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1. Let (a, b) and [a, b] be the greatest common divisor and the least common
multiple of a and b, respectively . p„ denotes the n'th prime ; p, q, q 1 , q2 , . . . are prime
numbers. A sum ' and a product ff denote a summation and a multiplication,

p

	

p
respectively, over primes indicated . The symbol # { . . .} denotes the number of
elements indicated in the bracket { } . P,, is the product of the first it primes .

The aim of this paper is to continue our investigation on the distribution of
the maximal value of additive functions in small intervals .

In the sequel let g(n) be a non-negative strongly additive function,

(1 .1)

	

fk(n) _
Let

(1 .2)

	

Q(k, s) = sup- # {n = xl fk (n) > (I +s)fk (0)},
xz1 X

(1 .3)

	

6(k0 , s) = sup I # {n -- xl3k, k > ko , fk (n) > (l+E)fk(0)},
x~1 X

0(k, s) = lim sup 1 #x

	

{n xlfk (n) > fk (0)(1 +s)} .
x

It is obvious that
(1 .4)

	

0 (k, s) -- 0 (k, s),
and that
(1 .5)

	

6(k0 , c) -- sup 0(k, s) .
kzko

In [1] we tried to determine those additive g(n) for which the relation

(1 .6)

	

6(k0 , a) -- 0 (k 0 ---), Va > 0

holds. There we noticed that (1 .6) implies

(1 .7)

	

Z
min (1,g(p))

p

	

p
but we could not decide if the condition
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were necessary. Now we shall prove this . More exactly, we shall prove the follow-
ing assertion .

THEOREM 1 . If
(1 .9)

	

8(k, e) -- 0 (k -- -)
for all e>0, then

(1 .10)

	

g (p) r
P p

for every r-1 .
Let F(x) be the limit distribution function of g(n), the existence of which is

guaranteed by (1 .7) .

THEOREM 1' . Assume that
(1 .11)

	

k(1-F(fk(0)(1+E))) --0

holds for every e >-O . Then (1 .10) holds for every

Theorem 1 is an immediate consequence of Theorem 1' . Indeed, (1 .11) implies
that the density of integers n, satisfying g(n)>(1+E)fk(0) is o(llk), consequently
(1 .9) holds .

Perhaps (1.11) implies that

(1 .12)
eug(P) - 1

z
p

	

P
for every a>0 . We could not give a counter example .

THEOREM 2. Iffor some constant A >0
(1 .13)

	

k(1-F(fk(0)+A)) --0 (k ---),

thne (1 .12) holds for every a>0.
On the other hand, we shall prove that (1.6) does not imply g(p)=0(1) .

This will follow easily from the following
THEOREM 3 . Let L(k) be a junction on [l, -) tending to infinity arbitrary slowly .

Then there exists a strongly additive non-negative g(n) with limg(p) so that

(1 .14)

	

sup 1 # fn : xl3k ~_: ko , fk (n) > L(k)} -- 0 (k o
sz1 x

We are interested in the conditions that imply

(1 .15)

	

sup1 # {n -- xllk > ko ,fk (n) > fk (0)+A} -- 0 (k,--),
Xzi x

with some suitable constant A .

THEOREM 4 . IfI

		

1
g(p)=

P
, then

(1 .16)

	

sup 1 # {n -- xiElk > ko,fk(n) >fk (0)+.lk} -. o (k,--),
sz1 x

where ~k =3/(log log k) .
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(1 .17)

	

lim lim 1 # {n -- x lfk(n) >-f,(0)+ (log k)"Q} = 1 .
k-- x=- x

(1 .20)

and

(1 .21)

ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS

THEOREM 5 . If g(p)=1/pa, 0<6<1, 0>0 being an arbitrary constant, then

By somewhat more trouble we could prove that

(1 .18)

	

sup 1I # {n xllk > k o ,fk (n) < fk (0)+(log k)'_a- Q} 0,
x~l x

as k,--
Let F&), Fjx) denote the limit distribution functions corresponding to

g(p)=1/pa, g(p)=(logp)-', respectively ; G6(x)=1-F,,(x), G,,(x)=1-Fy,(x) .

We shall consider G(x) for large x(>0) .

THEOREM 6 . We have for 6=1 :

(1 .19)

	

log log	G, T)
~ eT-R -cit e- i,

where a=y-

	

1f Z
kpk ; y being Euler's constant, c denotes a suitable constant .k

Furthermore, if 0<b<1,

log	
Ga(i) j (z

log TY41-00 +O(log i) -I) (i 1 ),

log GY(i)

	

i(log i)Y+ I -clz(log i)Y,

c, being a positive constant depending on y .

