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Abstract

Let S be a finite or infinite set in the Euclidean

space 3E - . We definte the graph G(S) on the

vertex-set S by joining x,y c S iff p(x,y) / =

their distance / is 1 . In this paper we investigate

various chromatic properties and the dimension of
h

such graphs . Thus for example X e
(IE

) will be defined

as the maximum t such that if G n = G(S) S c Eh

then one can omit o(n 2 ) edges so that the

graph be <_ t-chromatic . The dependence of X e

on h will be investigated among other related questions .

1 . Introduction . Let S be a finite or infinite metric space . We

define the graph G(S) as follows : the vertex set is S and x y c S

are jointed iff their distance p(x y) = 1 . Many interesting questions

can be asked and were investigated in connection with the graph theoret-

ical properties of such graphs . The results of this type can be

interesting in themselves and on the other hand they give information on

the metric of S . In the introduction we list some of the known results

and open problems but first we fix a few standard notations .

The graphs considered here will have no loops or multiple edges .

Gn Hn . . . will denote graphs with n vertices and if G is a graph

E(G) e(G) V(G) and v(G) will denote the set of edges number of edges
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set of vertices number of vertices respectively . The chromatic number

of G is X(G) . Kp is a complete p-graph Kp(nl . . . np) is the

complete p-partite graph with n i vertices in its íth class .

Problem 1 . Let 7E h be the h-dimensional Euclidean space and S c- Eh

be an n-element set . How large can e(G(S)) be (as a function of n)?

Erdős gave sufficiently sharp answer to Problem 1 if h ? 4 but the

results for h = 2 3 are far from being satisfactory . For example if

h = 2 Erdős [4] proved that
3

(1)

	

e(G(S)) = 0 (ISI 2 )

and it took great efforts for Józsa and Szemerédi [12] to push this

estimate down to
3

(2)

	

e(G(S)) = o(ISI2)

	

(ISI-)

while probably even
l+e

e(G(S)) = 0(ISI

	

)

holds for every e > 0 .

For a metric space S X(G(S)) wí11 be abbreviated by X(S) .

Hadwiger [11] and Nelson (see [11]) independently asked for the deter-

mination of X(Eh)

Problem 2 . How large is X CIE h )?

(By the de Bruijn-Erdős theorem [3] XOEh ) = max (X(S) : S c]Eh S is

finite) :) .

Klee proved the finiteness of X(IE h ) for each h (easy :) Layman

and Rogers [16] proved that

(3)

	

XCEh) <_ (3+o(1))h

	

(h--) .
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It was conjectured that

(4)

	

X(Eh) > (l+c)
h

for some constant c > 0 but the best lower bound (due to P . Frankl [10])

is much weaker . It states that for every y

(5)

	

X (Eh ) /hy -} - (h-) .

It is surprising that even for h = 2

	

h
X(lE ) is unknown . Hadwíger [11]

L . and W. Moser [15] and Woodall [17] proved that

(6)

	

4 <- X(lE2) <_ 7 .

Another notion connected with geometric graphs is the dimension

(dim(G)) of a graph G introduced by Erdös Harary and Tutte [9] . The

dimension of G is the minimum h such that G can be embedded into

I so that for each edge the two end points have distance 1 . One can

easily see [9] that

(7)

	

dim(G) <- 2X(G) .

To prove (7) we may choose a Kd(m . . . m) D G for d = X(G) and prove

(7) for this graph :

(7 )

	

dím(Kd(m . . . m)) < 2d .

Indeed (7 ) immediately implies (7) . To prove (7 ) put

(8)

	

Ci = {(xl . . . x2d) : x2i-1 + x2i = 2 x j = 0 íf j # 2í - 1 2i} .

Clearly if x e Ci y e Cj then p(x j) = 1 í .e . putting m vertices

(of K (m

	

m)) onto CC we embedded K (m

	

2d)
d

	

d '"'gym) into IE

	

We

shall refer to this embedding as to Lenz' construction [5] .

Before turning to the new results we would like to show that in some

sense the problems posed above cover more than what one would think .
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First of all if c > 0 is a small positive constant and Sh-I is the

sphere of diameter 1 + c in 7Eh then a famous theorem of Borsuk [2]

asserts exactly that

X(S) =h+1 .

Another question was the longstanding Kneser conjecture finally proved

by Lovász [14] (whose proof was simplified by Bárány [1]) .

Kneserconjecture [13] .

