_{k m} \cap J_{i n}\right) \leqq \frac{\varepsilon_{m}}{2 m} \quad\left(n \geqq n_{0}(m)\right),
$$

where the dash means that we take only such $J_{i n}$'s which were considered in a) or b) ($1 \leqq k \leqq m$). (Observe that $I_{k m}$ is good whenever $I_{k m} \cap D_{1 n}=\varnothing$.) Using that

$$
\sum_{J_{i n} \subset H_{1 n}}^{\prime} \mu\left(J_{i n}\right) \leqq 4 \varepsilon_{m}^{2},
$$

for any $n \geqq n_{0}(m)$ at most $8 m \varepsilon_{m}$ intervals $I_{k m}$ are not good (m is fixed).
If we can choose a subsequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that $I_{1 m}$ is good whenever $n \in\left\{n_{i}\right\}$ we take it. Otherwise, let us define $\left\{n_{i}\right\}$ so that $I_{1 m}$ is not good if $n \in\left\{n_{i}\right\}$. Starting from $\left\{n_{i}\right\}$ let us make the analogous process for $I_{2 m}$. So after the m-th step we essentially derive the following statement.

Lemma 4.3. For every fixed $m \geqq m_{0}(A)$ and sequence $\left\{l_{r}\right\}_{r=1}^{\infty}\left(l_{r} \geqq n_{0}(m)\right.$ are integers) one can select a subsequence $\left\{n_{i}\right\}_{i=1}^{\infty} \subset\left\{l_{r}\right\}_{r=1}^{\infty}$ such that for any $n \in\left\{n_{i}\right\}_{i=1}^{\infty}$ the intervals $I_{1 m}, I_{2 m}, \ldots, I_{m m}$ are good, apart from $I_{k_{1}, m}, I_{k_{2}, m}, \ldots, I_{k_{j}, m}$. Here $1 \leqq k_{1}<k_{2}<\ldots<k_{j} \leqq m, j=j(m) \leqq 8 m \varepsilon_{m}$ and, which is very important, the indices k_{s} ($1 \leqq s \leqq j$) depend only on m. (If $j=0$, every $I_{k m}$ is good.)
4.3. Now we shall treat the long intervals, i.e. the case when $\Delta x_{k}>\delta_{n}$ or what is the same, $k \in K_{2 n},\left(x_{k+1}, x_{k}\right) \subset D_{2 n}$.

The following estimation plays a similar role as Lemma 4.1.
Lemma 4.4. Let $\Delta x_{k n}>\delta_{n}$ (k is fixed, $0 \leqq k \leqq n$). Then for any fixed $0<q<1 / 2$ we can define the index $t=t(k, n)$ and the set $h_{k n} \subset J_{k n}$ so that $\mu\left(h_{k n}\right) \leqq 4 q \Delta x_{k n}$, moreover

$$
\begin{equation*}
\left|l_{t}(x)\right| \geqq 3^{n \delta_{n}^{5}} \xlongequal{\text { def }} \eta_{n} \quad \text { if } \quad x \in J_{k n} \backslash h_{k n} \quad \text { and } \quad n \geqq n_{1}(q) . \tag{4.15}
\end{equation*}
$$

In the proof we refine some ideas of the papers by Erdős and Turán [11] and Erdős and Szabados [12]. Take those roots $y_{i n}=\cos \vartheta_{i n}(1 \leqq i \leqq n)$ of the n-th Chebychev polynomials $T_{n}(x)=\cos n \vartheta=2^{n-1} x^{n}+\ldots \quad(x=\cos \vartheta)$ which are in $J_{k n}(q)$. Their number is not less than $(1-2 q) n \delta_{n} / \pi$ because of $\vartheta_{i+1}-\vartheta_{i}=\pi / n$ ($1 \leqq i \leqq n-1$; see (2.1)) and $\Delta x_{k}>\delta_{n}$. If

$$
h_{k}=\left[J_{k} \backslash J_{k}(q)\right] \cup\left\{\bigcup_{y_{i} \in J_{k}(q)}\left[\cos \left(\vartheta_{i}+q \frac{\pi}{n}\right), \cos \left(\vartheta_{i}-q \frac{\pi}{n}\right)\right]\right\},
$$

then $\mu\left(h_{k}\right) \leqq 4 q \Delta x_{k}$ and for arbitrary $y \in J_{k} \backslash h_{k}=J_{k}(q) \backslash h_{k}$ we can write $\left|T_{n}(y)\right| \geqq$ $\geqq\left|\sin n \vartheta_{i} \sin q \pi\right| \geqq 2 q$. Consider now the interval $M=M(y)=\left[y-\frac{q}{4} \delta_{n}, y+\frac{q}{4} \delta_{n}\right] \subset$ $\subset J_{k}$ which contains at least $\frac{q}{2 \pi} n \delta_{n}>n \delta_{n}^{2}$ roots of $T_{n}(x)\left(n \geqq n_{0}(q)\right)$. Then the polynomial $p(y, n ; x)=p(x)=\prod_{y_{i n} \& M(y)}\left(x-y_{i n}\right)$ of degree less than n, can be estimated at any $x \notin\left(x_{k+1}, x_{k}\right)$ as follows

$$
\begin{aligned}
|p(x)| & =\frac{\left|T_{n}(x)\right|}{2^{n-1} \prod_{y_{i} \in M}\left|x-y_{i}\right|}=\left|p(y) \frac{T_{n}(x)}{T_{n}(y)}\right|_{y_{i} \in M} \frac{\left|y-y_{i}\right|}{\left|x-y_{i}\right|} \leqq \\
& \leqq \frac{|p(y)|}{2 q} \prod_{y_{i} \in M} \frac{1}{3} \leqq \frac{|p(y)|}{2 q} \frac{1}{3^{n \delta_{n}^{2}}}<\frac{|p(y)|}{3^{n \delta_{n}^{3}}} .
\end{aligned}
$$

Now, using the Lagrange interpolatory formula,

$$
|p(y)| \leqq \sum_{i=1}^{n}\left|p\left(x_{i}\right)\right|\left|l_{i}(y)\right| \leqq|p(y)| 3^{-n \delta_{n}^{2}} \sum_{i=1}^{n}\left|l_{i}(y)\right|
$$

from where $\sum_{i=1}^{n}\left|l_{i}(y)\right| \geqq 3^{n \delta_{n}^{3}}$ if $n \geqq n_{1}(q)$, because $|p(y)| \neq 0$.
So for any fixed $y \in J_{k}(q) \backslash h_{k}$ there exists an index $t=t(y, k, n)$ such that

$$
\begin{equation*}
\left|l_{t}(y)\right|=\left|\frac{\omega(y)}{\omega^{\prime}\left(x_{t}\right)\left(y-x_{t}\right)}\right| \geqq 3^{n \delta_{n}^{4}} \quad\left(n \geqq n_{1}(q)\right) . \tag{4.16}
\end{equation*}
$$

