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Paul Erdős

First I discuss some problems on the iteration of number theoretic

functions .

I . There are many attractive and amusing problems in this subject but

almost no definitive results . One of the best known conjectures in this

subject is an old conjecture of Catalan . Put

al (n) = a(n) - n, a(n) = E d,
dln

ak(n) = a1(ak-l(n))'

Catalan conjectured that the sequence (ak(n)}, k = 1,2, . . . is bounded for

every n, in other words it either leads to 1 or to a cycle . The

Lehmers, Guy, Selfridge and Wunderlich have a great deal of numerical

evidence about this conjecture ; Guy and Selfridge have good heuristic

evidence that the conjecture is probably false, in fact probably false for

almost all even numbers n . The computations of the Lehmers seem to

indicate that the conjecture is probably false for n = 276, but so far

no proof is in sight and I do not expect any breakthrough in the near (or

distant) future . I proved that for fixed k and almost all n

(1)

jecture .

(n k
ak(n) _ (1 +

o(1»l
n ' .

It is clear that (1) gives no help at all in deciding Catalan's con-

I do not see at all how to estimate an (n) or even a (log n] (n) .
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Guy and Wunderlich in a paper presented at this meeting investigated the

iterations of the summatort' function of the unitary divisors of n. A

divisor of n is unitary if (d,á) = 1 and s*(n) is the sum of the proper

unitary divisors . They do not come to any conclusion whether the sequence

of the iterates of s*(n) is likely to be bounded . When I heard of their

investigation I wanted to find a simpler function of slower growth about

whose iterates we really can prove boundedness .

	

I considered

w,(n) =n7 a,
plln P

wk(n) = wl (wk-l (n))

and conjectured that (wk (n)) k = 1,2, . . . is bounded. Unfortunately I

could prove nothing . Perhaps wk(n) = 1 for sufficiently large k, i.e .,

perhaps there are no cycles . I think the smallest solution of w 2 (n) = n

if it exists must be fairly large - observe that (w l (n),n) = 1 which

causes wk(n) to grow rather slowly . I could prove no analogy to (1) for

wk(n), for the iterations of s*(n) it is not hard to prove an analogue of

(1) . One more question about w l (n) which perhaps is not hopeless . Is it

true that the sequence w l (n), 1 < n < x, contains only o(x) distinct

numbers?

Further problems on iterations of number theoretic functions are

discussed in my paper "Some recent problems and results in graph theory,

combinatorial analysis, and number theory", Proc . Seventh Southeastern

Conference, Congresses Num XVII, 11-14 . Here I only want to mention a

problem which occasionally occupied me for nearly 50 years . Denote by

cp(n) = cpl(n) Euler`s cp function and let cpk(n) = cp(yk-l(n)) . Pillai

first investigated nearly 50 years ago the smallest integer g(n) for which

cpg(n) (n) = 1 . Pillai proved that
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(2) log n

	

log n
log 3

	

g (n)

	

log 2'

H . N . Shapiro a few years later took up the question independently and

besides rediscovering (2) also proved that g(n) essentially is an additive

function. More precisely he proved that if a and b are not both even

then g(a.b) = g(a) + g(b) - 1, g(a .b) = g(a) + g(b) + 1 otherwise . For a

long time I tried hard to prove that g(n)/log n has a, perhaps degenerate,

distribution function but I had absolutely no success . I proved that for

almost all n and fixed k > 2

(3)

	

cpk (n) _ (1 + o(1))y(n)(log log log n) -k+l .

But just as in (1) I can prove nothing if k can tend to infinity to-

gether with n, e .g., I have no idea how to estimate the smallest k = k(n)

for which, for almost all n,

cpk(n) < nl/2

	

or say

I could not even prove that

n
lim n log n £ g(m)n m

	

m=1

exists and I have no guess about its value . Denote by ga(n) the smallest

integer r for which cpr (n) < nof . I would not be surprised if for every

a, 0<Ce<1,

n
(4)

		

lim

	

1	 E g (m) = 0 .
n-»w n log n m=1 0

5

cpk(n) < n/log n .



