On the Möbius function

By P. Erdös at Budapest and R. R. Hall at York

Introduction. In this paper we prove some results about the function

 $M(n, T) = \sum \left\{ \mu(d) : d | n, d \leq T \right\}.$

Let $\omega(n)$ denote the number of distinct prime factors of *n*. If we split the divisors of *n* into Sperner chains, and note that the contribution to |M(n, T)| from each chain is at most 1, we have

$$|M(n, T)| \leq {\omega(n) \choose [\omega(n)/2]} = o(2^{\omega(n)}),$$

moreover the inequality is best possible. If $n = p_1 p_2 \cdots p_{\omega}$ where $p_{r+1} > p_1 p_2 \cdots p_r$ for every *r* then

 $-1 \leq M(n, T) \leq 1$

for every T.

For almost all n, it is known [2] that

 $\max_{T} |M(n, T)| < A^{\omega(n)}$

for any fixed A > 3/e. We do not know if the constant 3/e is sharp: maybe A > 1 is sufficient. It seems certain that for almost all *n* the innocent looking inequality

 $\max |M(n, T)| \ge 2$

holds, but we are unable to prove it.

Theorem 1. For every $\varepsilon > 0$, there exists a T_0 such that for fixed $T > T_0$, the density of the integers n such that $M(n, T) \neq 0$ does not exceed ε . More precisely, this density is $\ll (\log T)^{-\gamma_0}$ where $\gamma_0 = 1 - (e/2) \log 2$.

This result suggests that in some suitable sense, M(n, T) is usually zero. One of us conjectured that for almost all n, we have

$$\sum \left\{ \frac{1}{T} \colon T \leq n, \, M(n, \, T) \neq 0 \right\} = o(\log n),$$

and this is a corollary, with quite a lot to spare, of the following result.

0075-4102/80/0315-0010\$02.00 Copyright by Walter de Gruyter & Co. **Theorem 2.** Let q be fixed, $q \ge 2$, u = q/q - 1 and $\beta = 0$ or 1 according as q > 2 or not. Then for almost all n, we have

$$\sum_{m \leq n} \frac{1}{m} |M(n,m)|^q \leq \psi(n) \ \{F(u)\}^{(q-1)\omega(n)} \ (\operatorname{loglog} n)^{\beta}$$

provided $\psi(n) \to \infty$ as $n \to \infty$. Here

$$F(u) = \frac{1}{2\pi} \int_{0}^{2\pi} |1 - e^{i\theta}|^{u} d\theta = \frac{2^{u}}{\sqrt{\pi}} \frac{\Gamma((u+1)/2)}{\Gamma((u+2)/2)}.$$

Remarks. Since

$$F(u) = \frac{1}{2\pi} \int_{0}^{2\pi} \left(2\sin\frac{\theta}{2} \right)^{u} d\theta \ge \frac{1}{2\pi} \int_{0}^{2\pi} 2^{u-1} (1 - \cos\theta) d\theta = 2^{u-1}$$

we have $\{F(u)\}^{(q-1)} \ge 2$ with equality if and only if q = 2. In particular

$$\sum_{m \leq n} \frac{1}{m} |M(n, m)|^2 \leq \psi(n) 2^{\omega(n)} \log \log n$$

for almost all *n*. Since the normal order of $\omega(n)$ is $\log \log n$, the corollary mentioned above follows.

Next, if $\{d_i, 1 \le i \le 2^{\omega(n)}\}$ are the squarefree divisors of *n* arranged in increasing order, since $M(n, m) = M(n, d_i)$ for $d_i \le m < d_{i+1}$ we deduce that

$$\sum_{i} |M(n, d_i)|^2 \log \frac{d_{i+1}}{d_i} \leq \psi(n) 2^{\omega(n)} \log \log n.$$

An immediate corollary is that

$$\min_{i} \log \frac{d_{i+1}}{d_i} \leq \left(\sum_{i} |M(n, d_i)|^2\right)^{-1} \psi(n) 2^{\omega(n)} \log \log n$$

Plainly

(1)
$$\sum_{i} |M(n, d_i)|^2 \ge 2^{\omega(n)-1}$$

(since $|M(n, d_i)|$ jumps ± 1 for every *i*). An old conjecture of Erdös [1] is that almost all integers have two divisors *d*, *d'* such that d < d' < 2d; this would follow from a small improvement of the above inequality (1).