Let us choose the point $y=u_{k}$ such that

$$
\left|\omega\left(u_{k}\right)\right|=\min _{x \in J_{k}(q) \backslash n_{k}}|\omega(x)| .
$$

Then, for arbitrary $y \in J_{k}(q) \backslash h_{k}$

$$
\left|l_{t}(y)\right|=\left|l_{t}\left(u_{k}\right)\right| \frac{|\omega(y)|}{\left|\omega\left(u_{k}\right)\right|} \frac{\left|u_{k}-x_{t}\right|}{\left|y-x_{t}\right|} .
$$

If $t \neq k, k+1$ we obtain as in (4.6) that $\left|u_{k}-x_{t}\right| \geqq q\left|y-x_{t}\right|$. (This inequality is trivial if $t=k$ or $t=k+1$.)
I.e., in both cases for $n \geqq n_{1}(q)$

$$
\left|l_{t}(y)\right| \geqq q\left|l_{t}\left(u_{k}\right)\right|>3^{n \delta_{n}^{5}} \quad \text { if } \quad y \in J_{k}(q) \backslash h_{k},
$$

which means that in (4.15) the index t does not depend on x.
4.4. In the following part we shall construct the function $F(x)$.
4.4.1. Let us consider the short intervals, the sequences $\left\{A_{t}\right\}_{t=1}^{\infty},\left\{m_{t}\right\}_{t=1}^{\infty}$ satisfying $A_{t} / \infty, m_{t}=\left[m_{0}\left(A_{t}\right)\right]+1$ and the intervals $I_{j, m_{t}}$ (I_{j}, for short) of length $2 / m_{t}\left(1 \leqq j \leqq m_{t}\right)$.

Let $t=1$. Let us choose the subsequence Q fulfilling the requirements of Lemmas 4.1 and 4.3. If $n_{11} \in Q$, let us define $g_{1}(x)$ only on the nodes as follows.

$$
g_{1}\left(x_{k, n_{1}}\right)=\left\{\begin{array}{l}
(-1)^{k+1} \text { if } x_{k, n_{11}} \in D_{1, n_{11}} \backslash I_{1}, \tag{4.17}\\
0
\end{array} \quad\right. \text { otherwise. }
$$

Then, in virtue of Lemma 4.1

$$
\begin{equation*}
\left|L_{n_{11}}\left(g_{1}, x\right)\right|=\sum_{x_{k} \in D_{1} \backslash I_{1}}\left|l_{k}(x)\right| \geqq\left(\ln m_{1}\right)^{1 / 3} \geqq 2 A_{1} \tag{4.18}
\end{equation*}
$$

if $x \in\left(I_{1} \cap D_{1, n_{11}}\right) \backslash H_{1, n_{1}} \xlongequal{\text { def }} T_{1}$. (Generally, if $f(x)$ is defined only for certain $x_{k}=$ $=x_{k n}, k=k_{1}, k_{2}, \ldots, k_{s}$, then let $L_{n}(f, x) \xlongequal{\text { def }} \sum_{i=1}^{s} f\left(x_{k_{s}}\right) l_{k_{s}}(x)$. If $T_{1}=\varnothing$, (4.18) is meaningless.)
4.4.2. Let $n_{12}>n_{11}\left(n_{11}, n_{12} \in Q\right)$ satisfy $\sqrt{\ln n_{12}}>n_{11}$. Let us define the set \mathscr{T}_{2} by

$$
\begin{equation*}
2\left|L_{n_{12}}\left(g_{1}, x\right)\right|>\left(\ln m_{1}\right)^{1 / 3} \quad \text { if } \quad x \in \mathscr{T}_{2} \subset\left(I_{2} \cap D_{1, n_{12}}\right) \backslash H_{1, n_{12} \xlongequal{\text { def }}}^{=} T_{2} . \tag{4.19}
\end{equation*}
$$

Moreover, if $x \in T_{2} \backslash \mathscr{T}_{2}$, (4.19) should not hold.
a) If $2 \mu\left(\mathscr{T}_{2}\right) \geqq \mu\left(T_{2}\right)$ or $T_{2}=\varnothing$ let $g_{1}\left(x_{k, n_{12}}\right)=0$ at $x_{k, n_{12}}$ not considered in (4.17) (i.e. those for which does not exist $l\left(1 \leqq l \leqq n_{11}\right)$ such that $\left.x_{k, n_{12}}=x_{l, n_{11}}\right)$.
b) If $2 \mu\left(\mathscr{T}_{2}\right)<\mu\left(T_{2}\right)$ then for $x_{k, n_{12}}$ not considered in (4.17) let, with $\left[a_{j}, a_{j+1}\right)=I_{j}$,

$$
g_{1}\left(x_{k, n_{12}}\right)=\left\{\begin{array}{llll}
(-1)^{k} & \text { if } & x_{k, n_{12}} \in D_{1, n_{12}} \backslash I_{2} & \text { and } \tag{4.20}\\
x_{k}<a_{2}, \\
(-1)^{k+1} & \text { if } & x_{k, n_{2} 2} \in D_{1, n_{12}} \backslash I_{2} & \text { but } \\
x_{k} \geqq a_{3}, \\
0 & \text { otherwise. }
\end{array}\right.
$$

By (4.19) and (4.3) if $x \in T_{2} \backslash \mathscr{T}_{2}$, then

$$
\begin{aligned}
& \left|L_{n_{12}}\left(g_{1}, x\right)\right| \geqq\left| \pm \sum^{(1)}\right| l_{k, n_{12}}(x)\left|+\left|\sum^{(2)} g_{1}\left(x_{k, n_{12}}\right) l_{k, n_{12}}(x)\right| \geqq\right. \\
& \geqq\left(\ln m_{1}\right)^{1 / 3}-\frac{1}{2}\left(\ln m_{1}\right)^{1 / 3}=\frac{1}{2}\left(\ln m_{1}\right)^{1 / 3} \geqq A_{1} \quad\left(x \in T_{2} \backslash \mathscr{T}_{2}\right) .
\end{aligned}
$$

Here $\Sigma^{(1)}$ is extended over the x_{k} 's considered in (4.20); for them Lemma 4.1 can be applied (because $\sqrt{\ln n_{12}}>n_{11}$); in $\sum^{(2)}$ we take those k 's for which $x_{k, n_{12}}=x_{l, n_{11}}$ at certain $1 \leqq l \leqq n_{11}$. So, by $(4.19) \quad 2\left|\sum^{(2)}\right| \leqq\left(\ln m_{1}\right)^{1 / 3}$, because $x \in T_{2} \backslash \mathscr{T}_{2}$.