REMARK . It is easy to see that the previous inequalities are quite sharp . Indeed,
if g is monotonically decreasing on the set of primes p, then for Pi, :k<Pu+ , we
have

1-F

	

1

	

1
(g (pu)) Pµ

-
k

259

Hence, after some simple computation, we have the following inequalities for z 1 :

(i) log log
Ga=
	1

1 (i)
- e'-°+O(e-'r), B being an arbitrary but fixed number ;

(ü) log	
Ga

(r)

	

(i log i),,(I-a) (I +O ((log i) -1)), if 0--: ::b-<I ;

(iii) log G7(i) C(log T)7+'(l ++((log z) -1)) .

1T
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for a suitable y >O . Then

(2 .1)

As it is well known

(2 .2)

THEOREM 7. Let 0< t(x) monotonically tend to zero in [1, -), Iet g(n) be strongly
additive defined for primes p by g(p)=t(p) . If (1 .22) holds, then for every fixed k,
P,~-k<Pµ+I, we have
(1 .26)

	

Fjn) - O(P1 )+Alogk - Ek

for every but O(b k x) of n--x ; sk --0, 8 k --0 as
Suppose, in addition, that

(1 .27)

	

lim 0(Y) _
Y-- yt (eev )

for every 6 - 0, and that

2
(1 .28)

	

t p « t 2 (Y) (log log Y), (Y --
P>v p

i
(1 .29)

	

lim sup- # In - xj .k > ko ,
ka- xz1 x

k--- .

	 Fk(n) -1
(log k)

for every s ::--O .

2. Asymptotic of distribution functions for large values . Let g(n)--0 be
strongly additive. Then for every u--0

- 1Z en9(n) -- x l]17 1 +
en9(P)

n5X

	

Psx

	

p

1

	

11
nY

eng(n) - K(u) = 11
(

l 1 +	
ens(P) -

p
	 } ,

if the infinite product on the right hand side converges. Let F(i) be the distribution
function of g(n) . Then

(2 .3)

	

1- F(i) -- K(u) e-nl (0 < u < -) .

By choosing a appropriately, we shall use (2 .3) to give an upper estimate for G(i)=
=1-F(i) for some special additive functions .
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Let now

(1 .22) g(p) _~ . Z -9, (p)

(1 .23)

p

Ax =

P

	

p

g (p)Z p ,
(1 .24) (Y) _ Z g (p),

(1 .25)

Psv

Fk (n) = max {g(n+j)-An +;} .1-j-k



ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS

Let t(x), xE[l, -), tend to zero monotonically, g(p)=t(p) for primes p,
~(y)= Z t(p) . Suppose that t(x) is differentiable .

Ps y
Let the values to , tI be defined by the relations

(2 .4)

	

ut(t o) = log t o +H; ut(t1 ) = log ti- H,
where H>1 . Let

K(u) = Ki(u)K2(u)K3(u),

where in Kj (u) (i=1, 2, 3) the product is extended over the primes in the intervals
(1, to], (to , t1], (tj , -), respectively .

For pE(1, to) we use the inequality
eu9(P) - 1

	

eu9(P)
log (1 +	

p

	

< log
p +

e -ug(P) p -- ug(p) -log p+e-H,

and deduce
(2 .5)

Since

p

	

p
in pE(to , t1], therefore
(2 .6)

	

log K2(u) < (H+ 1) (n (t1) -n (to)).
Furthermore

Suppose that

log K,(u) < ut (t o ) - Z log p+ Z pe-ug(P) .
Psto

	

P`=to

eug(P) - 1

	

1
1+	=1--+e" < eH+ 1

eus(P) -1
log

K3(u)
<

P>t l

	

P

We shall give an upper estimate for the right hand side of the last inequality when
t(x)=x_ó (0<S-1) ; t(x)=(logx)-Y . For this we use the prime number theorem
in the form

n(x) = li x+R(x), 1R(x)1 -- e,x(log x)- ` 3,

where c3 is a large constant . Let

(2 .8)

	

AX) _
Then

eut(X) -1
x

eug(P) - 1

P~t l

	

P

	

= I1+I2 , h = tf logxz dx' 12 =

	

f(x) dR(x) .

For the estimation of I2, we integrate by parts

I2 = R(x)f(x)
tl
- f R (x) f '(x) dx .

f1(x)
- eut ( x ) (ut'(x)x-1)+1

x2

261
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changes its sign in [t„ -) at most once, for example at z o . Then, by integrating
by parts, we have

f IR(x)Ilf'(x)Idx--c2 f	xf'(x)dx +c2 f	xf'(x)A <<
t, (logx)`3

	

Zo

(lo x	

<<f(t1) (log t,)`3 +f (logx)`3 dx .

So, observing that

f(t) =
0-1t

l -1 C e-
ti

we get

(2.10)

	

12 << e-H

	

t t

	

+

	

t l `3-, ' IS(log 1)

	

(log 1)
To estimate I, , we write

e"t( ez) -1
dA
_

	

uk

	

t (e A)k
(2.11)

	

I, = f

	

-

	

t f	 d~ - .l(g ; log t1)•
logtl

	

k=1 k . logtl
For the integral

and so

J(y, h) = f A'e-AdA
Y

we have
J(y, h) = y"e-v+hJ(y, h-1).