In view of (3), (4) has a certain plausibility .

Shapiro denotes by Ak the set of integers m with g(m) = k. He

observes that the smallest member of Ak seems to be a prime, but states

that he cannot even prove that for every k there is a prime in A k. He

proves several interesting results on Ak . Perhaps I Ak+l 1 > IAkj holds for

every k . It would be interesting to obtain an asymptotic formula for log 'Ak"

Let Qn be the smallest prime which does not divide any of the cp k (n) . I am

sure that for all n, Q n/log n -+ 0, but have not proved it . I proved that

for almost all n, Q n/(log log n)k

	

for every k and I really do not

know anything more about Q n .

I can prove that to every a and I there is a k = k 0(e,n) so that

the upper density of the integers n for which cpk(n) has a prime factor,

p > ne is less than ~. But again I have no idea how many iterations are

needed until all prime factors p > exp(log n) 1/2 ), or say, p > log n

disappear. It is not impossible that after about [c log log n] iterations,

only small prime factors remain . More precisely let k(p,n) be the smallest

integer for which all prime factors of 9k(n) are < p . Perhaps for every

p > 3 (> 3?), k(p,n) = o(log n), or what is perhaps more likely : to every

e > 0 there is a p so that the density of the integers n for which

(P(m) is the greatest prime factor of m)

P(cp[e log n) (n)) > p

is less than e .

Put 6k(n) = a(ak_l(n)) . It seems certain that for every n

Um ak(n)
1/k

k - co

6
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but again I can prove nothing .

Richard K. Guy and Marion C . Wunderlich, Computing unitary aliquot sequences,

this volume . This paper has extensive references .

H . N . Shapiro, An arithmetic function arising from the cp function, Amer .

Math . Monthly 50(1943), 18-30 .

P . Erdős, On asymptotic properties of aliquot sequences, Math . Comput .

30(1976), 641-645 .

II . Now I discuss some older results of Selfridge and myself . In a previous

paper Selfridge and I investigated some number theoretic functions . Our

paper is not easily accessible, thus I repeat some of our results, but also

prove some new ones and state new problems .

We were led to our investigation by the following conjecture of Grimm ;

Let n+l, . . .,n+k be a sequence of consecutive composite numbers . Then there

always is a sequence of distinct primes pi satisfying p i le+i . Denote by

V(n,k) the number of distinct prime factors of IIi_1(n+i) . f0(n) is the

largest integer k for which V(n,k) > k, f I (n) is the smallest integer

k so that for every 1 < 2 < k, V(n,2) >_ R but V(n,k+l) = k . Grimm's

function f 2(n) is the largest k so that for each i, 1 < i < k there is

a pi ln+i, pi # pi if í l # i2 . P(m) is the greatest prime factor of m .
1

	

2
f3 (n) is the largest integer k so that all the primes P(n+i), 1 < i < k,

are distinct . f4 (n) is the largest integer k so that P(n+i) > i,

I > i > k and f 5 (n) is the largest integer k so that P(n+i) > k for every

1 < i < k. We observed that trivially
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(1)

	

fo (n) > f1 (n) > . . . > f5 (n)

and we conjectured that for infinitely many n all the inequalities in

(1) are strict. This seems quite difficult and we made no progress . We

could only prove that for every i and infinitely many n, fi (n) > fi+1 (n) '

As far as I know it is not known that

(2)

	

lim sup(f.(n) - fl(n)) _ ~ .
n - m

(2) is almost certainly true. On the other hand, I conjecture

(3) lim f,,(n)/fl(n) = 1 .
n-m

It seems certain that

(4)

	

lim sup fO(n)/f2(n) = lim sup £1(n)/f2(n)
n-»w

	

n- m

and (4) perhaps holds with lim instead of lim sup . I have no guess about

f2(n)/f3 (n) . We proved that

fo(n) < cn1/2/log n

1 -e
and observed that results of Ramachandra give f O (n) < n2

	

for some fixed

e > 0 and n > n 0(e) . We proved that for infinitely many n

(5)

	

fo(n) > cnl/e ,

	

f 1(n) > enl/e .
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In fact there is a misprint in the paper ; we prove (5) and state that we

proved the opposite inequality . To clear the matter up we will prove

	Theorem 1 . The inequalities

f o (n) > clnl/e,

	

fo(n) < c2nI/e,

	

fl(n) > c3nl/e,

	

fl (n) < c4nl/e

all have infinitely many solutions .