Consequently, in both cases we can define the set $R_{2} \subset T_{2}$ and the function $g_{1}(x)$ such that $2 \mu\left(R_{2}\right) \geqq \mu\left(T_{2}\right)$. Moreover

$$
\begin{equation*}
\left|L_{n_{12}}\left(g_{1}, x\right)\right| \geqq A_{1} \quad \text { whenever } \quad x \in R_{2} \subset T_{2} \tag{4.21}
\end{equation*}
$$

(At a) $R_{2}=\mathscr{T}_{2}$; at b) $R_{2}=T_{2} \backslash \mathscr{T}_{2}$; if $T_{2}=\varnothing$, the statement (4.21) is meaningless.)
4.4.3. By the above method we can obtain the sets $T_{i}=T_{1 i}=$ $=\left(I_{i, m_{1}} \cap D_{1 n_{11}}\right) \backslash H_{1 n_{1}}$, the subsets $R_{i}=R_{1 i} \subset T_{1 i}\left(i=1,2, \ldots, m_{1} ; R_{1} \equiv T_{1}\right)$ and the function $g_{1}(x)$ such that $2 \mu\left(R_{1 i}\right) \geqq \mu\left(T_{1 i}\right)$ and

$$
\begin{equation*}
\left|L_{n_{11}}\left(g_{1}, x\right)\right| \geqq A_{1} \quad \text { if } \quad x \in R_{1 i} \subset T_{1 i}, \quad 1 \leqq i \leqq m_{1} . \tag{4.22}
\end{equation*}
$$

Let

$$
\begin{equation*}
G_{1} \xlongequal{\text { def }} \bigcup_{i=1}^{m_{1}} R_{1 i} . \tag{4.23}
\end{equation*}
$$

4.4.4. Now consider the polynomial $\varphi_{1}(x)=\varphi_{1}\left(g_{1}, x\right)$ satisfying $\varphi_{1}\left(x_{k, n_{1}}\right)=$ $=g_{1}\left(x_{k, n_{1}}\right) \quad\left(1 \leqq k \leqq n_{1 i} ; 1 \leqq i \leqq m_{1}\right)$ and $\left\|\varphi_{1}\right\| \leqq 2$. Here $\operatorname{deg} \varphi_{1} \leqq N_{1}$, where N_{1} depends only on the distribution of the nodes defining $g_{1}(x)$ (see [8], Part 3, II/§3).
4.4.5. Generally, starting from the subsequence obtained in the $(t-1)$-th step, let us make the above construction for $\left(A_{t}, m_{t}\right)(t=2,3, \ldots)$. We can suppose

$$
\begin{equation*}
n_{t-1, m_{t-1}}<N_{t-1}<n_{t 1} \quad(t=2,3, \ldots) . \tag{4.24}
\end{equation*}
$$

We successively get the sets $T_{t i}$, their parts $R_{t i}$ with $2 \mu\left(R_{t i}\right) \geqq \mu\left(T_{t i}\right)\left(i=1,2, \ldots, m_{t}\right)$, the functions $g_{t}(x)$ for which

$$
\begin{equation*}
\left|L_{n_{t t}}\left(g_{t}, x\right)\right| \geqq A_{t} \quad \text { if } \quad x \in R_{t i} \subset T_{t i}, \quad 1 \leqq i \leqq m_{t}, \tag{4.25}
\end{equation*}
$$

further the sets

$$
\begin{equation*}
G_{t}=\bigcup_{i=1}^{m_{t}} R_{t i} . \tag{4.26}
\end{equation*}
$$

We can also construct the corresponding polynomials $\varphi_{t}(x)$, taking the values $g_{t}\left(x_{k, n_{t}}\right)\left(1 \leqq k \leqq n_{t t} ; 1 \leqq i \leqq m_{t}\right)$ for which $\left\|\varphi_{t}\right\| \leqq 2$ and $\operatorname{deg} \varphi_{t} \leqq N_{t}(t=2,3, \ldots)$. Supposing

$$
\begin{equation*}
A_{t}>t^{3} \lambda_{N_{t-1}}^{2} \quad\left(\lambda_{N_{n}} \equiv 1, t=1,2, \ldots\right), \tag{4.27}
\end{equation*}
$$

let us define the set

$$
\begin{equation*}
G=\bigcap_{k=1}^{\infty}\left(\bigcup_{t=k}^{\infty} G_{t}\right) \tag{4.28}
\end{equation*}
$$

and the function

$$
\begin{equation*}
f(x)=\sum_{t=k}^{\infty} \frac{\varphi_{t}(x)}{t^{2} \lambda_{N_{t-1}}} . \tag{4.29}
\end{equation*}
$$

We state that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|L_{n}(f, x)\right|=\infty \quad \text { whenever } \quad x \in G . \tag{4.30}
\end{equation*}
$$

(Clearly $f \in C$, moreover $\|f\| \leqq 4$ can be attained.) If $G=\varnothing$, we have nothing to prove. Otherwise, if $x \in G$ there exists an index-set $\left\{r_{k}\right\}_{k=1}^{\infty}$ depending on x for which $x \in G_{r_{k}}(k=1,2, \ldots)$. Then, by (4.26), for any fixed r_{k} we can find an s such that $x \in R_{r_{k}, s}$. By (4.29)

$$
L_{n_{r_{k}}, s}(f, x)=\sum_{i=1}^{\infty} \frac{L_{n_{r_{k}}, s}\left(\varphi_{i}, x\right)}{i^{2} \lambda_{N_{i-1}}}=\sum_{i<r_{k}}+\sum_{i=r_{k}}+\sum_{i>r_{k}} .
$$

Here by (4.24) $L_{n_{r_{k}}, s}\left(\varphi_{i}, x\right) \equiv \varphi_{i}(x)$ if $i<r_{k}$, so

$$
\left|\sum_{i<r_{k}}\right| \leqq 2 \sum_{i=1}^{\infty} i^{-2} \lambda_{N_{i-1}}^{1} \leqq c_{1},
$$

further, by (4.25) and (4.27)

$$
\left|\frac{L_{n_{r_{k}} s}\left(\varphi_{r_{k}}, x\right)}{r_{k}^{2} \lambda_{N_{r_{k}}-1}}\right| \geqq \frac{A_{r_{k}}}{r_{k}^{2} \lambda_{N_{r_{k}}-1}}>r_{k} \lambda_{N_{r_{k}}-1} .
$$

