Problems and Results on Polynomials and Interpolation

P. ERDÖS

c/o Mathematics Department, Imperial College, London, U.K.
1 Problems on Polynomials 383
2 Problems on Interpolation 387
References 391

This is not a survey paper. I am somewhat out of touch with this subject and therefore would not dare to attempt such a paper. I shall just discuss some of the problems my collaborators and I have worked on for more than 40 years. In particular, I shall concentrate on problems where there has been some progress recently - apart from this I shall discuss a few of my favourite problems.

Most of the problems discussed are mentioned in [5], [6] or [7]. These papers all contain extensive references and many solved and unsolved problems. Many of the problems in [7] were settled by Pommerenke and Elbert (for references see [6]). First of all, I shall discuss problems on polynomials and then problems on interpolation.

1 Problems on Polynomials

Here are two of my favourite problems mentioned in [7] which are still open.

Let $f_{n}(z)=z^{n}+\ldots+a_{n}$ be a polynomial of degree n. Consider the lemniscate $\left|f_{n}(z)\right|=1$. Is it true that the length of this curve is
maximal if $f_{n}(z)=z^{n}-1$? I offer 100 dollars for the first proof or disproof. Perhaps a cleverly used variational technique will give a proof. Pommerenke has some inqualities for the length of the lemniscate, but they fall far short of the conjecture.

Let

$$
g(z)=\prod_{i=1}^{n}\left(z-z_{i}\right), \quad\left|z_{i}\right| \leqslant 1, i=1,2, \ldots, n .
$$

Denote by E_{g}, the set $\mid g(z) \leqslant 1 . A\left(E_{g}\right)$ denotes the area of E_{g}. Put $\epsilon_{n}=\min A\left(E_{g}\right)$, where the minimum is extended over all polynomials of degree $\leqslant n$ of the above kind. In [7] it was shown that $\epsilon_{n} \rightarrow 0(n \rightarrow \infty)$. We have no satisfactory upper or lower bounds for $\epsilon_{n} \cdot n^{\eta} \epsilon_{n}$ should tend to ∞ for every $\eta>0$ and perhaps the order of magnitude of ϵ_{n} is logarithmic, but we have no real evidence.

We conjectured also that a disk of radius λ / n, where $\lambda>0$ is absolute, can always be placed in $E_{\boldsymbol{g}}$. A much weaker result has been proved by Pommerenke. Our conjecture if true is best possible as $g(z)=z^{n}-1$ shows. For further related results see my paper with E. Netanyahu (see [6]).

Reference [6] contains several further problems on the geometry of polynomials. Here is one of them. Assume that $g(z)$ has the above form and that E_{g} has n components. Is it true that $A\left(E_{g}\right)$ is maximal when $g(z)=z^{n}-1$? Incidentally, as far as I know the area of $\left|z^{n}-1\right| \leqslant 1$ has not been determined, but I do not think that it should be very difficult to do so.

An old conjecture of mine stated: Let $\left|z_{n}\right|=1, n=1,2, \ldots$.. Put

$$
A_{n}=\max _{|z|=1}\left|\prod_{i=1}^{n}\left(z-z_{i}\right)\right| .
$$

Then

$$
\limsup _{n \rightarrow \infty} A_{n}=\infty .
$$

This conjecture has recently been proved by G. Wagner [14].
Hayman observed that there is a sequence with $\left|z_{n}\right|=1$ for which $A_{n} \leqslant n$ for all n and Linden [12] improved this to $A_{n}<n^{1-\alpha}$ for a positive α. It seems quite probable that there is a constant $c>0$
so that for infinitely many $n, A_{n}>n^{c}$ holds for every sequence with $\left|z_{n}\right|=1$. Perhaps it is always the case that

$$
\lim _{n \rightarrow \infty}\left(\prod_{i=1}^{n} A_{i}\right)^{1 / n}=\infty .
$$

