On the Möbius function

By P. Erdös at Budapest and R. R. Hall at York

Introduction. In this paper we prove some results about the function

$$
M(n, T)=\sum\{\mu(d): d \mid n, d \leqq T\}
$$

Let $\omega(n)$ denote the number of distinct prime factors of n. If we split the divisors of n into Sperner chains, and note that the contribution to $|M(n, T)|$ from each chain is at most 1 , we have

$$
|M(n, T)| \leqq\binom{\omega(n)}{[\omega(n) / 2]}=o\left(2^{\omega(n)}\right),
$$

moreover the inequality is best possible. If $n=p_{1} p_{2} \cdots p_{\omega}$ where $p_{r+1}>p_{1} p_{2} \cdots p_{r}$ for every r then

$$
-1 \leqq M(n, T) \leqq 1
$$

for every T.
For almost all n, it is known [2] that

$$
\max _{T}|M(n, T)|<A^{\omega(n)}
$$

for any fixed $A>3 / e$. We do not know if the constant $3 / e$ is sharp: maybe $A>1$ is sufficient. It seems certain that for almost all n the innocent looking inequality

$$
\max _{T}|M(n, T)| \geqq 2
$$

holds, but we are unable to prove it.
Theorem 1. For every $\varepsilon>0$, there exists a T_{0} such that for fixed $T>T_{0}$, the density of the integers n such that $M(n, T) \neq 0$ does not exceed ε. More precisely, this density is $\ll(\log T)^{-\gamma_{0}}$ where $\gamma_{0}=1-(e / 2) \log 2$.

This result suggests that in some suitable sense, $M(n, T)$ is usually zero. One of us conjectured that for almost all n, we have

$$
\sum\left\{\frac{1}{T}: T \leqq n, M(n, T) \neq 0\right\}=o(\log n)
$$

and this is a corollary, with quite a lot to spare, of the following result.

Theorem 2. Let q be fixed, $q \geqq 2, u=q / q-1$ and $\beta=0$ or 1 according as $q>2$ or not. Then for almost all n, we have

$$
\sum_{m \leqq n} \frac{1}{m}|M(n, m)|^{q} \leqq \psi(n)\{F(u)\}^{(q-1) \omega(n)}(\log \log n)^{\beta}
$$

provided $\psi(n) \rightarrow \infty$ as $n \rightarrow \infty$. Here

$$
F(u)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1-e^{i \theta}\right|^{u} d \theta=\frac{2^{u}}{\sqrt{\pi}} \frac{\Gamma((u+1) / 2)}{\Gamma((u+2) / 2)} .
$$

Remarks. Since

$$
F(u)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(2 \sin \frac{\theta}{2}\right)^{u} d \theta \geqq \frac{1}{2 \pi} \int_{0}^{2 \pi} 2^{u-1}(1-\cos \theta) d \theta=2^{u-1}
$$

we have $\{F(u)\}^{(q-1)} \geqq 2$ with equality if and only if $q=2$. In particular

$$
\sum_{m \leqq n} \frac{1}{m}|M(n, m)|^{2} \leqq \psi(n) 2^{\omega(n)} \log \log n
$$

for almost all n. Since the normal order of $\omega(n)$ is $\log \log n$, the corollary mentioned above follows.

Next, if $\left\{d_{i}, 1 \leqq i \leqq 2^{\omega(n)}\right\}$ are the squarefree divisors of n arranged in increasing order, since $M(n, m)=M\left(n, d_{i}\right)$ for $d_{i} \leqq m<d_{i+1}$ we deduce that

$$
\sum_{i}\left|M\left(n, d_{i}\right)\right|^{2} \log \frac{d_{i+1}}{d_{i}} \leqq \psi(n) 2^{\operatorname{\omega o(n)}} \log \log n .
$$

An immediate corollary is that

$$
\min _{i} \log \frac{d_{i+1}}{d_{i}} \leqq\left(\sum_{i}\left|M\left(n, d_{i}\right)\right|^{2}\right)^{-1} \psi(n) 2^{\omega(n)} \log \log n
$$

Plainly

$$
\begin{equation*}
\sum_{i}\left|M\left(n, d_{i}\right)\right|^{2} \geqq 2^{\omega(n)-1} \tag{1}
\end{equation*}
$$

(since $\left|M\left(n, d_{i}\right)\right|$ jumps ± 1 for every i). An old conjecture of Erdös [1] is that almost all integers have two divisors d, d^{\prime} such that $d<d^{\prime}<2 d$; this would follow from a small improvement of the above inequality (1).