Finally, supposing $\lambda_{l}>\lambda_{j}$ if $l>j, l, j \in\left\{n_{t i}\right\} \cup\left\{N_{t}\right\}$, we can write

$$
\left|\sum_{i>r_{k}}\right| \leqq 2 \lambda_{n_{r_{k}}, s} \sum_{i=r_{k}+1}^{\infty} i^{-2} \lambda_{N_{t-1}}^{-1} \leqq 2 \sum_{i=1}^{\infty} i^{-2} \leqq c_{2},
$$

because $\lambda_{n_{r_{k}}, s}<\lambda_{N_{r_{k}}}$ (see (4.24)). Consequently,

$$
\left|L_{n_{r_{k}}, s}(f, x)\right| \geqq r_{k} \quad(k=2,3, \ldots ; x \in G)
$$

which actually is more than (4.30).
4.4.6. Let us now take the sets $T_{t i}^{[2]}=T_{t i}^{[1]} \backslash R_{t i}^{[1]}\left(i=1,2, \ldots, m_{i} ; t=1,2, \ldots\right.$; $\left.T_{t i}^{[1]}=T_{t i}, R_{t i}^{[1]}=R_{t i}\right)$ given by the previous steps. If, e.g. $t=1$, let us begin the construction of $g_{1}^{[2]}(x)$ exactly as we did for $g_{1}(x)=g_{1}^{[1]}(x)$ in 4.4.1 (i.e., we use the same A_{1}, m_{1}, T_{1} and nodes; compare (4.17)), but the distinctions a) and b) in 4.4 .2 should be defined by the measure of $\mathscr{T}_{12}^{[2]}$ instead of $\mathscr{T}_{2}=\mathscr{T}_{12}^{[1]}$ where $\mathscr{T}_{12}^{[2]}$ collects those points of the set $T_{12}^{[2]}=T_{12}^{[1]} \backslash R_{12}^{[1]}$ for which $2\left|L_{n_{12}}\left(g_{1}^{[2]}, x\right)\right|>$ $>\left(\ln m_{1}\right)^{1 / 3}($ see $(4.19))$. Consequently, by the method analogous to $4.4 .1-4.4 .5$ (using the same $\left\{n_{t i}\right\}$) we can construct the corresponding sets $R_{i}^{[2]}, G_{t}^{[2]}$, the polynomials $\varphi_{t}^{[2]}(x)$ of degree $\leqq N_{t}$ and the continuous function

$$
\begin{equation*}
f^{[2]}(x)=\sum_{t=1}^{\infty} \frac{\varphi_{t}^{[2]}(x)}{t^{2} \lambda_{N_{t-1}}} \tag{4.31}
\end{equation*}
$$

with $\left\|f^{[2]}\right\| \leqq 4$ such that on the set

$$
\begin{equation*}
G^{[2]}=\bigcap_{k=1}^{\infty}\left(\bigcup_{t=k}^{\infty} G_{t}^{[2]}\right) \tag{4.32}
\end{equation*}
$$

we have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(f^{[2]}, x\right)\right|=\infty \quad\left(x \in G^{[2]}\right) \tag{4.33}
\end{equation*}
$$

By the same considerations starting from the sets $T_{i t}^{[l]}=T_{i i}^{[l-1]} \backslash R_{i i}^{[l-1]}$ ($l=3,4, \ldots, p$ where p will be defined later), we can successively define the functions $f^{[l]} \in C,\left\|f^{[l]}\right\| \leqq 4$ and the sets $G^{[l]}$ such that

$$
\begin{gather*}
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(f^{[l]}, x\right)\right|=\infty \quad\left(x \in G^{[l]}\right) \tag{4.34}\\
\left(l=1,2, \ldots, p ; f^{[1]}=f, G^{[1]}=G\right) .
\end{gather*}
$$

Later we shall apply the fact that for any t and i

$$
\begin{equation*}
\mu\left(R_{i i}^{[l]}\right) \leqq \frac{1}{2^{l-2} m_{t}} \quad(l=1,2, \ldots, p) \tag{4.35}
\end{equation*}
$$

and for any fixed t and i

$$
\begin{equation*}
R_{i i}^{[l i]} \cap R_{i t}^{\left[l l^{2}\right]}=\varnothing \quad\left(l_{1} \neq l_{2}\right) \tag{4.36}
\end{equation*}
$$

(see the definition of the sets $R_{t i}^{[l]}$).
Now let $\varrho>0$ be arbitrarily small and $p=p_{e}$ the smallest positive integer so that

$$
\begin{equation*}
\mu\left(R_{t i}^{\left[p_{e}\right]}\right) \leqq \frac{\varrho}{m_{t}} \quad\left(i=1,2, \ldots, m_{t} ; \quad t=1,2, \ldots\right) . \tag{4.37}
\end{equation*}
$$

It is easy to see that $1 \leqq p_{e} \leqq 3+\left|\stackrel{2}{\circ}^{2} \varrho\right|$.
4.4.7. To define the proper (linear) combination of the functions $f^{[1]}, f^{[2]}, \ldots, f^{[p]}$ on $G^{[1]} \cup G^{[2]} \cup \ldots \cup G^{[p]}$ we prove the following statement, which generalizes an idea of G. Grünwald [4].

Lemma 4.5. If $r_{1}(x), r_{2}(x) \in C$, moreover

$$
\begin{array}{lll}
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(r_{1}, x\right)\right|=\infty & \text { if } & x \in B_{1}, \mu\left(B_{1}\right)<\infty, \\
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(r_{2}, x\right)\right|=\infty & \text { if } & x \in B_{2}, \mu\left(B_{2}\right)<\infty, \tag{4.39}
\end{array}
$$

then any fixed interval $\left(\beta_{1}, \beta_{2}\right)\left(\beta_{1}<\beta_{2}\right)$ contains an α such that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(\alpha r_{1}+r_{2}, x\right)\right|=\infty \quad \text { a.e. on } B_{1} \cup B_{2} . \tag{4.40}
\end{equation*}
$$

Remark. An interesting special case can be obtained by $B_{2}=\varnothing$. To prove the lemma let \widetilde{B}_{1} be the part of $B_{1} \cup B_{2}$ fulfilling (4.38). Clearly $B_{1} \subset \widetilde{B}_{1}$. If

$$
E_{\lambda}=\left\{x: x \in \widetilde{B}_{1}, \overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(\lambda r_{1}+r_{2}, x\right)\right|<\infty\right\} \quad\left(\beta_{1}<\lambda<\beta_{2}\right)
$$

then $E_{\lambda} \cap E_{\mu}=\varnothing(\lambda \neq \mu)$. Indeed, otherwise we can write for $x \in E_{\lambda} \cap E_{\mu}$

$$
\begin{gathered}
\infty=\varlimsup_{n \rightarrow \infty}\left|(\lambda-\mu) L_{n}\left(r_{1}, x\right)\right|=\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(\lambda r_{1}+r_{2}, x\right)-L_{n}\left(\mu r_{1}+r_{2}, x\right)\right| \leqq \\
\leqq \varlimsup_{n \rightarrow \infty}\left(\left|L_{n}\left(\lambda r_{1}+r_{2}, x\right)\right|+\left|L_{n}\left(\mu r_{1}+r_{2}, x\right)\right|\right)<\infty,
\end{gathered}
$$

a contradiction. Using $\mu\left(\widetilde{B}_{1}\right)<\infty$ and that only countable E_{λ} 's have positive measure $\left(\beta_{1}<\lambda<\beta_{2}\right)$, there exists $\alpha \in\left(\beta_{1}, \beta_{2}\right)$ such that $\mu\left(E_{\alpha}\right)=0$ from where (4.40) is true a.e. on \widetilde{B}_{1}. If $x \in\left(B_{1} \cup B_{2}\right) \backslash \widetilde{B}_{1}$ (when $x \in B_{2}$, too) both $\left|L_{n}\left(\alpha r_{1}, x\right)\right| \leqq K(x)(0 \leqq K(x)<\infty)$, and $\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(r_{2}, x\right)\right|=\infty$ hold which mean (4.40) for x. These prove the lemma.
4.4.8. Choosing $\beta_{1}=0$ and $\beta_{2}=0.5$, consider that $\alpha \in(0,0.5)$ for which, with $e_{2}=\alpha_{1} f^{[1]}+f^{[2]}$,