Let now t(p)=p-6 (0 < S 1). Then

t(ea)k

	

e-Aák

	

e-áklogt,
f	d~ - f

logt l

	

~

	

logtl

	

A

	

Sk log t, '

if H<2 log t, .

d~ = J(Ek log t„ -1) <

og t,	 (utl-á) k
P

	

-

	

k! U log t,
Sine ut l- á =1og t,-H, we have

(2 .12)

		

4e- H t,
I, c 6 (log t,) 2

if H<2 log t, .

Let now t(p)=(logp)-Y, (y>0) . Then, from (2.11),
k

,-Y((log p)-, ; log t,) _

	

u
u f ~-ky-, dA

k-1 k log t1

=
Z

(u(log t,)-?) -
z

(log t,-H) k _ 4e- Ht,
kz , k!(ky+l)

	

k-, k!(ky+l)

	

ylogt,'
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So for t(p)=p_ á (0<8-1)

(2.13)

	

logK3 (u) -- Be_y	tl
(log tI) 2 '

while for t(p)=(logp)-7 (y>-0)

log K3 (u) -- Be-H
tl ,

log tl
B being a constant .

For the sake of brevity we shall write u1 =1og u, u2 =1og u1, u3 =log u 2 .
Let us first consider the case t(p)=p-1 . By choosing H=1, and collecting

our inequalities we have

where

Since, from the prime number theorem

where

(y being Euler's constant), and observing that

we get

So, from (2 .3),

ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS

log K(u) < u Z 1 -to +0 ( to) ,PSto P

	

log to )

U

	

ut°
_

log to+i' tl

	

log tl -1

z 1 - = log log to +a+O(ui2),
P5to P

a=y-2Z
1

k k ,k?2 p kp

log log to = u2- u2 +O(u2ui 2), to =
u
+O(uu sui 2 ),u l

	

ul

log K(u) < u U2+ a - U'+1 ] +O(uu2ui 2 )
ul

log (1- F(T» -- u 1u 2 + a -T- U2+1
J
+0(U42 ul2) .

u l

Let a be chosen according to the equation

T = u 2 +a-u2ui1

Then, by an easy calculation, we get

log( I F T

	

u
g(

	

( )) -u+O(uu2u1 2),
1

Y
see

log log	1	~ ul -u2 +O(u2u1 1)
1- F(T)
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Since

we have

	

--et-

	

cT2 e-í, that is (1 .19) holds .
Now we consider the case t(p)=p- a, 0<b<1. By choosing H=1, we have

a

	

u

	

u

	

_ a
t0

	

log to + 1 < log t l -1 - tl '

and so tjto, e2 . Consequently, by (2 .3)

log	
1-F(T)

- Tu-Ut (to)+ t o+0 (to/(log to)) .

Since

and so

log 1-
F(T)

	

Tu - 1 S
6

t o 1 O (to/(log to )) .

By choosing to to satisfy
t1-6

T
0-S) log t o '

we have

log 1-F(T)

	

t o+O'log to ) _ (T 1°g T)1J«-B) ( 1 + o (,. 'g T )) '

and so (1 .20) holds .
To prove (1 .21), we observe that

log	1	- Tu-logK(u) UT
+to- (log to ) ,

	

4to1- F(T)

	

g o) v

	

log o

By choosing u=(log T)Y+I , we have

log	1	 , T(logT)Y+ 1 -c1T(logT)Y1- F(T)
and this proves (1 .21) .

Now we shall prove Theorem 4 . Let g(p)=1/p,

g, (n) _

	

g(p)> g(y; n) = g(n)-gy(n).
pin
ply

1-ó

~ (t°)=

	

1/p8= (1-6) logto ( 1+O (logto ) ,p5 jo

and u=to(log to +1), we have

u ( t o) = to

	

,1-6 [1+0 (logt o )

2

	

2
U = e`-°+ i - eT_q

l1+
ul I O (ui) = e,-a1

	

( ul),
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def 1

	

u(~(to)+d)

	

eu9(P1 - 1
~d =- # {n = xlgro(n) - ~( to)+A} - e-

	

jj (1+	),x

	

psto

	

p

where u=uto is defined according to (2 .4), i .e . uto=to (log to +H). By using (2 .5),
we get

logy, <-Au-to +0( to

	

-{

	

pe-ulP ,(log t oy) Xsto

where c is an arbitrary large constant. Since
2

Z pe-u1p< yn (y) e-u'D «
Y e-u/Y

Y

	

tog y
2

by choosing y=yk =2k (k=0, 1, 2, . . .), we have

tp a -into

	

e n to
pe-u/n «

	

_	
psto

	

log t o

	

log t o

By choosing H= clog log t o , with a fixed c,

(2.14)

	

log-'d < -Auto - to+B to(log
to)`

B being a constant .
Let u,,=tl (log tl-H) . Then, by choosing H=c log log t l ,

(2 .15)