Lemma 1. Let $\delta(T)$ denote the asymptotic density of the integers n with at least one divisor d in the interval $[T, 2 T]$. Then

$$
\delta(T) \ll(\log T)^{-\alpha} \quad \text { where } \alpha=1-\frac{1}{\log 2}\left(1-\log \frac{1}{\log 2}\right) .
$$

Proof. Split the integers into two classes according as $\Omega_{T}(n) \leqq \kappa \log \log T$ or not, where Ω_{T} counts the prime factors $\leqq T$ of n according to multiplicity, and κ is to be chosen. For any $y \leqq 1$, the number of integers $\leqq x$ in the first class is

$$
\leqq y^{-\kappa \log \log T} \sum_{n \leqq x}^{\prime} y^{\Omega_{T}(n)}
$$

where the dash denotes that n has a divisor in [T,2T]. This is

$$
\leqq(\log T)^{-\kappa \log y} \sum_{T \leqq d \leqq 2 T} y^{\Omega_{T}(d)} \sum_{m \leqq x / T} y^{\Omega_{T}(m)} .
$$

Plainly d has at most one prime factor $>T$. So this is

$$
\ll y^{-1}(\log T)^{-\kappa \log y} \sum_{T \leqq d \leqq 2 T} y^{\Omega(d)} \frac{x}{T}(\log T)^{y-1} \ll x y^{-1}(\log T)^{2 y-2-\kappa \log y}
$$

We choose $y=\kappa / 2$, which is in order provided $\kappa \leqq 2$. Hence the number of these integers does not exceed

$$
x \kappa^{-1}(\log T)^{\kappa-2+\kappa \log 2 / \kappa} .
$$

The number of class 2 integers up to x does not exceed

$$
z^{-\kappa \log \log T} \sum_{n \leqq x} z^{\Omega_{T}(n)}
$$

provided $z \geqq 1$. This is

$$
\ll x(\log T)^{z-1-\kappa \log z}
$$

and we choose $z=\kappa$, so that we have to have $\kappa \in[1,2]$. In fact we put $\kappa=1 / \log 2$ so that

$$
\kappa-2+\kappa \log 2 / \kappa=\kappa-1-\kappa \log \kappa=-\alpha .
$$

This completes the proof.
Lemma 1^{\prime}. Let $\delta(T, \gamma)$ denote the asymptotic density of the integers n with at least one divisor d in the interval $\left[T, T \exp \left((\log T)^{\gamma}\right)\right]$. Then for $0 \leqq \gamma<1-\log 2$, we have

$$
\delta(T, \gamma) \ll(\log T)^{-\alpha(\gamma)} \quad \text { where } \alpha(\gamma)=1-\frac{1-\gamma}{\log 2}\left(1-\log \frac{1-\gamma}{\log 2}\right)
$$

In particular $\delta(T, \gamma) \rightarrow 0$ as $T \rightarrow \infty$ for each fixed γ in the range given.
Proof. We have

$$
\delta(T, \gamma) \leqq \delta(T)+\delta(2 T)+\cdots+\delta\left(2^{r} T\right) \quad \text { where } r=\left[\frac{(\log T)^{\gamma}}{\log 2}\right]
$$

and by Lemma 1, we have

$$
\delta(T, \gamma) \ll(\log T)^{\gamma-\alpha}
$$

This is insufficient. However, we notice that if we follow through the proof of Lemma 1, with the wider interval, the factor $(\log T)^{\gamma}$ only appears in the treatment of the integers in class 1, since the divisor property of the integers in class 2 was not used. Thus a different choice of κ, namely $\kappa=(1-\gamma) / \log 2$, is optimal in the new problem: and this gives the result stated.