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(e_{2}, x\right)\right|=\infty \quad \text { a.e. on } \quad G^{[1]} \cup G^{[2]}
$$

Obviously $\left\|e_{2}\right\| \leqq 2+4<8$. By this construction we succesively get the values $\alpha_{i-1} \in(0,0.5)$ and the continuous functions $e_{i}=\alpha_{i-1} e_{i-1}+f^{[i]}$ satisfying

$$
\lim _{n \rightarrow \infty}\left|L_{n}\left(e_{i}, x\right)\right|=\infty \quad \text { a.e. on } \quad G^{[1]} \cup G^{[2]} \cup \ldots \cup G^{[i]}
$$

and $\left\|e_{i}\right\| \leqq 0.5\left\|e_{i-1}\right\|+\left\|f^{[i]}\right\|<8\left(i=3,4, \ldots, p_{e}\right)$.
I.e., if $i=p_{\varrho}$, we can say that for every fixed $\varrho>0$ there exists a function $f_{e} \in C,\left\|f_{Q}\right\| \leqq 8$ so that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(f_{e}, x\right)\right|=\infty \quad \text { a.e. on } G_{e} \tag{4.41}
\end{equation*}
$$

where $G_{Q}=\bigcup_{i=1}^{p_{o}} G^{[i]}$.
4.4.9. We go on with the construction of $F(x)$ for the long intervals $\left(\Delta x_{k n}>\delta_{n}\right.$ i.e. $k \in K_{2 n}$) employing the same $A_{t}, m_{t}, n_{t i}$ and $I_{i m_{t}}\left(i=1,2, \ldots, m_{t} ; t=1,2, \ldots\right)$ as for the short intervals. First a simple note. If

$$
\begin{equation*}
H_{2 n} \xlongequal{\text { def }} \bigcup_{k \in K_{2 n}} h_{k n} \quad(n=1,2, \ldots) \tag{4.42}
\end{equation*}
$$

and

$$
\begin{equation*}
q=q_{t}=\frac{\varepsilon_{m_{t}}}{8 m_{t}} \tag{4.43}
\end{equation*}
$$

then by Lemma 4.4 for any t and i

$$
\begin{equation*}
\mu\left(H_{2, n_{t i}}\right) \leqq 2 \cdot 4 q_{t}=\frac{\varepsilon_{m_{t}}}{m_{t}}, \quad \text { if } \quad n_{t i} \geqq n_{1}\left(m_{t}\right) ; \tag{4.44}
\end{equation*}
$$

the latter should be supposed.
For simplicity's sake let $\left(D_{2, n_{11}} \backslash H_{2, n_{11}}\right) \cap I_{1, m_{1}} \neq \varnothing$, say, for the indices $j_{1}, j_{2}, \ldots, j_{s} \in K_{2, n_{11}}$

$$
\begin{equation*}
\left(J_{i, n_{11}} \backslash h_{i, n_{11}}\right) \cap I_{1, m_{1}} \neq \varnothing \quad\left(i=j_{1}, j_{2}, \ldots, j_{s} ; s \geqq 1\right) . \tag{4.45}
\end{equation*}
$$

We take the indices $t\left(i, n_{11}\right)\left(i=j_{1}, j_{2}, \ldots, j_{s}\right)$ guaranteed by Lemma 4.4 and define the function $u_{i}(x)$ as follows.

$$
u_{i}\left(x_{k, n_{1}}\right)= \begin{cases}1 & \text { when } k=t\left(i, n_{11}\right) \\ 0 & \text { otherwise }\end{cases}
$$

$\left|u_{i}(x)\right| \leqq 1, u_{i} \in C$. Then clearly

$$
\begin{equation*}
\left|L_{n_{11}}\left(u_{i}, x\right)\right| \geqq \eta_{n_{11}} \quad \text { if } \quad x \in J_{i, n_{11}} \backslash h_{i, n_{11}} \quad\left(i=j_{1}, j_{2}, \ldots, j_{s}\right) . \tag{4.46}
\end{equation*}
$$

4.4.10. To combine the at most $2 m_{1}^{-1} \ln n_{11}$ functions $u_{i}(x)$ we need the following

Lemma 4.6. Let $r_{1}, r_{2} \in C$, moreover

$$
\begin{align*}
& \left|L_{n}\left(r_{1}, x\right)\right| \geqq M_{1} \quad \text { if } \quad x \in B_{1}, \quad \mu\left(B_{1}\right)<\infty, \tag{4.47}\\
& \left|L_{n}\left(r_{2}, x\right)\right| \geqq M_{2} \quad \text { if } \quad x \in B_{2}, \quad \mu\left(B_{2}\right)<\infty . \tag{4.48}
\end{align*}
$$

Consider the fixed real numbers $\beta_{1}<\beta_{2}$ and the positive integer k. Further take

$$
\begin{equation*}
\alpha_{i}=\left(\beta_{2}-\beta_{1}\right) \frac{i}{k}+\beta_{1} \quad(i=0,1, \ldots, k) \tag{4.49}
\end{equation*}
$$

Then, if $M_{2} \geqq M_{1}$ and $0 \leqq \beta_{1}<\beta_{2} \leqq 0.5$, there exists an $\alpha_{j}(0 \leqq j \leqq k)$ and E of measure at least $\left(1-\frac{1}{k+1}\right) \mu\left(B_{1} \cup B_{2}\right), E \subset B_{1} \cup B_{2}$, so that

$$
\begin{equation*}
\left|L_{n}\left(\alpha_{j} r_{1}+r_{2}, x\right)\right| \geqq \frac{\beta_{2}-\beta_{1}}{2 k} M_{1} \quad \text { if } \quad x \in E . \tag{4.50}
\end{equation*}
$$

To prove this, we verify at first a statement which is slightly more than the special case corresponding to $B_{2}=0$.

Namely, if we have only (4.47), then there exist P_{1} of measure $\geqq\left(1-\frac{1}{k+1}\right) \mu\left(B_{1}\right)$, $P_{1} \subset B_{1}$ and $\alpha_{j}(0 \leqq j \leqq k)$ such that (4.50) is true for $x \in P_{1}$.