Lemma 1. Let $\delta(T)$ denote the asymptotic density of the integers n with at least one divisor d in the interval [T, 2T]. Then

$$\delta(T) \ll (\log T)^{-\alpha} \quad where \ \alpha = 1 - \frac{1}{\log 2} \left(1 - \log \frac{1}{\log 2} \right).$$

Proof. Split the integers into two classes according as $\Omega_T(n) \leq \kappa \log \log T$ or not, where Ω_T counts the prime factors $\leq T$ of *n* according to multiplicity, and κ is to be chosen. For any $y \leq 1$, the number of integers $\leq x$ in the first class is

$$\leq y^{-\kappa \operatorname{loglog} T} \sum_{n \leq x} y^{\Omega_T(n)}$$

where the dash denotes that n has a divisor in [T, 2T]. This is

$$\leq (\log T)^{-\kappa \log y} \sum_{T \leq d \leq 2T} y^{\Omega_T(d)} \sum_{m \leq x/T} y^{\Omega_T(m)}.$$

Plainly *d* has at most one prime factor >T. So this is

$$\ll y^{-1} (\log T)^{-\kappa \log y} \sum_{T \leq d \leq 2T} y^{\Omega(d)} \frac{x}{T} (\log T)^{y-1} \ll x y^{-1} (\log T)^{2y-2-\kappa \log y}.$$

We choose $y = \kappa/2$, which is in order provided $\kappa \leq 2$. Hence the number of these integers does not exceed

$$x\kappa^{-1}(\log T)^{\kappa-2+\kappa\log 2/\kappa}$$

The number of class 2 integers up to x does not exceed

$$z^{-\kappa \log \log T} \sum_{n \le x} z^{\Omega_T(n)}$$

provided $z \ge 1$. This is

$$\ll x(\log T)^{z-1-\kappa \log z}$$

and we choose $z = \kappa$, so that we have to have $\kappa \in [1, 2]$. In fact we put $\kappa = 1/\log 2$ so that

$$\kappa - 2 + \kappa \log 2/\kappa = \kappa - 1 - \kappa \log \kappa = -\alpha$$
.

This completes the proof.

Lemma 1'. Let $\delta(T, \gamma)$ denote the asymptotic density of the integers n with at least one divisor d in the interval $[T, T \exp((\log T)^{\gamma})]$. Then for $0 \leq \gamma < 1 - \log 2$, we have

$$\delta(T, \gamma) \ll (\log T)^{-\alpha(\gamma)}$$
 where $\alpha(\gamma) = 1 - \frac{1 - \gamma}{\log 2} \left(1 - \log \frac{1 - \gamma}{\log 2} \right)$

In particular $\delta(T, \gamma) \rightarrow 0$ as $T \rightarrow \infty$ for each fixed γ in the range given.

Proof. We have

$$\delta(T, \gamma) \leq \delta(T) + \delta(2T) + \dots + \delta(2^{r}T)$$
 where $r = \left[\frac{(\log T)^{\gamma}}{\log 2}\right]$

and by Lemma 1, we have

$$\delta(T,\gamma) \ll (\log T)^{\gamma-\alpha}.$$

This is insufficient. However, we notice that if we follow through the proof of Lemma 1, with the wider interval, the factor $(\log T)^{\gamma}$ only appears in the treatment of the integers in class 1, since the divisor property of the integers in class 2 was not used. Thus a different choice of κ , namely $\kappa = (1 - \gamma)/\log 2$, is optimal in the new problem: and this gives the result stated.