Let

z
# {n -- x1g(tl , n) -- R} - exp (-Rut,+B

(log t1)°+ 2)

to = tl = (log k) 1+Ek Ek =
log log log k

log log k '

f( I ) (n) _ , max gto (n+J) ; fk 2) (n) _ max g(to ; n+J) •J=1, . . .,k

	

j--I, . . .,k
Let

def

	

1

	

loglog log k

	

1
Hk =i Qj-logk=log(1+ak)+0

(-log logk)
_

loglogk +0 (loglogk)

Let k be so large that Hk< 28k . Then, by (2.14),

(2 .16)

	

a (x, k, 2a)k)
def

X

	

In <= xLfk 1) (n)

	

(log k)

	

k}- #

	

+2s

( 1+ x) x+k # {n -: x+kjgt o (n)

	

(to))

(1+ x) kexp(-to+B ts
°)
- ~1+

z)
k-loglogk+c

(log o)
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c being a constant . Similarly, from (2.15),

(2.17)

	

b (x, k, ak) = x # {n n xlf(2) (n) -1 Ek}

tl+x)kexp -8011+0	
g((1o t 1)t J

(1+z)k-'°g'°sk

So for k fx we have

(2.18)

	

x # {n C xl fk(n) ~(log k)+3Ek) < 1/0,

if k is large. For k > x, n- x we have

fk(0) -fk(n) --fl, +x (0) _ 0 (log k)+0	
1

log k
Hence it follows immediately that

z # {n n xj3k >- ko , fk (n)' ~(log k)+3sk} < ko .
By this, Theorem 4 has been proved .

3. Proof of Theorem 7. Suppose that the conditions of Theorem 7 are satis-
fied. Let k (n) be strongly additive defined for primes by

{
9(p)

	

g (P) if P P,1

0 if P :_5 Pµ .

It is obvious that g(Ppm)=g(P,)+g(m) . From the Turán-Kubilius inequality

{g(m)-A'}2 << p z
g 2 (P)

msx/pµ

	

µ p>pµ P

if Pµ <x; A'=Axlpµ -Apµ . Hence we get immediately

def

	

x

	

x

	

g2 (P)
(3.1)

	

MB = #
Im

- jg(m)-A j ~ B «	2 PPµ

	

PµB P Pµ P

If g(m)-A'---B, then

g(P,,m) _ V(Pm)+g(m)

	

(p,,) + A'- B.

So for Pµ(m-I)<n<Pµm we get

(3 .2)

	

Fpµ (n) g(Pµm)-A(m+1)p„' 0(P,)+Ax/p,.-A(m+1)Pµ-AP,,-B.

Let now x-- - . For m ~ Vx we have

1 / 1/2

	

g2 (P)
`1/2

Ax/p,,-A(m+1)pµ ~< P

	

p

	

0 (x ~ OD)r
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where the summation is over the primes in
km

+1)pµ,
P

]. By choosing
µ

Bµ
= B =

		

91(p))
1/4

PAP µ P
we obtain (1 .26) immediately for k=Pµ .

Let now P,,-<k-<P,,+, . To prove (1 .26) it is enough to observe that Fk (n)
FP,(n), and that Alogk -Apµ --O (k---) .
Now we assume that (1.27), (1 .28) hold . If Pµ -k<Pµ+1 then, (log k)=

=á(pµ)(1+o(1))=0(pµ+1)(1+0(1)) and FPS+,(n)-F,(n)~!Fp (n), and so it is
enough to prove (1 .29) for k=Pµ . From (1 .28) we have

MB << ~,	
B2

	 t2 (Pµ)(log log pµ) ,
µ

From the monotonicity of t we have

	 t2(P µ)

	

1
~µ 2 ~02(pµ)

so by choosing B=%,O(p µ ), 0<1µ <1, we have

MB « x

	

(log log 11) , .
PPA2

	

2µP

Let x>P,3, . In the interval nE[1, x] we drop the n's for which n :2~ x112 . Ob-
serving that Apµ =o(I (p µ)), and that Ay-A,,-=O(1) (0<a<1), from (3 .2) we
get that

FP (n) (1-2~ µ ) ~ (Pµ)
X (log log µ)Y

for all but	µ2 ;	 of nix, if I~µ tends to zero sufficiently slowly . Let x<Pµ .
Then, for every n -x,

FP, (n) = max (g(n+j)-An+j) _'á(Pµ)-Ax+Pµ •
j -1, . . .. P u

1)112( ~+
	 t2(p)

1/2 «

Ax+Pµ - APµ

	

L~«
(P µ'P<Pµ +x P

	