Indeed, let

$$
C_{i}=\left\{x: x \in B_{1} \text { and }\left|L_{n}\left(\alpha_{i} r_{1}+r_{2}, x\right)\right| \geqq \frac{\beta_{2}-\beta_{1}}{2 k} M_{1}\right\} \quad(i=0,1, \ldots, k) .
$$

It is easy to see that any $x \in B_{1}$ can be contained in at most one $B_{1} \backslash C_{i}$ (see (4.47), (4.50) and the similar part of 4.4.7), from where $\left(B_{1} \backslash C_{i}\right) \cap\left(B_{1} \backslash C_{i}\right)=\varnothing(i \neq l)$. By $B_{1} \backslash C_{i} \subset B_{1}$, for certain $0 \leqq j \leqq k \mu\left(B_{1} \backslash C_{j}\right) \leqq \mu\left(B_{1}\right)(k+1)^{-1}$, which gives the special case with $P_{1}=C_{j}$.

Now let \widetilde{B}_{1} be that part of $B_{1} \cup B_{2}$ where (4.47) is satisfied. Take that α_{j}, for which (4.50) is true on certain $\widetilde{P}_{1} \subset \widetilde{B}_{1}$. If $x \in\left(B_{1} \cup B_{2}\right) \backslash \widetilde{B}_{1}$ then by (4.48),

$$
\left|L_{n}\left(\alpha_{j} r_{1}+r_{2}, x\right)\right| \geqq\left|M_{2}-0.5 M_{1}\right| \geqq 0.5 M_{2}>\left(\beta_{2}-\beta_{1}\right) M_{1}
$$

from where we obtain the lemma by $E=\widetilde{P}_{1} \cup\left(\left(B_{1} \cup B_{2}\right) \backslash \widetilde{B}_{1}\right)$.
4.4.11. Using this lemma with the cast

$$
\begin{gathered}
r_{i}(x)=u_{j_{i}}(x), \quad B_{i}=\left(J_{j_{i}, n_{11}} \backslash h_{j_{i}, n_{1}}\right) \cap I_{1, m_{1}}, \quad M_{i}=\eta_{n_{1}} \quad(i=1,2), \\
\beta_{1}=0, \quad \beta_{2}=0.5 \quad \text { and } \quad k=\left[\ln ^{2} n_{11}\right]
\end{gathered}
$$

(see 4.4.9 and 4.4.10), we obtain a $v_{2}(x) \in C$ for which

$$
\left|L_{n_{11}}\left(v_{2}, x\right)\right| \geqq \frac{\eta_{n_{11}}}{4 k} \quad \text { if } \quad x \in E_{2}
$$

where (with the above cast)

$$
0 \leqq \mu\left(B_{1} \cup B_{2}\right)-\mu\left(E_{2}\right) \leqq \frac{\mu\left(B_{1} \cup B_{2}\right)}{k+1} \leqq \frac{2 \delta_{n_{11}}^{2}}{m_{1}},
$$

$\left\|v_{2}\right\| \leqq \beta_{2}\left\|r_{1}\right\|+\left\|r_{2}\right\|<2$. At the next step, by $r_{1}=v_{2}, B_{1}=E_{2}, r_{2}=u_{j_{3}}$ and $B_{2}=$ $=\left(J_{j_{3}} \backslash h_{j_{3}}\right) \cap I_{1}$ we get the function $v_{3}(x) \in C$ and the set E_{3}. Finally, the $(s-1)$-th step gives the function $v_{s}(x) \stackrel{\text { def }}{=} w_{1}(x) \in C$, the set $E_{s} \stackrel{\text { def }}{=} W_{1} \subset I_{1}$ so that

$$
\begin{equation*}
\left|L_{n_{11}}\left(w_{1}, x\right)\right| \geqq \frac{\eta_{n_{11}}}{(4 k)^{s-1}} \geqq \frac{\eta_{n_{11}}}{\left(4 \ln ^{2} n_{11}\right)^{\ln n_{11}}} \stackrel{\text { def }}{=} \gamma_{n_{11}} \quad \text { if } \quad x \in W_{1} \tag{4.51}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{i=1}^{s} \mu\left[\left(J_{j_{i}} \backslash h_{j_{i}}\right) \cap I_{1}\right]-\mu\left(W_{1}\right) \leqq \frac{2 s \delta_{n_{11}}^{2}}{m_{1}} \leqq \frac{2 \delta_{n_{11}}}{m_{1}} \tag{4.52}
\end{equation*}
$$

because $s<\ln n_{11}$. Further notice that $\left\|w_{1}\right\| \leqq 2$. By definition $\gamma_{n} / \infty\left(\right.$ e.g. $\gamma_{n} \gg 3^{\sqrt{n}}$) and

$$
\begin{equation*}
\mu\left[\left(D_{2, n_{11}} \backslash H_{2, n_{11}}\right) \cap I_{1, m_{1}}\right]-\mu\left(W_{1}\right) \leqq \frac{\varepsilon_{m_{1}}}{m_{1}} \tag{4.53}
\end{equation*}
$$

if $n_{11}>n_{1}\left(m_{1}\right)$. (It is easy to see that the left hand sides of (4.52) and (4.53) are the same.)

Now consider the polynomial $\psi_{1}(x)$ for which $\left\|\psi_{1}\right\| \leqq 4$ and $\psi_{1}\left(x_{k n}\right)=w_{1}\left(x_{k n}\right)$ $\left(k=1,2, \ldots, n ; n=n_{11}\right)$. Clearly we can suppose $n_{12}>\operatorname{deg} \psi_{1}$, too (compare with 4.4.4).

By this construction one successively obtains the polynomials $\psi_{i}(x)=\psi_{1 i}(x)$ and the sets $W_{i}=W_{1 i}\left(i=1,2, \ldots, m_{1}\right)$, then generally the polynomials $\psi_{t i}(x)$ and the sets $W_{t i}\left(i=1,2, \ldots, m_{t}, t=1,2, \ldots\right)$ such that $\left\|\psi_{t i}\right\| \leqq 4, \operatorname{deg} \psi_{t i}<n_{t, i+1}$ (where $n_{t, m_{t}+1} \equiv n_{t+1,1}$) and

$$
\begin{align*}
& \left|L_{n_{t i}}\left(\psi_{t i}, x\right)\right| \geqq \gamma_{n_{t i}} \text { if } \quad x \in W_{t i} \subset I_{i, m_{t}}, \tag{4.54}\\
& \mu\left[\left(D_{2, n_{t i}} \backslash H_{2, n_{t i}}\right) \cap I_{i, m_{t}}\right]-\mu\left(W_{t i}\right) \leqq \frac{\varepsilon_{m_{t}}}{m_{t}} .
\end{align*}
$$