	

Let GN be a graph the vertices of which are

2n+Qthe

	

(

	

) = N n-tuples of a (2n+Q)-element set U and two verticesn

(= n-tuples) A S U B S U are jointed if A n B= 0 . Prove that

X(GN ) = R + 2 .

If we consider all the n-tuples of U (JUI= 2n+Q) and introduce

the metric p(A B) = 21n

	

d(A B)

	

where 4(A B) is the symmetric

difference 4(A B)I is its cardinality then Lovász Theorem asserts that

for the above metric space S of N points X(S) = Q + 2 .

2 Main ResuZts .

	

As we stated in the previous chapter if G can be

embedded into the plane 1E 2 then X(G) - 7 . On the other hand there are

graphs G in the plane with X(G) ? 4 . The next theorem shows that the

high chromatic number is not typical in IE 2 not even in IE4 .

THEOREM l .

	

Let S c H4 be a set of n points Gn = G(S) . One can
7

omit 0(n4) edges from On so that the obtained graph is bipartite .

The above theorem motivates the following definition :

Definition 1 . If U is a metric space with infinitely many points

X (U) - the "essential chromatic number" of U is the minimum t suche

that for any n-element subset S c U we can omit o(n 2 ) edges from G(S)

so that the obtained graph Gn is < t chromatic (as n
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Remark 1 .

	

As we mentioned X(Eh) < sand obviously

(9)

	

Xe(U) < X(U)

thus X (Eh) < - . On the other hand we have seen in the introductione

that Kd( nd . . . n
d ) can be embedded into E 2d

	

Obviously one must

2
omit at least

	

n2 edges from
d

Kd(fn} . . fá}) to decrease its chromatic

number thus

	

(E ) ? [2] = d . This shows that X e (TE h) }

	

as h

	

~ .

THEOREM 2 .

	

For h ? 2 Xe Xh) ? h - 2 .

Remark 2 .

	

By Theorem 1 Xe (E 4 ) = 2 . Theorem 3 (below) implies that

Xe(E3 ) = 1 while Xe(E 2 ) = Xe(E1) = 1 is trivial .

Conjecture 1 .

	

There exists a constant q > 1 such that

Xe (lEh ) > qh .

We shall give the motivations of this conjecture later .

To formulate our next theorem we need the following definition

partly motivated by the Lenz construction .

Definition 2 .

	

Let Pl . . . Pm be 2-dimensional subspaces of Eh

A
i .e . planes going through the origin . Let G(Pl . . . . Pm ) be the graph

whose vertices are P l . . . Pm and Pí and P J are joined iff P í 1 P .
J

A
The orthogonal chromatic number X I (Eh ) is defined as max X(G(P l . . . . Pm))

for all possible finite collections P1 . . . . ' Pm .

THEOREM 3 . If h ? 2 then Xl 6Eh) = Xe Xh) . Further if Gn = G(S)
1

for some S S Eh then we can omit <<_6n 2 h edges from Gn so that the

obtained G is s Xi Zh)-chromatic .
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Remark 3 .
Obviously

X 1(lE ) = 2 thus Theorem 3 is a generalization of

Theorem 1 . It is easy to see that X-1 (IEh ) 5 X e (1Eh ) .

h

	

A
X 1(á ) = t . Fix the planes P1 . . . Pm 3 0 so that X(G(P . . . Pm)) = t .

Let C _ {xcP

	

IxJ = 11 . Fixing

	

n points on each C we obtain a
1

	

- i

	

m

	

1

t-chromatic graph Gn since each x c C and y e C have distance 1

if Pi 1 P

	

(i .e . if (i j) e E(~(Pl	Pm)) . It is easy to see thatP .

	

2
one must omit

	

n2
edges or more to turn Gn into a (t-1)-chromatic

m
graph . Here m is fixed n

	

thus X
e

(IEh) ? t =
X -L

As a matter of fact we shall prove a sharpening of Theorem 3 as

well :

THEOREM 4 .

wíth some plane

Let Gn = G(S) for an n-element set

divide S into V
•

71 . . . VQ

	

so that

part of x) i = 1 2 . . . QO .

(ü) If Vi and

	

are

then their affine closures are orthogonal 1 s i < j <- QO'

o

h

	

1 h
(i)

	

3n

	

< V . <

	

3n

	

(where
Z

2 3 4

1 xl

S c Eh .