P'P' P

1/1 (

«

It
t(P µ) (log log Pµ)v (log p µ)1/2 << 'P) (log log P µ) v (log P µ)1/2 = o (~ (P µ)),

therefore
FP,,, (n) ~_: (1-2ti„)á(Pµ)

holds for every n if p is large . Applying this argument for the sequence x=2", we
get the relation

de::-0: lim sup I # {n xl3k ko, F,(n) < (1-s)t (log k)} = 0 .
k o- x=1 x
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To prove the second half of (1 .29) we choose log log to =pú, where 0<b<y
(see (1 .27), (1 .28)), and define g(to , n), gto (n) to be strongly additive satisfying

~
g(to ; p) _

	

0

	

if p

	

to ,

g (p), if p

	

to

g,,(n) = g(n) - g(to ; n) •

Let A;°=Ax-A,,, . For every u?- 0 we have

'

	

def

	

u(g(t, n)-At0)

	

eug(P) - 1

	

u

	

'
D (x u)_ Z e

	

x - x ÍI
(I+

	

e- g(P)IP
n=x

	

tp<p=

	

p
whence it follows that

1

	

2
- # {n -- xlg(to , n) -- d} -- exp -du+u2 Z
	 g (p)

) ,
x

	

p-to p

if u=1
2t to)

	

Let d=tj,, á(p µ), r1 µ -0 slowly. Then, from (1 .27)
(

Au = u á(pµ), > 4pµ ,2t (to )

if p is large. Furthermore, from (1.28)

	1	9' (p)

	

v =

	

- o4t2(to) P_ t(,

	

« (log log to)

	

pµ
óy - (pµ)á

0

since by < 1 . Consequently

(3.3)

	

# (n = xIg(t ; n) -- 11µ0(pµ)} « x/Pµ .

Let C,(x) be the number of those n--x, that have at least r prime factors in
[l, to] . We have by Stirling's formula,

C, (x) - x • lr (

	

1)r -- x exp (- r log	a
r

	

+ O (logr)) .
r . p<t o p

	

e(pµ +O(1))

Let r=[(1-{-4o)µ], o being a small positive constant . Then,

r log e(pµ+0(1)) , (1 +40)(1-2b) p µ -- (1 +2o)pµ ,

if b is small enough . Consequently
x

c,(x) « Pt
R
+0

Let n be a such number that has s(>µ) prime factors in [1, to] . From the mo-
notonicity of t(y) we get

(gt o (n) = g(P1 . . . ps) = á(pµ)+(s-µ)t(p,)=
s

u
-1) 0(pµ) •
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So, if gto(n)-(l+4o)0(pµ), then s-r . Consequently

(3 .4)

	

# {n :-!5 xjg,o(n) >- (1 +40)0(pµ)} << P  +e .
µ

From (3.3) and (3.4) we get immediately that

# {n-xj,max g(n+j) >-(1+5e)~(pµ)}« P~,=1, . . . . k P
if P'--X .

For Pµ >x we have

Fp,a(n) = n maxp g(n) 0(PP+1) _ (PP)+o(1) .

Applying this estimation for x=2° (v=1, 2, . . .) and summing up for µ~ µo,
we have

sup x {n -- xj3µ >- yo, Fr, (n) (1+50)0(Pµ)} << pe .

By this we proved (1 .29) .

4. Proof of Theorem 1' and Theorem 2. To prove Theorem 1' we suppose that
(1 .11) holds. From the existence of the distribution function F(x),

min (1, g(P))
P

	

P
Let 6 >0 be fixed, 1k be the set of those primes p, for which

(1 + Wk (0) - 9(P) < (1 + S)f2k(0)
holds. Then

Z 1/P--,
PE9k

if fk(0) 0. Let b(n)=(n+l) . . .(n+k) ; Rk= jj p .
P E 5ak

From (I .11),
Z 1 - (1-8)x,n~x

(b(n). Rk)=1

Po

if k>ko(6,a) . Since 1-F(fk(0))~--1/k for every k, from (1 .11) it follows that

fvk (0) ~- (1 + E)fk (0)
for every fixed v, if k is large . So fk(0)=0(kE) and for pE .631k we have p/k---
(k---). Consequently

and

if k is sufficiently large .

II ~1-k)
PE-`~'>k

	

p

9 k<2e,P E 5°k P
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and

therefore

So we have

z

	

g (Ar
9(P)>(1+ö)Jk(0)

	

P
and Theorem 1' has been proved .

The proof of Theorem 2 is almost the same . We need to observe only that
from (1 .13)
(4 .1)

	

fk (0) = o (log k)
follows. Since for fixed v

vk (I - F(fvk (0)))

	

1,

vk(I-F(fk(0)+A)) --0 (k

fvk (0) Gfk (0) +A if k is large, that implies (4 .1) .

(i)

It is obvious that

Furthermore

P. ERD6S AND I . KATAI

G ~+ E(I+5)rf2~(0)

	

2Ev
2

	 « ~ 2°
V kp

5. Proof of Theorem 3 . Let L (k) / - be given. We can give L, (k) j -, so
that L, (k)-L(k), L, (k+k2) 2L, (k), L, (k) has integer values with jump 1 . It is
enough to prove our theorem for L,(k) instead of L(k) .