Proof of Theorem 1. Put $H=\exp \left((\log T)^{\gamma}\right)$. First of all, by Mertens' theorem, the density of integers with no prime factor $\leqq H$ is $\ll(\log T)^{-\gamma}$. Now consider an integer n with at least one prime factor $\leqq H$. Let $p_{1}=p_{1}(n)$ be the least prime factor of n and let $n=p_{1}^{r} m, p_{1} \nmid m$. Then

$$
M(n, T)=\sum_{\substack{d \mid n \\ d \leqq T}} \mu(d)=\sum_{\substack{d \mid m \\ d \leqq T}} \mu(d)+\sum_{\substack{d \mid m \\ p_{1} d \leqq T}} \mu\left(p_{1} d\right)=M(m, T)-M\left(m, T / p_{1}\right)
$$

Hence $M(n, T) \neq 0$ implies that m, and so n, has at least one divisor in the interval $(T / H, T]$. By Lemma 1^{\prime}, the density of such integers is $\ll(\log T)^{-\alpha(\gamma)}$. Therefore the density of integers for which $M(n, T) \neq 0$ is $\ll(\log T)^{-\gamma_{0}}$ where $\gamma_{0}=\alpha\left(\gamma_{0}\right)$, or $\gamma_{0}=1-\frac{e}{2} \log 2$. This is the result stated.

Lemma 2. Uniformly for real, non-zero t, for $x \geqq \exp (1 /|t|)$ and on any finite range $0<u_{0} \leqq u \leqq u_{1}$, we have that

$$
\sum_{p \leq x} \frac{1}{p}\left|1-p^{i t}\right|^{u}=F(u) \log \log x-F(u) \log ^{+} \frac{1}{|t|}+O(\log \log (3+|t|))
$$

where

$$
F(u)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1-e^{i \theta}\right|^{u} d \theta=\frac{2^{u}}{\sqrt{\pi}} \frac{\Gamma\left(\frac{1}{2}(1+u)\right)}{\Gamma\left(\frac{1}{2}(2+u)\right)} .
$$

Proof. We may show as in [3] Lemma 4 that for any y in the range $2 \leqq y \leqq x$, we have

$$
\sum_{y<p \leq x} \frac{1}{p} \left\lvert\, 1-p^{i t \mid u}=F(u) \log \left(\frac{\log x}{\log y}\right)+O\left(\frac{1}{|t| \log y}+(3+|t|) e^{-\beta \sqrt{\log y}}\right)\right.
$$

where β is an absolute positive constant. If $|t|>1$, we choose y such that

$$
\log y=\frac{1}{\beta^{2}} \log ^{2}(3+|t|)
$$

and make the trivial estimate

$$
\sum_{p \leqq y} \frac{1}{p}\left|1-p^{i t}\right|^{u} \ll \log \log y \ll \log \log (3+|t|)
$$

If this $y>x$, we apply the trivial estimate to the whole sum. Next, if $|t| \leqq 1$, we set $\log y=1 /|t|$. In this case $y \leqq x$ automatically. We have

$$
\sum_{p \leqq y} \frac{1}{p}\left|1-p^{i t}\right|^{u} \leqq \sum_{p \leqq y} \frac{1}{p}(|t| \log p)^{u} \ll(|t| \log y)^{u}=O(1)
$$

and so we have

$$
\sum_{p \leqq x} \frac{1}{p}\left|1-p^{i t}\right|^{u}=F(u) \log \log x-F(u) \log \frac{1}{|t|}+O(1)
$$

as required.

Proof of Theorem 2. For $n>1$, we have

$$
f(n, t)=\sum_{d \mid n} \mu(d) d^{i t}=-i t \int_{0}^{n} M(n, z) z^{i t-1} d z
$$

For $z \geqq n$, we have $M(n, z)=0$, so we can write

$$
\frac{f(n, t)}{-i t}=\int_{-\infty}^{\infty} M\left(n, e^{s}\right) e^{i s t} d s .
$$

We apply the Hausdorff-Young inequality for Fourier transforms, which gives

$$
\left(\int_{-\infty}^{\infty}\left|M\left(n, e^{s}\right)\right|^{q} d s\right)^{1 / q} \leqq\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|t^{-1} f(n, t)\right|^{u} d t\right)^{1 / u}
$$

when $q \geqq 2$ and $u=q / q-1$. Since $M(n, z)=M(n,[z])$, we have

$$
\sum_{m=1}^{n} \frac{1}{m}|M(n, m)|^{q} \leqq 2 \int_{0}^{\infty}|M(n, z)|^{q} \frac{d z}{z},
$$

and so if we define

$$
\Delta(n, q)=\left(\sum_{m=1}^{n} \frac{1}{m}|M(n, m)|^{q}\right)^{1 / q-1}
$$

we have that

$$
\Delta(n, q) \leqq 2\left(\int_{-\infty}^{\infty}\left|M\left(n, e^{s}\right)\right|^{q} d s\right)^{u / q} \leqq \frac{1}{\pi} \int_{-\infty}^{\infty}\left|t^{-1} f(n, t)\right|^{u} d t
$$