Is it true that to every B there corresponds a function $\phi(B)$ so that

$$
\max _{n<m<n+\phi(B)} A_{m}>B ?
$$

If not, then there is the problem of estimating the smallest $f_{n}(B)$ for which

$$
\max _{n<m<n+f_{n}(B)} A_{m}>B .
$$

D. Newman and I considered long ago the following problem Let $\left|a_{k}\right|=1, k=0,1, \ldots$ Is it true that

$$
\max _{|z|=1}\left|\sum_{k=0}^{n-1} a_{k} z^{k}\right|>(1+\lambda) n^{1 / 2},
$$

for some absolute, positive constant λ ? This conjecture has recently been disproved by T. Körner [11]. The conjecture for the special case where $a_{k}= \pm 1, k=0,1,2, \ldots$, which we also put forward, is still open.

For random polynomials (i.e. the coefficients $a_{k}= \pm 1$ or $\left|a_{k}\right|=1$ are chosen at random) much more is true. Salem and Zygmund [13] proved that for all but $o\left(2^{n}\right)$ choices of $a_{k}= \pm 1$,

$$
c_{1}(n \log n)^{1 / 2}<\max _{|z|=1}\left|\sum_{k=0}^{n} a_{k} z^{k}\right|<c_{2}(n \log n)^{1 / 2}
$$

for some absolute $c_{1}, c_{2}>0$. Halasz [9] strengthened this result by proving that one has

$$
\max _{|z|=1}\left|\sum_{k=0}^{n} a_{k} z^{k}\right|=(1+o(1)) C(n \log n)^{1 / 2}
$$

for some absolute $C>0$.
Let $0<t<1$ and

$$
t=\sum_{k=1}^{\infty} \frac{\epsilon_{k}(t)}{2^{k}}
$$

be the binary expansion of t. Put

$$
f_{t}(z)=\sum_{k=0}^{\infty}\left\{2 \epsilon_{k}(t)-1\right\} z^{k}
$$

Then Salem and Sygmund and Halasz show that in fact their respective results hold for the partial sums of $f_{t}(z)$ for almost all t.

Salem and Zygmund at the end of their paper pose the following problem. Estimate

$$
M_{n}(t)=\max _{-1 \leqslant x \leqslant 1} \sum_{k=1}^{n}\left\{2 \epsilon_{k}(t)-1\right\} x^{k}
$$

as well as possible for almost all t. I observed that a result of Chung [2] implies that for almost all t

$$
M_{n}(t)<(1+o(1)) \frac{\pi}{2 \sqrt{ } 2}\left(\frac{n}{\log \log n}\right)^{1 / 2}
$$

infinitely often, and I further showed that for almost all t and every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} M_{n}(t) / n^{\frac{1}{2}-\epsilon}
$$

There is a big gap between the above results, which I can narrow somewhat, but a big gap still remains. The above results are referred to in the paper of Salem and Zygmund, but my proof of the latter result was never published.

Let $f_{n}(\theta)$ be a trigonometric polynomials of degree n satisfying $\left|f_{n}(\theta)\right| \leqslant 1,0 \leqslant \theta \leqslant 2 \pi$. I proved [4] that the length of the graph of $f_{n}(\theta)$ in $(0,2 \pi)$ is maximal for $\cos n \theta$. I stated that if $f_{n}(x)$ is a polynomial of degree $n,\left|f_{n}(x)\right| \leqslant 1,-1 \leqslant x \leqslant 1$, then the length of the graph of $f_{n}(x)$ in $(-1,+1)$ is maximal if $f_{n}(x)=T_{n}(x)$, the Chebyshev polynomial of degree n. This result is undoubtedly true, but I am unable to prove it.

The final problem: Let $f(z)=z^{n}+\ldots$ I noted that there is always a $z_{0} \in E_{f}$ for which $\left|f^{\prime}\left(z_{0}\right)\right| \geqslant n$, with equality for $f(z)=z^{n}$. Assume that E_{f} is connected. How large can $f^{\prime}(z)$ be for $z \in E_{f}$?