(If $\left(D_{2, n_{t i}} \backslash H_{2, n_{t i}}\right) \cap I_{i, m_{t}}=\varnothing$ then the corresponding $W_{t i}=\varnothing$, further $w_{t i}(x)=$ $=\psi_{t i}(x)=0$.)
4.4.12. We can define the sequence $\left\{n_{t i}\right\}$ (satisfying all the requirements mentioned above) such that

$$
\gamma_{n_{t i}}>m_{t}^{2} t^{3} \lambda_{n_{t, i-1}}
$$

Consider the function

$$
\begin{equation*}
h(x)=\sum_{t=1}^{\infty} \frac{1}{t^{2} m_{t}^{2}} \sum_{i=1}^{m_{t}} \frac{\psi_{t i}(x)}{\lambda_{n_{t, i-1}}} \tag{4.56}
\end{equation*}
$$

(where $\lambda_{n_{10}}=1$ and $\lambda_{n_{t, 0}}=\lambda_{n_{t-1, m_{t-1}}}$) on the set

$$
\begin{equation*}
W=\bigcup_{k=1}^{\infty} \bigcup_{t=k}^{\infty}\left(\bigcup_{i=1}^{m_{t}} W_{t i}\right) . \tag{4.57}
\end{equation*}
$$

By the method applied in 4.4 .5 we get

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}(h, x)\right|=\infty \quad \text { if } \quad x \in W \tag{4.58}
\end{equation*}
$$

Moreover it is easy to fulfil the condition $\|h\| \leqq 8$. Now, using Lemma 4.5 for $f_{\ell} \in C$ and the set $G_{Q}(\operatorname{see} 4.4 .8)$, further for $h \in C$ and W, we obtain as follows.

For arbitrary fixed $\varrho>0$ there exists a continuous function $F_{\varrho}(x),\left\|F_{\varrho}\right\| \leqq 16$ (if, e.g. $\left[\beta_{1}, \beta_{2}\right]=[0,1]$) such that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(F_{e}, x\right)\right|=\infty \quad \text { a.e. on } P_{\varrho}, \quad \mu\left(P_{\varrho}\right) \geqq 2-\varrho, \tag{4.59}
\end{equation*}
$$

where $P_{e}=G_{\varrho} \cup W \subset[-1,1]$.

Here the only thing we have to prove is that $\mu\left(P_{\ell}\right) \geqq 2-\varrho$. For this aim let us see the definitions made in 4.4 .6 and $\mathbf{4 . 4 . 8}$. We can write

$$
\begin{gathered}
G_{Q} \cup W=\left(\bigcup_{j=1}^{p_{Q}} G^{[j]}\right) \cup W=\left(\bigcup_{j=1}^{p_{Q}} \bigcap_{k=1}^{\infty} \bigcup_{t=k}^{\infty} \bigcup_{i=1}^{m_{t}} R_{t i}^{[j]}\right) \cup \\
\cup\left(\bigcap_{k=1}^{\infty} \bigcup_{t=k}^{\infty} \bigcup_{i=1}^{m_{t}} W_{t i}\right)=\bigcap_{k=1}^{\infty} \bigcup_{t=k}^{\infty} \bigcup_{i=1}^{m_{t}}\left[\left(\bigcup_{j=1}^{p_{Q}} R_{t i}^{[j]}\right) \cup W_{t i}\right] \stackrel{\text { def }}{=} \bigcap_{k=1}^{\infty}\left(\bigcup_{t=k}^{\infty} V_{t}\right) \stackrel{\operatorname{def}}{=} \bigcap_{k=1}^{\infty} Q_{k} .
\end{gathered}
$$

(Indeed, by $W=G^{[0]}$ and $\bigcup_{i=1}^{m_{t}} R_{t i}^{[j]}=A_{t j}$,

$$
G_{e} \cap W=\bigcup_{j=0}^{p} G^{[j]}=\left\{\bigcup_{j=0}^{p} \bigcap_{k=1}^{\infty} \bigcup_{t=k}^{\infty} A_{t j}\right\}_{1}=\left\{\bigcap_{k=1}^{\infty} \bigcup_{t=k}^{\infty} \bigcup_{j=0}^{p} A_{t j}\right\}_{2}
$$

because $x \in\{\ldots\}_{s}$ if and only if for a certain j there exist infinitely many t such that $x \in A_{t j}(s=1,2)$. Of course, $\{\ldots\}_{2}=\bigcap_{k=1}^{\infty} Q_{k}$. $\}$

Let us see the measure of [...] for a good interval $I_{i, m_{t}}$ if $n=n_{t i}$.
The sets $R_{t i}^{[i]}\left(j=1,2, \ldots, p_{q}\right)$ overlap $\left(D_{1, n_{t i}} \backslash H_{1, n_{t}}\right) \cap I_{i, m_{t}}$ apart from a part of measure not exceeding ϱm_{t}^{-1} (see (4.35)-(4.37). Moreover, the sets of type a) and b) from $H_{1, n_{t}} \cap I_{i, m_{t}}$ have the measure not exceeding $\varepsilon_{m_{t}}\left(2 m_{t}\right)^{-1}$ altogether (since i is good); the same is true for the parts of type c) (see 4.1.4 and 4.2).

Further, by (4.55) the set $W_{t i}$ contains the set ($D_{2, n_{t i}} \backslash H_{2, n_{t i}}$) $\cap I_{i, m_{t}}$ excluding a part of measure not exceeding $\varepsilon_{m_{t}}\left(m_{t}\right)^{-1}$.

Using that $D_{1} \cap D_{2}=\varnothing, H_{1} \subset D_{1}, H_{2} \subset D_{2}$ and $D_{1} \cup D_{2}=[-1,1]$, by the above considerations and (4.44) we can estimate as follows ($I_{i}=I_{i, m_{t}}$).

$$
\begin{gathered}
\mu([\ldots]) \geqq \mu\left(\left(D_{1} \backslash H_{1}\right) \cap I_{i}\right)-\frac{\varrho}{m_{t}}+\mu\left(\left(D_{2} \backslash H_{2}\right) \cap I_{i}\right)-\frac{\varepsilon_{m_{t}}}{m_{t}}= \\
=\mu\left(I_{i} \cap\left(D_{1} \cup D_{2}\right) \backslash\left(I_{i} \cap H_{1}\right) \backslash\left(I_{i} \cap H_{2}\right)\right)-\frac{\varrho}{m_{t}}-\frac{\varepsilon_{m_{t}}}{m_{t}} \geqq \frac{2}{m_{t}}-\frac{1}{m_{t}}\left(3 \varepsilon_{m_{t}}+\varrho\right) .
\end{gathered}
$$