Let Y _ (q, G q2- . . . } be a rare sequence of primes . We shall define g (n) so
that g(qi)/-, and g(p)=0 for pffg .

Let Bk be a sequence tending to infinity monotonically, 9 be so rare and the
increase of g(qi) so slow that

Z g(qi) G Bkqt>k qi k'

(ii)

	

g ( ÍÍ qi)

	

1I L1(k)
g,sk

	

4
hold for every k-1 .

So fk (0) : 4 L, (k) for every k i 1 . Let g, (n), 92 (n) be strongly additive de-

fined for primes as
0,

	

p
g1(P) _ {g (p), p ` k,

92(P)=9(P)-91(P)1 fk`)(n) _ maxk gi(n+i) •

f-k(') (n) `= g (17 qi)

	

1 4 L, (k)
.

g

fk2)(n) k Z 92 (n) --5 k Z g(q) x+k ,
n=x

	

nsx+k

	

qt>k

	

qi
and so for x>k,

1

	

1 , 1

	

{

	

k

	

g(qi) G2Bk -- ~Jk2) (n) ~ 2

	

~

	

(- Qk) •X nsx

	

Ck nsx

	

Ck qj>k qi

	

Ck
Ik2i(n)>Ck
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Let Ck=4LI (k), B,=
8

• L, (k) . Then ok= ( hL,(k))-1 .

Since, for k i x, n : x,

fk(n) -fk+x(0) 4 L,(k+x) 4 L,(2k) 2 L, (k) .

Since fk(n)~fk(1)(n)+fk(2)(n), therefore

Let now k, be fixed, the sequence k,<k,- . . . be defined by

It is clear that
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sup1 # {n xlfk(n) 1 L,(k)} - okx=, x

	

2

kv =

	

min

	

k.
L j(k)=2L 1 (k„ _ i)

1(k,) = Z ok,.
~ ~Ll (Q)

,
~(k,)-0 (k,- -) .

Applying this argument for x=2µ (µ=0, 1, 2, . . .) we deduce that

sup 1 # {n - xjw : fk„(n) > 1 L,(k)} ` ~(ko) •x-I x

	

2

Let now n be such a number for which fk,(n)<
2 L, (k,) (v=0, l, 2, . . .) holds .

Then for every kE(k v _,, kv),

fk(n) `fk,.(n) 2 L,(k,.) = L,(k,-,) -- L,(k) •

This finishes the proof of Theorem 3 .

6. Proof of Theorem 5 . Let e 0 and t be given, Y,, Y,, 0' 3 be the set of
primes in the intervals [l, (1-s) t], ((1-a) t, t,] (t, (I +e) t,] P i be the product of
the elements Y i , i .e .

Pi = 17 P•
PE9 t

Let r, s be natural numbers . In this section b„ b ;j) , j=1, 2, . . ., denote a number
that is a product of r distinct elements of 9 2 . Similarity Cs' cs l) , c( 2) , . . . denote such
numbers that are the product of s distinct primes from q3. Let H and K be the
number of elements in

	

and in -0) 3 , respectively .
Then the number of b' s is (H) , and the number of cs s is
From the prime number theorem

Et

	

t
(6.1)

	

H = log t +O (log t) 2 )'
K log

et

	

t	 s+0(	 (logt)2 ) .

f9
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Let sl be the set of those integers that have the form n=
b2

m, where
r

(m, P2)=1, and that contains at least s prime factors from ~P'3 . Let

F(n) _ Z 1,

if nE Ql, and F(n)=0 otherwise .
Let 0<6<1, r=[ta], s=[cr], c>1 being a constant .
To prove our theorem we shall deduce a Turán-Kubilius' type inequality

for the sum
P2

	

2
(6 .1)

	

,(Y)
def

	

,Z F(n+i)-A, ,
n-y 1i=1

where
(6.2)

	

A = (Z br) (f 1 lc,,) .

For the sake of simplicity we shall assume that r, s, t are large but tem-
porarily fixed numbers,

Let
(6.3)

	

S(y, i) _ Y F(n) F(n + i) .
nsY

Squaring out (6 .1) we get easily that
P2

(6 .4)

	

&(y) _

	

2(P2 -i)S(y, i)+P2 Z F2(n)-2AP2 Z F(n)+
i=1

	

nsy

	

n-y

+A 2y+O(P2ylno) _

_ 7 (1) +P 2 Z(2)-2AP2 ,Z(3)+A2 y+O(p2y1/1°) .

We shall use Eratosthenian sieve for some primes in ~2 . We note that

11 (1--) = 1 +O ('06g
	 ) (t -- -)

PE92

	

p

	

t
if y (p) is bounded by an absolute constant .

Then

Consequently

H(z) _

	

1 = z jj (1-1/p)+0(2f') .
n~z

	

PE92
(n, P2)=1

(6 .5) Z(3) _ Z Z Z 1 = Z H( bry = 1 (1+0 (1E
1)
Ay+Or(1),

b,,

	

_b,y C .Im

	

b,, c.