Indeed assume that

We can sub-

denotes the upper integer

1

joined by more than 21V .IIV .ln h
71

	

0

1 - 1

(iii) Each x e S is joined to at most 3n

	

h points of V .

Theorem 4 implies Theorem 3 : if a V
I

is one-dimensional any

x e S is joined to at most 2 of its vertices . Therefore these V i 's

can be put into V
•

For the others we choose a plane P 3 0 parallel

P i
•

	

Vi and colour the planes P i by t = XI (Mh)

colours so that P

	

and P have different colours if P
i

1 P
J

. We

edges



colour the points of V by the colour of P . If we omit all the

edges (x y) x e V • y e V for which V and V are not ortho-

gonal and all the edges (x y) x e V then the colouring given above

is a good colouring of the remaining graph Gh and we omitted at most

_ 1

	

1

	

1

	

1

IV I

	

3n1 h+ 2~ L IV .IIV .I • h h 5 n

	

3n

	

h+ 2n2 • n h

This proves that Xl (Eh ) > Xe OEh ) . This and Remark prove Theorem 3 .

THEOREM5 . Let Sh-1 be a sphere of radius 1 om 1F h. Then

(10)

	

X(sh-1) <
Xe(E

2h) < Xe(E2h+1) s X(S2h ) .

The meaning of Theorem 5 is that the ordinary chromatic number of

the sphere Sh-1 and the essential chromatic number of 1Eh tend to

infinity equally fast . We do not think that the ordinary chromatic

number of Sh-1 and IEh differ very much this iswhy we think that

Conjecture 1 must hold .

Knowing Theorem 3 Theorem 5 becomes almost trivial and therefore

the proof is left to the reader .

3 . On the Faithful Dimension of a Graph .

Let a graph G n be given . As we have seen Gn can be embedded

into 7F:t if t = X(Gn) . One can easily see that this dimension is the

lowest possible for Kt(m . . . m) if m is sufficiently large_ Here

embedding Gn into we ask for finding a set S S such that

Gn G(S) . If Gn = G(S) the embedding will be called faithful and

the smallest h such that Gn can faithfully be embedded into 7E h is

the faithful dimension Dim(Gn) of Gn . The question is whether there

exists a sharp difference between the notions of dimension and faithful

dimension .
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While (7) and the example of Kt show that the dimension of a graph

is strongly related to its chromatic number we show that Dim(Gn) has a

similar strong connection to the maximum valence A(Gn) of Gn .

THEOREM6 . Dim(Gn ) s 2A(Gn ) + 1 .

Conjecture2 . Let Gn 0 K2 (3 3) . Then dim(G11) . Q(Gn ) .

(mProposition1 . If G is the graph obtained from K2 (m m)

omitting a 1-factor then

m - 2 <_ Dim(G) <_ m - 1 .

Remark4 . The important part of Proposition 1 is that in spite of the

fact that X(G) = 2 and (hence) dim(G) 5 4 Dim(G) is large . For m = 3

4 the Dim(G) = 2! Anyway this shows that Dim(G) can be unbounded even

if X(G) = 2 í.e . Dim(G) is related to A(G) and not X(G) in general .:

Conjecture 2 is sharp if it holds : Dim(K ) =m

	

A(Km) = m - 1 .

Finally we shall prove

Proposition2 . dim(Gn) 5 A(Gn) + 2 .

This assertion is weaker than Conjecture 2 but sometimes stronger than (7) .

4 . Proofs of the ResuZts onChromatic Number .

Definition3 . Given a set U S IEh we denote its affíne closure (not

necessarily containing 0) by L(U) . M(U) is the set of points

	

such

that for every y c U p(x y) = 1 . If M(U)

	

0 then there exists a

unique sphere Q(U) c L(U) containing U . (Here the "sphere" in L(U)

always means one spanning the whole L(U) .) To show the existence of

Q(U) put Q(U) = L(U) n M({x}) for some x c M(U) . Obviously

Q(U) ? U and is a sphere in L(U) . If H ~ Q(U) is another sphere in

L(U) containing U then U c H n Q(U) but dim(HnQ(U)) = dim U - l

which is a contradiction . (dim A is the dimension of L(A) further

2) by
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for A B c Eh A 1 B is an abbreviation of L(A)

AIIB A.fB are used in similar ways .

LEMA 1 . If WV) - 0 then U 1 M(U) . M(U) is a sphere of L(M(U))

and

	

dim U + dim M(U) = h .

Further if x e Q(U) .y E M(U) then p(x y) = 1 .