By the construction and Lemma 4.3, the good intervals $I_{i, m_{t}}$ are uniquely determined by m_{t}, i.e. by t whenever $n=n_{T k}\left(k=1,2, \ldots, m_{T} ; T \geqq t\right)$, its number is $\geqq m_{t}-$ $-8 m_{t} \varepsilon_{m_{t}}$. So we can write

$$
\begin{aligned}
\mu\left(V_{t}\right) & =\sum_{i=1}^{m_{t}} \mu([\ldots]) \geqq \sum_{i}^{\prime} \mu([\ldots]) \geqq\left(m_{t}-8 m_{t} \varepsilon_{m_{t}}\right) \frac{1}{m_{t}}\left(2-3 \varepsilon_{m_{t}}-\varrho\right)= \\
& =\left(1-8 \varepsilon_{m_{t}}\right)\left(2-3 \varepsilon_{m_{t}}-\varrho\right)>2-19 \varepsilon_{m_{t}}-\varrho \quad(t=1,2, \ldots),
\end{aligned}
$$

where Σ^{\prime} means that we consider only the good indices $i(t$ is fixed).
By this we obtain

$$
\mu\left(Q_{k}\right)=\mu\left(\bigcup_{t=k}^{\infty} V_{t}\right) \geqq \mu\left(V_{k}\right)>2-19 \varepsilon_{m_{k}}-\varrho .
$$

On the other hand, $Q_{1} \supset Q_{2} \supset \ldots$ from where, as it is well-known, $\mu\left(Q_{k}\right) \rightarrow \mu\left(P_{\ell}\right)$, which gives $\mu\left(P_{e}\right) \geqq 2-\varrho$.
4.4.13. Now we state the following

Lemma 4.7. If $g_{1}, g_{2}, \ldots \in C$ and $\lim _{n \rightarrow \infty} \mathrm{~g}_{n}(x)=\infty$ on B, then for arbitrary fixed A, ε and M there exist the set $H \subseteq B$ and the index N such that $\mu(H) \leqq \varepsilon$; moreover if $x \in B \backslash H$ then for a certain $u(x)$ we have

$$
\begin{equation*}
g_{u(x)}(x) \geqq A \quad \text { where } \quad M \leqq u(x) \leqq N . \tag{4.60}
\end{equation*}
$$

Indeed, let

$$
H_{t}=\left\{x: x \in B, g_{M+i}(x)<A, i=0,1, \ldots, t\right\} \quad(t=0,1, \ldots) .
$$

If for a certain $t=s, \mu\left(H_{s}\right) \leqq \varepsilon$, then we can choose $N=M+s$, because if $x \in B \backslash H_{s}$ then with suitable $u(x), M \leqq u(x) \leqq N$, we obtain (4.60). On the other hand, if $\mu\left(H_{t}\right)>\varepsilon(t=0,1, \ldots)$ then using $H_{t} \supseteqq H_{t+1}$ we get $\mu\left(\bigcup_{t=0}^{\infty} H_{t}\right) \geqq \varepsilon$ wich means that for $x \in \bigcap_{t=0}^{\infty} H_{t} \subseteq B, \bar{\varlimsup}_{t \rightarrow \infty} g_{t}(x) \leqq A$ holds, a contradiction.
4.4.14. Now we construct the function $F(x)$. For this aim let $m_{1}=\lambda_{N_{0}}=1$, $A_{1}=2$ and $\varrho_{1}=2^{-1}$. By (4.59) and the previous lemma we can find an $f_{1} \in C$, $\left\|f_{1}\right\| \leqq 16$, the index n_{1} and the set $S_{1} \subset[-1,1], \mu\left(S_{1}\right) \geqq 2-2 \varrho_{1}$ so that

$$
\left|L_{u_{1}(x)}\left(f_{1}, x\right)\right| \geqq A_{1}>1^{3} \lambda_{N_{0}}^{2} \quad \text { whenever } \quad x \in S_{1} \quad \text { (see 4.4.4). }
$$

Generally, let $\delta_{k}=2^{-k}, A_{k}>k_{8} \lambda_{N_{k-1}}^{2}$ and choose $m_{k}=N_{k-1}+1$. As above, we obtain the polynomial $\varphi_{k}(x)$ of degree $\leqq N_{k},\left\|\varphi_{k}\right\| \leqq 32$, the set $S_{k} \subset[-1,1]$, $\mu\left(S_{k}\right) \geqq 2-2 \delta_{k}$, and the index n_{k} so that

$$
\left|L_{u_{k}(x)}\left(\varphi_{k}, x\right)\right| \geqq A_{k}>k^{3} \lambda_{N_{k-1}}^{2} \quad \text { if } \quad x \in S_{k}
$$

with $m_{k} \leqq u_{k}(x) \leqq n_{k}(k=2,3, \ldots)$. Choosing N_{k} large enough compared to n_{k}, we obtain, using the arguments of 4.4.4-4.4.5, that for the continuous function

$$
F(x)=\sum_{k=1}^{\infty} \frac{\varphi_{k}(x)}{k^{2} \lambda_{N_{k-1}}}
$$

and for the set $S=\bigcap_{k=1}^{\infty} \bigcap_{i=k}^{\infty} S_{i}$ of measure 2

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}(F, x)\right|=\infty \quad \text { on } S \text {, }
$$

which is the statement of the theorem.

References

[1] P. Erdős, Problems and results on the theory of interpolation. I, Acta Math. Acad. Sci. Hungar., 9 (1958), 381-388.
[2] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. der Deutschen Math. Ver., 23 (1914), 190-210.
[3] S. Bernstein, Sur la limitation des valeurs d'un polynome, Bull. Acad. Sci. de l'URSS, 8 (1931), 1025-1050.
[4] G. Grünwald, Über die Divergenzerscheinungen der Lagrangeschen Interpolationspolynome, Acta Sci. Math. Szeged, 7 (1935), 207-221.
[5] G. Grünwald, Über die Divergenzerscheinungen der Lagrangeschen Interpolationspolynome stetiger Funktionen, Annals of Math., 37 (1936), 908-918.
[6] J. Marcinkiewicz, Sur la divergence des polynomes d'interpolation, Acta Sci. Math. Szeged, 8 (1937), 131-135.
[7] A. A. Privalov, Divergence of Lagrange interpolation based on the Jacobi abscissas on sets. of positive measure, Sibirsk. Mat. Z., 18 (1976), 837-859 (in Russian).
[8] I. P. Natanson, Constructive Theory of Functions, GITTL (Moscow-Leningrad, 1949) (in Russian).
[9] P. Turán, Some open problems of approximation theory, Mat. Lapok, 25 (1974), 21-75 (in Hungarian).
[10] P. Erdős and T. Grünwald, On polynomials with only real roots, Annals of Math., 40 (1939), 537-548.
[11] P. Erdős and P. Turán, On interpolation. III, Annals of Math., 41 (1940), 510-553.
[12] P. Erdős and J. Szabados, On the integral of the Lebesgue function of interpolation, Acta Math. Acad. Sci. Hungar., 32 (1978), 191-195.
[13] A. A. Privalov, Approximation of functions by interpolation polynomials, in "Fourier Analysis and Approximation Theory" I-II, North-Holland Publ. Co. (Amsterdam-OxfordNew York, 1978), 659-671.
[14] S. N. Bernstein, Quelques remarques sur l'interpolation, Math. Ann., 79 (1918), 1-12.
(Received February 22, 1979; revised October 17, 1979)
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
1053 BUDAPEST, REÁLTANODA U. $13-15$.