Proof of Theorem 1. *Put* $H = \exp((\log T)^{\gamma})$. First of all, by Mertens' theorem, the density of integers with no prime factor $\leq H$ is $\ll (\log T)^{-\gamma}$. Now consider an integer *n* with at least one prime factor $\leq H$. Let $p_1 = p_1(n)$ be the least prime factor of *n* and let $n = p_1^r m, p_1 \not\mid m$. Then

$$M(n, T) = \sum_{\substack{d \mid n \\ d \leq T}} \mu(d) = \sum_{\substack{d \mid m \\ d \leq T}} \mu(d) + \sum_{\substack{d \mid m \\ p_1 d \leq T}} \mu(p_1 d) = M(m, T) - M(m, T/p_1).$$

Hence $M(n, T) \neq 0$ implies that *m*, and so *n*, has at least one divisor in the interval (T/H, T]. By Lemma 1', the density of such integers is $\ll (\log T)^{-\alpha(\gamma)}$. Therefore the density of integers for which $M(n, T) \neq 0$ is $\ll (\log T)^{-\gamma_0}$ where $\gamma_0 = \alpha(\gamma_0)$, or $\gamma_0 = 1 - \frac{e}{2} \log 2$. This is the result stated.

Lemma 2. Uniformly for real, non-zero t, for $x \ge \exp(1/|t|)$ and on any finite range $0 < u_0 \le u \le u_1$, we have that

$$\sum_{p \le x} \frac{1}{p} |1 - p^{it}|^u = F(u) \log\log x - F(u) \log^+ \frac{1}{|t|} + O(\log\log(3 + |t|)),$$

where

$$F(u) = \frac{1}{2\pi} \int_{0}^{2\pi} |1 - e^{i\theta}|^{u} d\theta = \frac{2^{u}}{\sqrt{\pi}} \frac{\Gamma\left(\frac{1}{2}(1+u)\right)}{\Gamma\left(\frac{1}{2}(2+u)\right)}$$

Proof. We may show as in [3] Lemma 4 that for any y in the range $2 \le y \le x$, we have

$$\sum_{y$$

where β is an absolute positive constant. If |t| > 1, we choose y such that

$$\log y = \frac{1}{\beta^2} \log^2(3 + |t|)$$

and make the trivial estimate

$$\sum_{p \le y} \frac{1}{p} |1 - p^{it}|^u \ll \operatorname{loglog} y \ll \operatorname{loglog}(3 + |t|).$$

If this y > x, we apply the trivial estimate to the whole sum. Next, if $|t| \le 1$, we set $\log y = 1/|t|$. In this case $y \le x$ automatically. We have

$$\sum_{p \le y} \frac{1}{p} |1 - p^{it}|^u \le \sum_{p \le y} \frac{1}{p} (|t| \log p)^u \ll (|t| \log y)^u = O(1)$$

and so we have

$$\sum_{p \le x} \frac{1}{p} |1 - p^{it}|^u = F(u) \log\log x - F(u) \log \frac{1}{|t|} + O(1)$$

as required.

Proof of Theorem 2. For n > 1, we have

$$f(n, t) = \sum_{d|n} \mu(d) d^{it} = -it \int_{0}^{n} M(n, z) z^{it-1} dz.$$

For $z \ge n$, we have M(n, z) = 0, so we can write

$$\frac{f(n, t)}{-it} = \int_{-\infty}^{\infty} M(n, e^s) e^{ist} ds.$$

We apply the Hausdorff-Young inequality for Fourier transforms, which gives

$$\left(\int_{-\infty}^{\infty} |M(n, e^{s})|^{q} ds\right)^{1/q} \leq \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} |t^{-1}f(n, t)|^{u} dt\right)^{1/u}$$

when $q \ge 2$ and u = q/q - 1. Since M(n, z) = M(n, [z]), we have

$$\sum_{m=1}^{n} \frac{1}{m} |M(n,m)|^{q} \leq 2 \int_{0}^{\infty} |M(n,z)|^{q} \frac{dz}{z},$$

and so if we define

$$\Delta(n, q) = \left(\sum_{m=1}^{n} \frac{1}{m} |M(n, m)|^{q}\right)^{1/q-1}$$

we have that

$$\Delta(n,q) \leq 2 \left(\int_{-\infty}^{\infty} |M(n,e^s)|^q ds \right)^{u/q} \leq \frac{1}{\pi} \int_{-\infty}^{\infty} |t^{-1}f(n,t)|^u dt.$$