Proof . We may assume that

(11)

	

Q(U) _ {(y1 . . . yk 0 . . . . 0) e Eh : ~y2 = r2 } .

L(B) . A

	

B

As we have seen if x e M(U) then Q(U) = M({x}) n L(U) Thus has

distance 1 from each point of Q(U) . Clearly if e j is the jth basis

vector: e .
J _

(0 0 . . . 0 1 0 . . . 0) with 1 in its jth position then

± rej c Q(U) thus x has distance 1 from rej and - rej j = 1 . . . k .

Thus for x = (x l . . . xh ) x j = 0 j = 1 . . . k . This means that

(12)

	

_ (0 . . .>0'xk+l' . . . xn)

	

Xx2i = 1 - r 2 .

On the other hand each x satisfying (12) has distance 1 from each

y e Q(U) . Thus x c M(U) iff (12) holds . This proves the lemma .

Proof of Theorem4 .

	

By Remark 3 we know that

t = X (Eh) < X e (Eh) .
1

2 -
1

We show that if S c Eh Gn = G(S) then one can omit <- 6n

	

h edges

of Gn so that the obtained G n has chromatic number <_ t . For each

1 h
U s S satisfying IUI ? 3n

	

and M(U)

	

0

	

we define a

V = f(U) S U as follows . We consider all the W c U such that for
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k = dim M(W) I W ? ~3.

	

h

There exist such W's ; e .g . W = U satisfies the condition . Let V = f(U)

be a

	

W for which k is maximal . Clearly for k = h - 1 IWl ? 3

on the other hand by Lemma 1 dim(W) = 1 and Q(W) is a "sphere" in

L(W) thus JWI < 2 . This contradiction shows that k 5 h - 2 .

Thus
1

(12)

	

W1 ? 3nh .

1-
Now we select a U 1 c S such that M(U 1)

	

0 and ~Ull = 3n
4c

(If such a U 1 does not exist we put V = S RO = 0) . U + and

if S - i U Vi contains no

1- 1
(13)

	

M(Uk+1 ) = 0
and JUk+l l =

	

3n

	

h

then the recursion stops and we put V = S - u v 20 = R . Otherwise
i_Q

we select a U P+l satisfying (13) and put VR+1 - f(U Z+1 )

The fact that (13) does not hold for any UR+1 c V

	

is just

another form of (iii) of Theorem 4 ; (i) follows from (12) . Thus we have

to prove only that if Vi and V
J

are not orthogonal then they are

_ 1

joined by 5 2IVi1JV J.Ih h edges .

Assume that Vi t'V . If H is a hyperplane in L(V i ) it contains
J

1

< IV .I • n h

	

vertices : otherwise for V = H n V we had

_ 1

lVI

	

? ~ Vi In h and

VZ+l are defined recursively :

UQ+l such that
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(14)

	

dim M(V) = h-dim V = h - (dim V . - 1) = dim V . + 1

would contradict the maximality of k in the definition of V = f(U ) .

1

Thus IV nHI < IV In

_

h . Now if x e V - M(V ) then M({x}) does

not contain Q(V .) hence H = Q(Vi) n M({x}) has lower dimension than

-1

Q(Vi) therefore H n V i contains at most IV i In h points . Thus the

_ 1

number of edges joining V
i

and V J - M(V
i
) is at most IViIIV

j I
n h

Further L(M(V
1
.)) cannot contain V

J
since V

i
x V

	

Therefore
J

H = L(M(V
1
.))nL(V ) has lower dimension that L(V ) which implies that

J

		

J
1
h

IM(V
1
) nV

J
I 5 IHnV

j
I < IV iIIV

j
Ih

	

Thus the number of edges between

h .
Vj nM(Vi ) and V i is < IV iI

IVj In

	

Consequently the number of edges

_ 1
h

between Vi and VJ is at most 2IV i IIV i In

	

This completes the

proof .

As we have seen Theorem 4 implies Theorem 3 .

Proof of Theorem 2 . Let

h
Pk

Z _ {(xl - - 'Xh ) e E xi = 0 unless i = k or i = Q} .

If we consider these
\2/

2-dimensional planes then the corresponding

N . . . .Pk Q . . .)

of an h-element set : Pk
k

I Pk Q if {k 2} n {k' R'} _ 0 . Thus
r

X(G( . . . . Pk Q . . .)) = h - 2 that is X I (IE h ) >_ h - 2 . By Theorem 3 more

precisely by the trivial Remark 3 Xe
CEh ) ? h - 2 . This is just

Theorem 2 .

is obviously the Kneser graph corresponding to the pairs
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Remark 5 .