It is not impossible that for all n

(6)

	

cnl/e < fl (n) < fo (n) < c'nl/e .

Perhaps this conjecture is too optimistic . I am fairly sure though

that fo(n) < n(1/e)+e holds for all sufficiently large n .

We further proved that for infinitely many n,

f2(n) > exp(c l (log n log log n) 1/2 ), and we proved an upper bound for

f2(n), hardly better than f 2(n) = o(ne ) . Pomerance and Turk

proved that in fact f 2 (n) < exp(c 2(log n log log n)1/2) holds for infinitely

many n. Perhaps

exp(c l (log n log log n) 1/2) < f2 (n) < exp(c 2(log n log log n)1/2)

holds for all n . Perhaps the same holds for f 3(n) . We have no results

whether f i (n) = fi+l (n) holds for infinitely many n .

Now I state some new problems . Let f6 (n) be the largest integer k for

which

9



P(n+1) < . . . < P(n+k) .

Here I cannot even prove that f 6 (n) takes on arbitrarily large values,

although there is no doubt that this is true . Probably f6 (n) < (log n)c

holds for some not too large value of c .

Let us modify these functions by replacing p by p , denote by f i(n)

the modified fi (n) . Thus f 0 (n) is the largest integer k for which

hi=1(n+i) has k distinct divisors p i2 . None of our functions now tend

to infinity and it is easy to see that the density at of the integers n

for which f 0 (n) = t exists and is positive for every t ; further Et_0 at = 1 .

The same result holds for 1 < i < 6 . It is easy to see that f i (n) is un-

bounded, 0 < i < 6, in fact it easily follows from the prime number theorem

that for infinitely many n

(7)

	

f0
*
(n) > (2 + o(1))log n/log log n .

Probably (7) holds also for í3.(n),- 1 < i < 6, but at present I can only

prove that there is a c > 0 so that for infinitely many n

fi (n) > c log n/log log n .

Perhaps (7) is not far from being best possible, but I cannot even prove

that f*(n) < ne holds for every n if n > n0 (e) . I am in fact sure that

f0
*
(n) < (log n)c for some c .

Now we prove Theorem 1 . First we prove that for infinitely many n,

f0(n) < c2nl/e . If this would not hold, then for every c and every

sufficiently large x we would have for every x < n < 2x

10



Thus by (9) and (11)

(12)
t

	

i
E V(x + E Y •, Yi+l ) = x + z .
i=0

	

j=0

Now we count the contribution of the primes to the sum (12) . By (10) each

prime p < cx l/e contributes to each summand of (12) exactly one . Thus the

total contribution of these primes to the sum (12) is by (10) and the prime

number theorem at most

1 1

(8) f0(n) > cxl/ee

Put now 0<i< t

f 0 (x) = Y0 , f0(x+y1+ . . .+Yi) ~ Yi+l

where

(9)
t

	

t+l
x< Ey, < Ey . =x+z=

i=0 i=0

BY (8)

1- 1
(10) yi > cx1/e, t < c x e

(11)

By the definition of f 0(n) we have

V(x +
i
E Yj . Yi+1 ) = Yí+1'j=0



(13)

(14)

trr(cxWe) < lox
log x

The primes p > cx l/e each contribute at most

,2x+z, - [p] < x +p z +p

	

1

since the contribution of these primes p is at most the number of multiples

of p in (x+l, 2x+z) . Thus from (14) the contribution of all these primes

is less than (z < x since f o (n) = o(n)),

(15)