Let Σ^{\prime} denote summation restricted to integers n such that $\omega(n)>\frac{1}{2} \log \log x$. Then for $y>0$,

$$
\sum_{n \leqq x}^{\prime} y^{\omega(n)} \Delta(n, q) \leqq \frac{2}{\pi} \int_{0}^{\infty} \sum_{n \leqq x} y^{\omega(n)}|f(n, t)|^{u} t^{-u} d t
$$

since f is an even function of t. We split the range of integration according as $t \leqq 1 / \log x$ or not: call these integrals I_{1} and I_{2}. We consider I_{2} first, and here we ignore the condition on $\omega(n)$. As in [3] Lemma 3 we have

$$
\sum_{n \leqq x} y^{\omega(n)}|f(n, t)|^{u} \ll \frac{x}{\log x} \exp \left(y \sum_{p \leqq x} \frac{1}{p}|f(p, t)|^{u}\right)
$$

uniformly for real t, and on any finite range $0 \leqq u \leqq u_{1}$. We have $1 \leqq u \leqq 2$, so we may apply lemma 2. We get

$$
\sum_{n \leqq x} y^{\omega(n)}|f(n, t)|^{u} \ll \frac{x}{\log x}\left(t^{*} \log x\right)^{y F(u)} \log ^{K y}(3+t)
$$

where K is an absolute constant and $t^{*}=t(t \leqq 1), t^{*}=1(t>1)$. We restrict u and y by the conditions
(i) $u>1$,
(ii) $y F(u)-u \geqq-1$,
and we deduce that for fixed u and y,

$$
I_{2} \ll x(\log x)^{y F(u)-1}(\log \log x)^{\beta}
$$

where $\beta=0$ or 1 , according as there is strict inequality in (ii) or not.

Let us set $y=1 / F(u)$, so that we may replace the above conditions by
(iii) $1<u \leqq 2$ or $2 \leqq q<\infty$.

We have $I_{2} \ll x(\log \log x)^{\beta}$, where $\beta=0$ or 1 according as $u<2$, or not. Now consider I_{1}. By the arithmetic-geometric mean inequality, we have

$$
|f(n, t)| \leqq \prod_{p \mid n} t \log p \leqq\left(\frac{t \log n}{\omega(n)}\right)^{\omega(n)}
$$

and since we may assume $\omega(n) \geqq 2 \geqq u$ (by the definition of Σ^{\prime}) the integral is convergent. Indeed,

$$
I_{1} \leqq \sum_{n \leqq x}^{\prime}\left(\frac{1 / F(u)}{\omega(n)}\right)^{\omega(n)}(\log x)^{u-1} \ll x
$$

since $F(u) \geqq 1$ and $\{\omega(n)\}^{\omega(n)}>\log x$ for large x. Putting these results together, we have now proved that for fixed $q \geqq 2$,

$$
\sum_{n \leqq x}^{\prime}\{F(u)\}^{-\omega(n)} \Delta(n, q) \ll x(\log \log x)^{\beta} .
$$

Let $\psi_{1}(n) \rightarrow \infty$ as $n \rightarrow \infty$. For all but $o(x)$ integers n in this sum, we have

$$
\Delta(n, q) \leqq \psi_{1}(n)\{F(u)\}^{\omega(n)}(\log \log n)^{\beta}
$$

and so this is true for almost all n : the number of $n \leqq x$ neglected by Σ^{\prime} is $o(x)$, by the well known result of Hardy and Ramanujan that $\omega(n)$ has normal order $\log \log n$. Since $(q-1) \beta \geqq \beta$, we deduce that for almost all n,

$$
\sum_{m \leqq n} \frac{1}{m}|M(n, m)|^{q} \leqq \psi(n)\{F(u)\}^{(q-1) \omega(n)}(\log \log n)^{\beta},
$$

which is the result stated.

References

[1] P. Erdös, One the density of some sequences of integers, Bull. American Math. Soc. 54 (1948), 685-692.
[2] R. R. Hall, A problem of Erdös and Kátai, Mathematika 21 (1974), 110-113.
[3] R. R. Hall, Sums of imaginary powers of the divisors of integers, J. London Math. Soc. (2) 9 (1975), 571-580.

> Mathematical Institute of the Hungarian Academy of Sciences, Budapest

Department of Mathematics, University of York, Heslington, York, Y01 5DD, England