	

So if the Kneser conjecture is used in fact for pairs only

then Theorem 2 is trivial . Further we think that it is very far from

the right order of magnitude . Since Xe (Fh) > [2] is trivial one can

ask what is the point in proving a slightly stronger result like

Theorem 2 . There are two points : On the one hand it shows that [h2] is

not sharp on the other hand though Conjecture 1 states that Theorem 2

is very far from the truth still there is some chance that Conjecture 1

is false and Theorem 2 is sharp . We cannot improve Theorem 2 even for

h = 5 .

Remark 6 . If h = 5 the Kneser graph on the pairs is just the Petersen

graph . Thus the Proof above shows that the Petersen graph can be obtained

n
as G(Pl . . . P10) from 10 planes ]E . Let Q(m) be the graph obtained

from Q by replacing each x c V(Q) by m new vertices and joining

two vertices of Q(m) if the original vertices of Q were joined in Q .

The above proof shows that if Q is the Kneser graph of the pairs of an

h-element set then Q(m) is embeddable into 1E h

5 . Proofs of the ResuZts on the Dimension of a Craph

Proof of Proposition 1 . Assume that the graph G has 2m vertices

xl . . . xm and yl . . . ym and (x i y j ) e E(G) íff

show that m - 2 s Dim(G) < m - 1 .

Assume first that G is embedded into 7Em-3

subset X

	

fxl . . . xm} for which L(X) = L({xl . . . xm1) . We may assume

without loss of generality that X = {xl . . . x.] for some Z < m - 2 .

Let U = Ix l . . . xz+11 . We prove that Q(X) 3 xR+1' First of all

M(U)

	

0 M(X)

	

0 because both contain yQ+2' L(X) = L(U) by

definition and as we have seen in Definition 3 Q(U) and Q(X) are the

240
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uniquely determined spheres of L(X) = L(U) containing U and X G U

respectively . Thus (by the uniqueness of

words xQ+l e Q(X) .

Clearly yQ+l c M(X) . By Lemma 1 p(x yZ+l) = 1 for every

x c Q(X) thus p(xz+i YR+1 ) - 1 but (xQ+l yz+1)

	

E(G) . Thus the

embedding is not faithful .

Dim(G) ? m - 2 .

Now we embed G into ]Em-1 faithfully . Let

nx _ (a a . . -(m-1)a . . . a) c Emi
A

	

n
(the ith coordinate is the exceptional - (m-1)a) . Clearly if yi = - x i

then

if i ~ j and

Q(X)) Q(U) = Q(x) . In other

2 n n

	

2

	

2 2

	

2

	

2
P (xi yj ) = 4(m-2)a + 2(m-2) a = 2(m -2m)a = 1

12

if i # j and a = (2m2 -4m) . Now

P 2 (xi 1x j ) = p2(yilyj) = 2m2 a2 > 1

n n

	

2

	

2 2

	

2

	

2p(xi yi) = 4(m-1)a + 4(m-1) a = 4(m -m+2)a > 1

if m > 2 . Thus the embedding is faithful and the vertices xi' y i
belong to the hyperplane {t : ~t = 01 . This completes the proof .

Remark 7 .

	

The geometric background of the above proof is clear :

(x1 . . . xm) and (y1

	

m. . y ) were regular simplices of Em-1 and the

whole picture had a lot of (rotational) symmetries .

In the sequel Sh c Eh+1 denotes {aEEh+l lal_ 1
}

V
Proof of Proposition 2 . We use induction on 4 = 4(G) to prove the

following stronger statement :

(*)

	

One can embed G into 5A+1 .
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For 4 = 1 (*) is obvious . For a fixed 4 we choose a maximal

independent set A c V(G) and put G* = G - A . Clearly n(G-A) 5 n - 1

therefore G - A can be embedded into SA C: 5A+1 C En+2 For each x c A

there is a < p-dimensional linear subspace L

	

(containing 0 :)x
ncontaining {y: (x y)EE(G)} . (The image of a u E V(G) at a given

embedding will be denoted by ú unless we compare two different embeddings

when one image wí11 be denoted by ú the other by u) . We fix a plane

n

	

4+1Px a 0 (dim px=2) orthogonal to L x . Choosing any x E P x n S

	

we ensure

that x 1 u if (x u) c ]E(G) . Since x can be chosen in infinitely many

ways we may choose x's one by one so that x E A is different from

n
y E V(G) if x # y . This completes the proof .