I conjectured that the maximum is assumed if $f(z)=T_{n}(c z)$, where c is the unique real number chosen so that the interior of $E_{T_{n}}$ consists of n components and the closures of two neighbouring ones have exactly one point in common. I mistakenly stated that the derivative in this case is less than $n^{2} / 2$, but, of course, it is less than $\left(n^{2} / 2\right)(1+o(1))$, The somewhat weaker inequality

$$
\left|f^{\prime}(z)\right|<\frac{\mathrm{e} n^{2}}{2}\left(z \in E_{f}\right)
$$

was proved by Pommerenke.

2 Problems on Interpolation

Let $-1 \leqslant x_{1}<\ldots<x_{n} \leqslant 1$ and denote by $l_{k}(x)$ the fundamental polynomial of Lagrange interpolation, i.e.

$$
l_{k}\left(x_{k}\right)=1, l_{k}\left(x_{i}\right)=0 \text { for } 1 \leqslant i \leqslant n, i \neq k
$$

Nearly 50 years ago S. Bernstein conjectured that

$$
\min _{-1 \leqslant x_{1}<\ldots<x_{n} \leqslant 1-1 \leqslant x \leqslant 1} \max _{k=1} \sum_{k=1}^{n}\left|l_{k}(x)\right|
$$

is assumed if all the $n+1$ maxima in $(-1,1)$ of

$$
\sum_{k=1}^{n}\left|l_{k}(x)\right|
$$

are the same and I conjectured that the smallest of these $n+1$ maxima is largest when they are all equal.

These conjectures were recently proved in a series of remarkable papers by Kilgore [10], De Boor and Pincus [3] and Bratman [1].

I stated in previous papers the following theorem. Let
$x_{1}{ }^{(2)} x_{2}^{(2)}$
be a point group; all the $x_{i}^{(n)}, n=1,2, \ldots, 1 \leqslant i \leqslant n$, are in $(-1,+1)$ and the $x_{i}^{(n)}, 1 \leqslant i \leqslant n$, are distinct. Then there is a continuous function $f(x)$ so that the sequence of Lagrange interpolation polynomials

$$
\left(L_{n} f\right)(x)=\sum_{k=1}^{n} f\left(x_{i}^{(n)}\right) l_{i}^{(n)}(x)
$$

diverges for almost all x. I now feel that my statement was a little "optimistic" and that there were gaps in my proof. In any case, Vértesi and I now have a complete proof which will appear soon in Acta Hungarica.

I also stated that there is a point group $\left\{x_{i}^{(n)}\right\}$ so that for every continuous function $f(x)$ there is a point $x_{0},-1<x<1$, so that

$$
\left(L_{n} f\right)\left(x_{0}\right) \rightarrow f\left(x_{0}\right), \limsup _{n \rightarrow \infty} \sum_{i=1}^{n}\left|l_{i}^{(n)}\left(x_{0}\right)\right|=\infty .
$$

In other words, $\left(L_{n} f\right)(x)$ cannot diverge simultaneously at all points where divergence is possible. Vértesi and I tried to work out a proof of this, but unfortunately we failed. Thus at present it is safer to treat this "result" only as a conjecture.

Is it true that there is a point group $\left\{x_{i}^{(n)}\right\}$ so that for every x_{0},

$$
\limsup _{n \rightarrow \infty} \sum_{i=1}^{n} l_{i}^{(n)}\left(x_{0}\right)=\infty,
$$

but for every continuous function $f(x)$ there is a y_{0} so that

$$
\left(L_{n} f\right)\left(y_{0}\right) \underset{n}{ } f\left(y_{0}\right) ?
$$

This would be a most interesting result, if true. Unfortunately, I cannot prove it.