Let \sum' denote summation restricted to integers *n* such that $\omega(n) > \frac{1}{2} \log \log x$. Then for y > 0,

$$\sum_{n\leq x}' y^{\omega(n)} \Delta(n,q) \leq \frac{2}{\pi} \int_0^\infty \sum_{n\leq x} y^{\omega(n)} |f(n,t)|^u t^{-u} dt,$$

since f is an even function of t. We split the range of integration according as $t \leq 1/\log x$ or not: call these integrals I_1 and I_2 . We consider I_2 first, and here we ignore the condition on $\omega(n)$. As in [3] Lemma 3 we have

$$\sum_{n \le x} y^{\omega(n)} |f(n, t)|^u \ll \frac{x}{\log x} \exp\left(y \sum_{p \le x} \frac{1}{p} |f(p, t)|^u\right)$$

uniformly for real t, and on any finite range $0 \le u \le u_1$. We have $1 \le u \le 2$, so we may apply lemma 2. We get

$$\sum_{n \le x} y^{\omega(n)} |f(n, t)|^u \ll \frac{x}{\log x} (t^* \log x)^{yF(u)} \log^{Ky} (3+t)$$

where K is an absolute constant and $t^* = t$ ($t \le 1$), $t^* = 1$ (t > 1). We restrict u and y by the conditions

(i) u > 1,

(ii)
$$yF(u) - u \ge -1$$
,

and we deduce that for fixed u and y,

$$I_2 \ll x (\log x)^{yF(u)-1} (\log \log x)^{\beta}$$

where $\beta = 0$ or 1, according as there is strict inequality in (ii) or not.

Journal für Mathematik. Band 315

17

Let us set y = 1/F(u), so that we may replace the above conditions by

(iii) $1 < u \leq 2$ or $2 \leq q < \infty$.

We have $I_2 \ll x (\log \log x)^{\beta}$, where $\beta = 0$ or 1 according as u < 2, or not. Now consider I_1 . By the arithmetic-geometric mean inequality, we have

$$|f(n, t)| \leq \prod_{p|n} t \log p \leq \left(\frac{t \log n}{\omega(n)}\right)^{\omega(n)}$$

and since we may assume $\omega(n) \ge 2 \ge u$ (by the definition of Σ') the integral is convergent. Indeed,

$$I_1 \leq \sum_{n \leq x}' \left(\frac{1/F(u)}{\omega(n)}\right)^{\omega(n)} (\log x)^{u-1} \ll x$$

since $F(u) \ge 1$ and $\{\omega(n)\}^{\omega(n)} > \log x$ for large x. Putting these results together, we have now proved that for fixed $q \ge 2$,

$$\sum_{\substack{n \leq x \\ n \leq x}} \{F(u)\}^{-\omega(n)} \Delta(n, q) \ll x \, (\operatorname{loglog} x)^{\beta}.$$

Let $\psi_1(n) \to \infty$ as $n \to \infty$. For all but o(x) integers n in this sum, we have

$$\Delta(n, q) \leq \psi_1(n) \{F(u)\}^{\omega(n)} (\operatorname{loglog} n)^{\beta}$$

and so this is true for almost all *n*: the number of $n \le x$ neglected by \sum' is o(x), by the well known result of Hardy and Ramanujan that $\omega(n)$ has normal order loglog *n*. Since $(q-1)\beta \ge \beta$, we deduce that for almost all *n*,

$$\sum_{m\leq n} \frac{1}{m} |M(n,m)|^q \leq \psi(n) \{F(u)\}^{(q-1)\omega(n)} (\operatorname{loglog} n)^{\beta},$$

which is the result stated.

References

[1] P. Erdös, One the density of some sequences of integers, Bull. American Math. Soc. 54 (1948), 685-692.
[2] R. R. Hall, A problem of Erdös and Kátai, Mathematika 21 (1974), 110-113.

[3] R. R. Hall, Sums of imaginary powers of the divisors of integers, J. London Math. Soc. (2) 9 (1975), 571-580.

Mathematical Institute of the Hungarian Academy of Sciences, Budapest

Department of Mathematics, University of York, Heslington, York, Y01 5DD, England

Eingegangen 10. April 1979