	

n(2x+z) + (x+z) E` 1/p

where in V cx l/e < p < 3x (we use z < x) . Now by the theorem of Mertens

we have for sufficiently large c

(16)

	

E' 1/p < 1 - 100
log x'

Thus from (13), (15) and (16) and rr(2x+z) < logxx we have

t

	

i
(17)

	

E V(x + E Yj, Yi+,) < lvgxx + (x+z)(1 - lógOx ) < x + z .
i=o

	

J=O

(17) contradicts (12) . This contradiction proves that f0 (n) < c2nl/e holds

for some sufficiently large c 2 for infinitely many n .

To complete the proof of Theorem 1 we now have to show that for infinitely

many n, f1 (n) > c3n1/e. The proof will be very similar to the previous one .

If f l (n) > c 3nl/e does not hold for some fixed c3 > 0 and infinitely many n

(in other words if fl(n)/ni/e 0),then for every s and every sufficiently

1 2



large x we would have for every x < n < 2x

Put now

where

(19)

From (18) and (19) we have

(20)

By the definition of fl (n) we have

(21)

Thus by (19) and (21)

(22)

0 < i < t', fl (n) < sx
l/e

x

f l (x) = Yp, fl(x+Y' +. . .+yi) = Yi+l

t'

	

t'+1
x< E y < E y =x+z'

i=0
i

i=0
i

1 - 1
yi < sxl/e9 t , > 1

x

	

e

i
V(x + Ey~, Y

j=O

	

j+1) - Yi+1'

t'

	

í
E V(x + E Yj' y~+1) x + z' .
i-0

	

j=o

Now we count the contribution of the primes p to the sum (22) . We

ignore the primes p < sxl -
1/e . By (19) the contribution of the primes

p > ex 1 - 1/e is exactly the number of times a multiple of p occurs in

(x,2x+z') . Thus the contribution of these primes is at least (in E' the
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summation is extended over the p satisfying ex l -1/e < p < 2x+z')

(23)
E'([2x+pz'1 - 1 1) > V (xpz' - 1) > (x+z')E' p - rr(3x) > x + z'

for sufficiently small e . In the last inequality of (23) we used the prime

number theorem and the theorem of Mertens .

the proof of our Theorem is complete .

This method should give that the average order of f 0(n) and f l (n)

is cxl -1/e , but we have not yet succeeded in proving this .

In another paper with Selfridge we investigate the following questions :

Let

(24) 0 < n < a l < . . . < at < n + k,

	

(al ,aj ) = 1,

	

1 < i < j < t .

We call (al, . . .,at} complete if for every s in n < s < n + t, (s,a i) > 1

for some i . Put

F(n,k) = max t,

	

f(n,k) = min t

max F(n,k) = F(k),

	

min F(n,k) = F(k),
n

	

n

max f(n,k) = f(k),

	

min f(n,k) = f(k)
n

	

n

14

(23) contradicts (22) and hence

where the maximum and minimum are taken with respect to all complete

sequences satisfying (24) . We investigated the following four functions ;

We observed that F(k), F(k) are trivially non-decreasing but f(6) = 3,



f(5) = 4 . We do not know if there are other values of n for which

f(n+l) < f(n) . This seems to us a curious and interesting question,

but unfortunately we cannot decide it . We stated that perhaps

(25)

	

f(k) - n(k) - - - as k - m.

(25) is almost certainly incorrect; this follows from the results of Hensley

and Richards and the prime k-tuple conjecture, but perhaps (25) can be

disproved without the prime k-tuple conjecture . Observe that every complete

sequence must contain all the integers n < m < n + k with p(m) > k, (p(m)

denotes the least prime factor of m) . Put n + i = aibi, i=l, . . .,k, where

P(a i ) < k and P(bi ) > k. It follows from a slight modification of the

prime k-tuple conjecture that for every k there are infinitely many values

of n for which the b,
L
are all primes and in fact there are infinitely

many values of n for which a i = i and the b i are all primes . It would be

of interest to find the smallest such n (say nk) for small values of k,

e .g ., k = 10 .

