Proof of a conjecture of Offord

Paul Erdös

Mathematical Institute of the Hungarian Academy of Sciences, Real tanoda U. 13-15, Budapest V
(MS received 8 July 1977. Revised MS received 12 November 1979)

Synopsis

If $z_{1}, z_{2} \ldots z_{n}$ are complex numbers satisfying $\left|z_{i}-z_{j}\right| \geqq 1$ for all i, j then the number of the 2^{n} sums $\sum_{1}^{n} \varepsilon_{i} z_{i}$, where $\varepsilon_{i}= \pm 1$, which lie in any circle of radius r cannot exceed $\alpha_{r} 2^{n} / n^{3 / 2}$ where α_{r} depends only on r.

Offord told me the following conjecture (for earlier references see $[\mathbf{1}, \mathbf{3}, 4]$). Let z_{1}, \ldots, z_{n} be n complex numbers satisfying

$$
\begin{equation*}
\min _{1 \leqq i<j \leqq n}\left|z_{i}-z_{i}\right| \geqq 1 . \tag{1}
\end{equation*}
$$

Consider the 2^{n} sums

$$
\sum_{i=1}^{n} \varepsilon_{i} z_{i}, \quad \varepsilon_{i}= \pm 1
$$

But before stating our results it is convenient to define the random sums explicitly. The Radamacher functions are periodic functions of period 1 defined as follows

$$
\begin{aligned}
& r_{1}(t)= \begin{cases}+1 & 0 \leqq t<\frac{1}{2} \\
-1 & \frac{1}{2} \leqq t<1\end{cases} \\
& r_{n}(t)=r_{1}\left(2^{n} t\right) .
\end{aligned}
$$

So if we set $\varepsilon_{n}=r_{n}(t)$ we obtain automatically a sequence of plus and minus signs. These can equally be determined by expanding the number t in the binary scale and if the i th place is 1 we put $\varepsilon_{i}=1$, if zero $\varepsilon_{i}=-1$. The above sum can now be written as

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i}(t) z_{i} \tag{2}
\end{equation*}
$$

Let C_{r} be any circle of radius r. Then the number of sums (2) which are in C_{r} is less than

$$
\begin{equation*}
\alpha_{r} 2^{n} / n^{\frac{3}{2}} \tag{3}
\end{equation*}
$$

where α_{r} is a constant which depends only on r. We are going to prove this conjecture in a slightly sharper form. The proof will be very similar to a proof of Sárközy and Szemerédi [5].

I have just learnt that some time ago, Halász independently proved similar and in some sense more general results [2]. Put $z_{i}=i, 1 \leqq i \leqq n$. It is easy to see (by the central limit theorem) that there are $c_{1} 2^{n} / n^{\frac{3}{2}}$ sums (2) which are equal, also it is easy to see that the interval of length r and centre $\frac{1}{2}\binom{n+1}{2}$, contains $c_{2} r 2^{n} / n^{\frac{3}{2}}$ sums of the form (2) [2]. I conjecture that this example is essentially best possible, i.e. I conjecture $\alpha_{r}<c_{3} r$. More precisely denote by $f\left(C_{r} ; z_{1}, \ldots, z_{n}\right)$ the number of sums (2) which are in the interior of C_{r}. Define

$$
F(n ; r)=\max f\left(C_{r} ; z_{1}, \ldots, z_{n}\right)
$$

where the maximum is extended over all circles of radius r and all $\left\{z_{i}\right\}$ satisfying (1). I first of all prove the following:

Theorem 1. If $r \geqq \frac{1}{2}$

$$
F(n ; r)<10^{5} r^{2} 2^{n} / n^{\frac{3}{2}} .
$$

As stated before, I conjecture that in Theorem $110^{5} r^{2}$ can be replaced by $c_{3} r$. Perhaps the maximum $R(n ; r)$ is obtained if $z_{i}=i$ and the centre of C_{r} is $\frac{1}{2}\binom{n+1}{2}$ [2]. The constant 10^{5} in our Theorem could be greatly reduced but since I cannot obtain the best possible result I do not try.