	

P' Cs

	

P2

	

og t
m=P
(m, P2 )2 1

where t in the order term denotes that the constant involved may depend on
We shall give an upper estimate for _Y(2) . We have

(6.6)

	

Z (2) _ Z Z

	

Z

	

1 - Bp (Z br),
br ccs i , ccs2 n~	bl Y

	

2
P 2 fcs l ), c( 2 ) j
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where

(6 .7)

	

B =

	

[CM
1
cs2)] .

Let a. be a fixed product of µ prime factors from -93 . The equation s,,=
=(cs 1 >, c (2) ) has

(2(s - u)) (
2(
ss-jup

)~

solutions . For all of them [csl), cs 2 >]-t 2s_µ holds . e, can be chosen (K) times
Consequently

(6 .8)

	

B c µ
19-2s

( µ ) (2(s-p))(2(ss-P
y)

Furthermore it is obvious that

Z br - t r (H) .
So by the Stirling formula

r
br < tH < exp (2r log t-rb log t+0(r)) = exp ((2-b) r log t+0(r)) .

Similarly, from (6 .8),

B <
,2s-AP!

s-µ)!2

Consequently

(6 .9)

	

Zt2> =

	

exp ([(2-b) r-bs] log t+0(r» .
2

Since

Now we estimate A . Counting the b r 's and cs's we have

t, _ , ( H) (K)
-A- (1+E)s

,tr s( ) ( )

(H r)r < ( H)
<
lr i.

	

r

	

r . '

from the Stirling formula we deduce easily that

r 2

	

s2logA=(r-s) log t+r log es+O (W) +slogK+O K)-rlogr-slogs+0(r),
and so by (6.1) that
(6 .10)

	

log A = [2r-(r+s)b] log t+O(r log log t) .

is
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We choose c (s=[cr]) so that

(6.11)

	

a = 2-(1+c)c > 0.

This guarantees that A»1 .
Let now consider the sum

(6.12)

where

A = P2(cs 1) I cs 2) )
[b(1)

b (2) ]r

	

r

The condition d >P 2 implies that (C (1) , C(2))-[br1), br 2) ] .
Let J I , e, be fixed, where the index denotes the number of its prime divisors,

and consider those b(1), b (2) , C (1) , cs 2) for which b,=(br 1) , b (2) ), Eµ =(cs 1) , cs 2) ) . If
d >P2 , then

{(1+E)t}µ - ((1-E)t) 2r-I
i .e .

1

	

(1á--a)µ

	

t2r-(I+µ)~
(1 -E)2r-(Itµ)

	

(1 -E)2r-I
whence

1 , [(1-E)t]2r-(I+µ),

i .e . I+µ--2r .
For fixed I and µ the number of br1) , b(2), C

S 1) , cs 2) that satisfy co((br 1) , b (2) ))=1,
C) ([Cs 1) , C (2)])=It is

(H)
1

	

(r(2 -l)112r l t) l
(

KIt

)

v2 (S-µ)1 12 S-µ )~

	

1!(r- 1)! 2 ' U!(ss µ)! 2

b(I) b(2)
Since	r "

	

t 2( "-S ) and H<t, K<t, therefore
cs1) cs 2)

(6.13)

	

«t2("-s)

	

<< tr-s+I .
B

	

I+µ=2r 1!(r -
ConsiderConsider now

(6 .14)

	

Zc = (Z (brI) br2)))

	

1	~~ [c (1) cs2)] .

Arguing as before, we have

r r	(t/H)I

	

(K/t) 2s
- µ

	

(e) .

	

(c
~c={H Z l!(r-l)l 211 µ- o µ)(s-µ)i2}-

By Stirling's formula

where

br1) b(2)

~a = a~2 C (1) Cs(2) '

1
1! (r - 1)! 2 < eXp(- S(1)+0 (log r»,

g(1) = llogl+2(r-I)log(r-1)-2r+1 .
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By differentiating, we see that the smallest value is achieved at 1=1 0 , where 10 is
the solution of I,=(r-I,)2 . We have easily that

g(l o ) = r log lo -r+0(~r) = rb log t-r+O(Cr) .

Since Hr(t/H)'--tr,

Z(1) < exp (r(1-S) log t-r+0(C)) .

We have similarly that

ZM < exp (-s81og t+0(s log log t)) .
Consequently
(6 .15)

	

Zc < exp ([r-6(r+ s)] log t+0(s log log t)) .