Proof of Theorem 6 . Again we embed Gn into S2A faithfully . We know

by Proposition 2 that Gn is embeddable into S2A if faithfulness is not

required . We start with an arbitrary embedding and modify it step by step

first achieving that if x1 . . . xA+1 E V(G n ) are different then

n

	

n
xl . . . xA+l are linearly independent . Let L0 (U) denote the linear

subspace generated by U . Assume that

n

	

n

	

n
x4+1 E Lo(x1 . . . x0) .

We fix all the vertices of V(G) but x0+1 . The conditions

n

	

n

	

n
x4+1-u~ = 1

	

if

	

(xA+1 u) E E(G )

keep xA+1 on a ? 4+1-dimensional sphere S . (S~ is counted

a+l-dimensional

	

n

	

n) . Since the dimension of L0({xl . . . xA}) is S 4 it

n
does not contain S thus we can replace x A+l by an xA+1 ~ L0(x1 . . . x0)

moreover x + can be chosen arbitrarily near to xA+l'
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We iterate the step above until no
x0+1

belongs to the linear

A
closure of A others . If in the ith step x is replaced by x first we

A

	

A
choose

	

e •
J

such that each linear subspace L({yl . .' x0}) not

x has distance > e • from x and then choose an x for which
J

A
IX-xj < E .

J

steps . Finally each 4+1=tuple

	

xl . . . xA+1 will become linearly

independent .

Now if we have embedding with Ix-yI = 1 for some (x y) ~ E(G)

Thus we shall not ruin the results of earlier steps in later

and the (A + 1)-tuples are independent then we change

dím(U ) < dim(U +{y})
X

	

X

S 4 ?
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-
x to x as

A
follows . Let UX = {u . (x u) E E(G)T . Above we have achieved that

y 4 LO (Ux ) . Thus

This implies that there is an x 1 Ux
x t y moreover this xcS 2A can

be chosen arbitrarily close to x . Clearly Ix-Ul = 1 if (x u) E E(G)

x-yI ~ 1 and Ix-u ~ 1 if

	

x-úI

	

1 (if

	

x-xI is small enough) .

Iterating this step we obtain the embedding wanted .

6 . Unsolved problems .

We have already stated some open problems about the embedding of

graphs into Euclidean spaces . Below we shall formulate some further ones .

Problem 3 .

	

Determine X I (IE S ) . Characterize the graphs embeddable into

S4

	

IE5 . Can every 3-chromatic G not containing K 3 be embedded into

Problem 4 .

	

Determine dim(Gn)) if Gn is a random graph. More

precisely let Gn be a random graph where each edge is chosen with

probability c where c e (0 1) is fixed . As n } - almost all Gn

containing



have chromatic number at most cl n/log n (see the next remark!) and

ntherefore the dimension of almost all G

	

is at most 2cln/log n . Since

almost all the graphs Gn contain a Km for m = [c 2 log n] thus

c2log n lower bound . Is dím(Gn) = o(n/log n) with probability tending

to 1? Find good lower and upper bounds fl (n) and f 2 (n) such that

fl (n) < dim(Gn ) < f 2 (n)

with probability tending to 1 .

Remark . In [8] it is implícitely proved that almost all Gn are at

most cln/log n chromatic : it is well-known that for almost all the

graphs Gn if m=w(Gn ) denotes the largest complete graph in Gn then

m < c 3log n . The second part of theorem of [8] asserts that for every

graph Gn

	

X(Gn) < c4 w(Gn) . n/log2n . This proves the assertion . The

other inequality asserting that almost all graphs Gn have chromatic

number at least c5n/log n is trivial from the fact that for almost all

Gn the maximal size of an independent set of Gn is also at most

c3log n .

Problem5 . Let

is it true that

dim(Gn) 5 dim(Kp) = p - 1?

Problem6 . Let S c

	

1E2 and fix k numbers al . . . ak . Let x y c S

be joined by an edge íff p(x y) = a Q for some Q <_ k . Let tk(n) be

the maximum of the chromatic number of this graph when

	

( a l' - ' C6k}

vary but k and n are fixed . How large is tk(n)?

(For some further results and unsolved problems see [6] [7] and [9] .)

( 2 )

	

e(Gn) < ( p+l )
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