Szabados and I [8] proved that there is an absolute constant $c>0$ so that, for $-1 \leqslant x_{1}<\ldots<x_{n} \leqslant 1$,

$$
\sum_{i=1}^{n} \int_{-1}^{1}\left|l_{i}(x)\right| \mathrm{d} x>c \log n
$$

The best value of c is not known. No doubt the roots of $T_{n}(x)=0$, where $T_{n}(x)$ is the nth Chebyshev polynomial, give asymptotically the best value of c, but this has not been proved.

I stated that, for every point group and for almost all x and infinitely many n,

$$
\sum_{i=1}^{n}\left|l_{i}(x)\right|>c \log n
$$

This is certainly true, but the proof I had in mind was incomplete. Vértesi and I hope to have a completely satisfactory proof soon. It is perhaps true that one can take any $c<2 / \pi$ and if so this would be best possible.

There are several other statements in some of my older papers which I should try to clear up before I "leave". The most important one is the following: G. Grunwald and I "proved" in a paper of ours that if the point group $\left\{x_{i}^{(n)}\right\}$ has the $x_{i}^{(n)}$ at the roots of $T_{n}(x)$ then there is a continuous function $f(x)$ so that

$$
\frac{1}{n} \sum_{k=1}^{n}\left(L_{k} f\right)(x)
$$

diverges everywhere. In fact our proof only gives the weaker result where the summands are replaced by their moduli. I have often tried to prove our earlier "result", but so far without success. Perhaps a proof will be difficult since I have shown that the arithmetic means of the $\left(L_{k} f\right)(x)$ certainly behave much more regularly than the $\left(L_{n} f\right)(x)$ themselves. G. Grunwald and Marcinkiewicz proved that for any $h(n) \underset{n}{\rightarrow \infty}$ there is a continuous function $f(x)$ so that for every x,

$$
\left(L_{n} f\right)(x)>\frac{\log n}{h(n)}
$$

infinitely often. On the other hand, I proved that for every continuous function $f(x)$,

$$
\frac{1}{n} \sum_{k=1}^{n}\left(L_{k} f\right)(x)=o(\log \log n)
$$

Therefore, taking arithmetic means clearly has a smoothing effect. I discovered the error in our earlier "proof" only after proving the last result above.

Marcinkiewicz proved that if the point group comes from the zeros of the polynomials $U_{n}(x)=T_{n+1}^{\prime}(x)$, then for every continuous function $f(x)$ and every x_{0} there is a subsequence $\left(n_{i}\right)$ so that $\left(L_{n_{i}} f\right)\left(x_{0}\right) \vec{i} f\left(x_{0}\right)$. For Fourier series the analogous result that there is a subsequence of the partial sums which converges to $f\left(x_{0}\right)$ is a classical result of Fejér. Turán and I proved a similar result
when the zeros of $U_{n}(x)$ are replaced by those of $T_{n}(x)$, and $x_{0} \neq$ $\cos (p / q) \pi$ with $p, q \equiv 1(\bmod 2)$. I proved that if x_{0} is such an exceptional point, there is a continuous function $f(x)$ for which $\left|\left(L_{n} f\right)\left(x_{0}\right)\right| \vec{n}_{n}$. This is perhaps surprising since it was thought that the Lagrange interpolation polynomials based on the zeros of the $T_{n}(x)$ behaved similarly to the partial sums of the Fourier series. In fact, I claimed in my paper that for every $\alpha,-\infty \leqslant \alpha \leqslant \infty$, there is a continuous function $f(x)$ for which $f\left(x_{0}\right) \neq \alpha$ and $\left(L_{n} f\right)\left(x_{0}\right) \vec{n} \alpha$. My oversight was discovered by Schoenberg and in the correction I published I showed that my original proof gave the weaker result $\left|\left(L_{n} f\right)\left(x_{0}\right)\right|{ }_{n}{ }^{\infty}$.