Let now consider the sum S(y, i) . This is equal to the number of solutions
of the equation

(6.16)

	

b2) cs 2) v -bi) c (1) u = i, bi) cs i) u - Y,
r

	

r

	

r

(uv, P 2)=1 ; in variable b ( I ) , b (2) , cá 1) , cá 2) , u, v . Let b ( i) , cái ) ( j=1, 2) be fixed ;
6=(b.1), br 2) ) ; a=(cá 1) cá2)) ; ~U) , f(t), d (j=1, 2) be defined by

c(i) _ ~(j) e

	

bf(') _ b(') ; d _ - P2	( c (1) c (2)) .s

	

>

	

- r

	

- [ b(1) b(2)]

	

s , s
r , r

If (6 .16) has a solution, then d Ii. Let i=4i1 . Dividing by d we reduce (6 .16) to

(6.17)

	

~(2)f(1)v-~(1)f(2)u = iI, (UV, P2) = 1 .

It has a solution if and only if (i 1 , ~(2)~11))=1 . The solutions u, v are of the forms

u = u o +l~(2) f(I), v = va +lá(1) f(2) (I = 0, 1, 2, ., .) .

To enumerate the I's for which (uv, P 2)=1, we sieve for primes pE01 2 . Since the
number y(p) of the solution of uv=0 (mod p) is 1 or 2, we get

P,U(1- Y(P)l = 1+0 (logtJ
On the previous assumptions (6 .16) has

J

s

y(b. I) ,b(.2))(

	

s ,
P2[Cs 1) , Cá 2) ] 11+0 (log (log(logtl +01()

solutions . O t denotes that the constant involved by the order term may depend on t .
Hence we have

(6.18) 'T *
aeI

	

S(Y, 0 = Y I 1+0(
s

)] G (b, 1) '
b
{2) ) •

	

1+Ot(1) .
i=1

	

P2

	

lOI t

	

[Cs , Cs ]

	

i1-sP2/d(j1,4(1)4(2))=1

18*
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Since

r

	

E
and -«	 as t > ~,

t

	

log t

(6.19)

Similarly, for the sum

(6.20)

we have

Since

P . ERDŐS AND 1. KÁTAI

d2 I1+0(
11
+o(1), if d P2 ,

1=
i1 5r 2 ~e

	

0,

	

if d

	

P2 ,
( i, ~(1) ~c2»=1

~

we have

def P2
** _ Z iS(y, i)

i=1

z*= Pti 1 1 + 0 ( logt )) (A2-Za)+o(p2 ~c)+Ot(1),

~* = P2 11+0(logt)) A2
+O(p2 (~`B+,Zc))+Ot(1) •

** = Y ~

	

~ E ~~

	

(b,(. 1),b : 2) )~

	

Pz
1 +O log t Z f C s1) csL>

~ ' d{
il~Id }

tü, ~(1) ~(2) =1

i15~ d i1= 2d2 11+o(~1)+o~ e2 ~
(=1, ~(1) ~cz))=1

for d ~P2 , we have, as earlier

**
= 2 I 1+0 11o tJ) A2+O(y(~B+Zc))+O,(1) •l

	

g

Consequently for S (1) defined in (6.4) we have

(6.21) Z(1)=2(P2,f*-Z**)=yll+O(lo
tl)A2+O(y(

Z8+~`c))-I-O`(1)~I

	

g
So, by (6 .21) and (6.5) we have

(ff (Y) -B1
E

A2 Y+B2y(2:B+Zc)+O(P2 Zz)+Ot (1),log t

where B1, B2 are absolute constants . Now by (6.10), (6 .13), (6.15) we get

zc < t -r /2A, Za -:: 1 .
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From (6.9) PL f2 << Aeo (r) , and so from (6.10), (6 .11),

Aeo (r ) «	
tog

t A2

Consequently

(6 .22)

	

-(y) - B log r A2.Y+O,(,) .

Let M(y) be the number of n--y, for which no one of n+1, . . ., n+P2 is
belonging to .4. Then, from (6.22)

(6.23)

	

M(y) B l 8
t y+0,(1) .

Since
{P I (n+1), . . ., P, (n+P2)} S- JP, n+l, . . ., P,n+P,P 2 },

we have immediately the following assertion .

THEOREM 8 . Let s > 0, 0 < 6 < 1, c be fixed so that

def
a=2-(1+c)8 >0,

t a large constant; r=[tó], s=[ctó] . Let °.A be the set of those integers n for which
there exist b r and cs so that

Let

Then

n - 0 (modPP2 cs) .
r

N(x) _ #{n --xj{n+1, . . ., n+PI P2}nw= o}.

N(x) -- B	
l 8 t '

where B is an absolute constant .

Hence we deduce easily Theorem 5 . Indeed, if n -0 (
PbP2

cs) , then
r

g(n) g(P,P2)+g(cs)-g(br) .

Let g(p)=p-ó . By choosing r=[P], s=[W], y<I,

g(cs)-g(br)'-
[(1+s)t] ó [(1 E) t) .5

-
tr-ó 1+e

- 11
E
}' clt7

(c, > 0 constant)
if e is sufficiently small .

Let PIP,-pl . . .p µ7k<P,P2Pµ+I • Then fk(0)=g(P,P2) . If we put t=pµ ,
we get immediately Theorem 5 .
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