We stated on page 8 of our paper that we cannot improve

e-~kf(k) ? (1 + 0(1)) log k where y is Euler's constant . After our paper

was published we noticed that this is nonsense ; f(k) ? (1 + 0(1))	k
log k

immediately follows from the periodicity of f(n,k) and from

f(O,k) _ (1 + 0(1))
logk k

Put

min(F(n,k) - f(n,k)) = g(k) .
n

We conjecture that g(k) - m as k - m. We hope to investigate this attractive

conjecture (if we live) .
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III . Finally I report on some results V . Neumann-Lara and I found over the

last two years ; detailed proofs will be published elsewhere . First some

notations . G(n ;e) will denote a graph of n vertices and a edges . G(n)

a graph of n vertices and G e a graph of a edges . Let G be a directed

graph . Neumann-Lara defines dk(G), the dichromatic number of G, as the

smallest integer so that the vertex set of G can be decomposed into d k(G)

disjoint subsets none of which span a directed circuit . He is preparing a

paper on his function dk(G) . When I first visited Mexico City two years

ago we started to investigate a modification of this function. Let G be

(an undirected) graph . The dichromatic number dk (G) is the smallest integer

so that for any orientation of the edges of G one can always divide the

vertex set into dk(G) or fewer disjoint sets, none of which span a directed

circuit of G (in the given orientation) .

It is surprisingly difficult to determine d k(G) even for the simplest

graphs . We proved (k(n) is the complete graph of n vertices)

(1)

	

c 1n/log n < dk(k(n)) < c 2n/log n .

Probably there is no simple explicit formula d k(k(n)) . We could not even

prove that

(2)

	

dk(k(n))log n.n-1 - c .

Let f(n) be the smallest integer for which there is a G f(n) of dichromatic

number n. Perhaps then G f(n) must be a complete graph. This is easy to

prove for the ordinary chromatic number but we could not prove it for the

dichromatic number, and in fact we could not even prove that f(n)/n 2 tends to

infinity - we have no doubt that this is true .
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Let me state two of our most striking problems . Is it true that if

every vertex of G has degree at most n then dk (G) = o(n)? Perhaps in

fact dk (G) < cn/log n . Is it true that k(G) (the chromatic number of G) is

large then dk(G) is also large? More precisely put

h(2) = min dk (G)

where the minimum is extended over all G with k(G) = k . Determine or

estimate h(2) as accurately as possible. We could not even prove that

h(l) > 2 for Y > k0 . Is it true that for every k there is a g(2) so that

if dk(G) > g(R) and we direct the edges of G in an arbitrary way then there

always is an induced subgraph G 1 of G, which contains no directed circuit

satisfying k(G 1 ) > R ? Perhaps

(3)

	

g(R) < exp cR .

(3) holds for complete graphs - this easily follows from (1), but we know

nothing about the general case .

It is easy to see that if G has fewer than n 2 vertices and

k(G) = n then dk(G) < n. On the other hand, we proved d k(kn (n)) = n

where kn (n) is the complete n-partite graph with n vertices of each

color. In fact, we proved a somewhat stronger result . Denote by

V(G) the largest integer so that for every orientation of the edges of G

there is a set of at least V(G) vertices which does not span a directed

circuit . We proved V(kn (n)) = n + 1, which immediately implies dk(kn (n)) =n .

Denote by I(G) the largest independent set of G . Clearly

V(G) ? I(G) + 1 . We showed that there is a sufficiently large absolute

constant c so that for n > n 0 (c) there is a G(n) with I(G(n)) < c log n and

V(G(n)) = I(G(n)) + 1 .

1 8



Let G and H be two graphs . Following Harary, we denote by G[H]

the composition of G and H . Assume that k(G) _ 1, then for sufficiently

large m, dk(G(k(m)) = 1, k(m) is the complement of k(m), i.e . consists

of m isolated vertices .