In an addendum to the correction I claimed the following much stronger theorem: Let $x_{0}=\cos (p / q) \pi$ with $p, q \equiv 1(\bmod 2)$ and let S be an arbitrary closed set. Then there is always a continuous function $f(x)$ so that the set of limit points of $\left(L_{n} f\right)\left(x_{0}\right)$ is S. I never published a proof. I feel I will do this if three conditions are fulfilled: (1) I have time, i.e. I do not "leave" too soon; (2) I have enough energy; (3) my proof was correct and I can reconstruct it. I am optimistic enough to believe that (1) and (2) will more or less be fulfilled, but if I cannot fulfil (3) soon I shall withdraw my claim.

Turan asked the following question. Is it true that for an arbitrary point group and a continuous function $f(x)$, the set of x where $\left(L_{n} f\right)(x)$ converges to a value different from $f(x)$ is "small"presumably of measure 0 ? I hope I can prove this; in fact, though this set may be of measure 0 it can have the power of the continuum.

To conclude, I restate a conjecture published in [5]. Is it true that to every A there is an $\epsilon>0$ so that if $n>n_{0}(\epsilon)$, then for every $-1 \leqslant x_{1}<\ldots<x_{n} \leqslant 1$ there is a set $y_{1} \ldots, y_{n},\left|y_{i}\right| \leqslant 1$, so that every polynomial $p_{m}(x)$ of degree $m<(1+\epsilon) n$ for which $p_{m}\left(x_{i}\right)=y_{i}$ holds for at least $(1-\epsilon) n$ values of i satisfies

$$
\max _{-1 \leqslant x \leqslant 1}\left|p_{m}(x)\right|>A .
$$

This conjecture, if true, clearly strengthens the classical theorem of Faber; in his theorem $m=n-1, \epsilon=0$.

A final note: many problems are contained in the posthumous paper of P. Turán, "Some open problems in the theory of approximation", Mat. Lapok 25 (1974) 21-75. This paper is written in Hungarian, but will be translated soon.

References

1. L. Bratman, On polynomial and rational projections in the complex plane, SIAM. J. Numer. Math. (to appear). (See also a forthcoming paper of A. Pincus, Minimal norm interpolation on the unit circle.)
2. K. L. Chung, On the maximum partial sums of independent random variables Trans. Amer. Math. Soc. 64 (1948) 205-233.
3. C. De Boor and A. Pincus, Proof of the conjectures of Bernstein and Erdös convering the optimal modes for polynomial interpolation J. Approx. Theory 24 (1978) 289-303.
4. P. Erdös, An extremum problem concerning trigonometric polynomials, Acta Litt. Sci. Szeged 9 (1939) 113-115. (See also a forthcoming paper by J. Szabados, on some extremum problems for polynomials.)
5. P. Erdös, Problems and results on the convergence and divergence properties of the Lagrangian interpolation polynomials, Mathematica, 10, (33), 1(1963) 65-73. (Lecture at Cluj meeting, 1967.)
6. P. Erdös, Extremal problems on polynomials, in "Approximation Theory II", 347-355. Academic Press, New York, 1976. (Conference at Austin, Texas.)
7. P. Erdös, F. Herzog and G. Piranian, Metric properties of polynomials, J. d'Analyse Math. 6 (1958) 125-148.
8. P. Erdös and J. Szabados, On the integral of the Lebesgue function of interpolation, Acta Math. Acad. Sci. Hungar. 32 (1978) 191-195.
9. G. Halasz, On a result of Salem and Zygmund concerning random polynomials, Studia Sci. Math. Hungar. 8 (1973) 369-377.
10. T. A. Kilgore, A characterisation of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory 24 (1978) 273-288.
11. T. Körner, On a polynomial of Byrnes, Bull. Lond. Math. Soc. (to appear).
12. C. Linden, The modulus of polynomials with zeros on the unit circle, Bull. Lond. Math. Soc. 9 (1977) 65-69.
13. R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954) 245-301.
14. G. Wagner, On a problem of Erdös in diophantine approximation, Bull. Lond. Math. Soc. (to appear).