Following G . Dirac we call a graph G vertex critical if the omission

of every one of its vertices decreases the dichromatic number ; it is edge

critical if the omission of every one of its edges decreases the dichromatic

number . k
n
(n) is vertex critical but not edge critical . The following extremal

problem might be of some interest . Denote by f d(e,n) the largest integer for

which there is a G e satisfying dk (Ge) = n. Ge is vertex critical and has a

subgraph G e , for which e - e' = fd(e,n), kn(n) has e = n 2(2), and we proved

that e' can be chosen to be less than n4- ~ (we do not know the best possible

value of 1) . Thus fd (e,n) = e(1 + 0(1)) is possible, but we cannot determine

the exact value of fd(e,n) . We do not know what happens if for fixed n, e

tends to infinity. Does fd (e,n) remain bounded? f(e,n) can be defined for

ordinary chromatic numbers too . We have no example where f(e,n) _ (1 + o(1))e

(n-+m) •

It is well known that for almost all G(n)

(4)

	

c1n/log n < k(G(n)) < c 2n/log n .

In other words (4) holds for all but o(2 (2) ) graphs G(n) . We proved that

(4) also holds for dk(G(n)) but with different values of the constants cl and

c 2 . We could not decide whether

dk(G(n)) _ (1 + o(1))k(G(n))

holds for almost all G(n) . It seems more likely that there is an absolute

constant c < 1 that for almost all G(n)
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dk(G(n))/k(G(n)) - c .

The proof of (4) for dk(G(n)) follows from the following lemma of

independent interest . Let a > 0, p > 0 be two suitably chosen constants .

Assume that G(n) is such that every induced subgraph of jp log n) vertices

contains at least a(log n) 2 edges (it is not hard to see that for sufficiently

large n almost all G(n) have this property) . Then

cl (a,p) for which

cl (a,p)n/log n < dk (G(n)) .

We showed that for every r and I there is a G whose girth is

greater than r and for which dk (G) > i (the girth of G is the length of

the smallest circuit) . We do not know the smallest n = n0 (r,R) for which

there is such a G(n), but the analogous problem for ordinary chromatic numbers

is also not solved .

Finally we proved that if f d(n,k) is the smallest integer for which

dk (G(n ; fd (n,k)) > k holds for every G(n ; fd(n,k)) . Then

2

	

2 - 1/k
fd (n,k) =

2(k-1) + 0(n

	

) .

The exponent 2 - 1/k is surely not best possible, but we do not know the

best possible value for the exponent .

To complete this paper, I just say a few words about a different gener-

alization of the notion of chromatic number . The acyclic chromatic number

of G is defined by B . Grünbaum as follows : A coloring of the vertices of

G is said to be acyclic if no two vertices of the same color are joined and

20
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if the subgraph induced by the vertices of any two colors is acyclic . The

acyclic chromatic number a(G) is the minimum value of k for which G has

an acyclic k-coloring . The acyclic chromatic number has also been

investigated by M. 0 . Albertson and D . M. Bergman .

Let m be the maximum degree of G . Denote by f(m) the largest value

of a(G), where the maximum is extended over all G whose maximum degree does

not exceed m. Grünbaum observed that f(m) < m 2 and wanted a better estimation

from above and below. I proved that f(m) > m/3 -e and conjectured that

f(m) = o(m 2 ) .

More generally define the acyclic chromatic number a r(G) of order r as

the minimum value of k for which G has a coloring with k colors so that

the union of any r color classes is acyclic. fr(m) is the largest value

of ar(G) where the maximum is extended over all G whose maximum degree does

not exceed m. Is it true that for every a there is an r for which

for every m > m0 (r,a), fr(m) > ma ?

B. Grünbaum, Acyclic colorings of planar graphs, Israeli . Math. 14(1973),

390-408 .

M. 0. Albertson and D. M. Berman, The acyclic chromatic number, Proc . Seventh

Conf. on Combínatorics, etc ., L.S .V. Baton Rouge 1976 . Cong . Num. XVII, 51-60 .
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