It is easy to see that every C_{r} can be covered by fewer than $100 r^{2}$ circles of radius $\frac{1}{2}$. Thus to prove our Theorem we only have to prove

$$
\begin{equation*}
F\left(n ; \frac{1}{2}\right)<10^{3} 2^{n} / n^{\frac{3}{2}} . \tag{4}
\end{equation*}
$$

We clearly can assume without loss of generality that at least half the z 's are in the first quadrant. We can also assume, for convenience, and again without loss of generality, that there are an even number of these z 's satisfying

$$
\begin{equation*}
1 \leqq\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq \ldots \leqq\left|z_{2 m}\right| m \geqq n / 4 . \tag{5}
\end{equation*}
$$

If (4) does not hold then there is a circle $C_{\frac{1}{2}}$ so that at least

$$
\begin{equation*}
10^{3} 2^{2^{2 m}} / n^{\frac{3}{2}}>2.10^{2} 2^{2 m} /(2 m)^{\frac{3}{2}} \tag{6}
\end{equation*}
$$

sums $s(t)=\sum_{i=1}^{2 m} r_{i}(t) z_{i}$ are in $C_{\frac{1}{2}}$ (we of course obtain $C_{\frac{1}{2}}$ by translating out $C_{\frac{1}{2}}$ by $\left.-\sum_{i=1}^{n-2 m} r_{2 m+i} z_{2 m+i}\right)$.
Now consider the sums

$$
\sigma(t, k)=s(t)-r_{k}(t) z^{k} .
$$

Each such sum is determined by a sequence $\left\{\eta_{i}\right\}$ where

$$
\eta_{i}= \begin{cases}r_{i}(t) & i<k \\ r_{i+1}(t) & i \geqq k .\end{cases}
$$

We shall show that all these sums are distinct. Let $\sigma\left(t_{1}, k_{1}\right)$ and $\sigma\left(t_{2}, k_{2}\right)$ be any two sums. First if $k_{1}=k_{2}=k$ and $r_{k}\left(t_{1}\right)=r_{k}\left(t_{2}\right)$, then clearly $s\left(t_{1}\right)$ and $s\left(t_{2}\right)$ must be distinct in the sense that they are derived from different sequences $\left\{\eta_{i}\right\}$ (although
they could have the same complex values). Unless both these conditions are satisfied we show that $\sigma\left(t_{1}, k_{1}\right)$ and $\sigma\left(t_{2}, k_{2}\right)$ have different complex values and thus come from different sequences $\left\{\eta_{i}\right\}$. Since by hypothesis the sums $s\left(t_{1}\right)$ and $s\left(t_{2}\right)$ lie in the same C_{1}

$$
\left|\sigma\left(t_{1}, k_{1}\right)-\sigma\left(t_{2}, k_{2}\right)\right|>\left|r_{k_{1}}\left(t_{1}\right) z_{k_{1}}-r_{k_{2}}\left(t_{2}\right) z_{k_{2}}\right| \geqslant 1 .
$$

Now if $k_{1}=k_{2}$ the first term in the second member is $2\left|z_{k}\right| \geqq 2$ since $r_{k}\left(t_{1}\right) \neq r_{k}\left(t_{2}\right)$ and if $k_{1} \neq k_{2}$ then it exceeds $\left|z_{k_{1}}-z_{k_{2}}\right|$ or $\left|z_{k_{1}}+z_{k_{2}}\right|$ as the case may be. The first is not less than 1 by (1) and the second because all the z 's are in the first quadrant. This completes the proof that the two sums $\sigma\left(k_{1}, t_{1}\right)$ and $\sigma\left(k_{2} t_{2}\right)$ are distinct.

Consider the sums

$$
\begin{align*}
& s(t)-r_{k}(t) z_{k}=\sum_{\substack{i=1 \\
i \neq k}}^{2 m} r_{i}(t) z_{i} \quad k \leqq m \tag{7}\\
&\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq \ldots \leqq\left|z_{m}\right| \leqq \ldots \leqq\left|z_{2 m}\right| .
\end{align*}
$$

The number of sums (7) is by (6) greater than $10^{2} 2^{2 m} / \mathrm{m}^{\frac{1}{2}}$. There are at least $10^{2} 2^{m} / m^{\frac{1}{2}}$ of these sums which coincide in their first m summands. If we write

$$
A=\left\{r_{i}(t) ; r_{i}(t)=1, m+1 \leqq i \leqq 2 m\right\}
$$

then A is a subset of a set of size m, and as we have just shown there are $10^{2} 2^{m} / \mathrm{m}^{\frac{1}{2}}$ distinct subsets A. Now a theorem of mine states that if we are given a set S of t objects and a family of L subsets of S where L is greater than the sum of the r greatest binomial coefficients $\binom{t}{i} o \leqq i \leqq t$, then there are two of these subsets such that one contains the other and their difference has at least r elements. Now by a simple computation

$$
10^{2} 2^{m} / m^{\frac{1}{2}}>3\left(\left[\begin{array}{c}
u \\
\frac{u}{2}
\end{array}\right]\right), \quad u=m
$$

thus $10^{2} 2^{m} / m^{\frac{1}{2}}$ is certainly greater than the sum of the three largest binomial coefficients $\binom{m}{i}$. Thus there are two sums (7) $s_{h_{1}}-z_{1}$ and $s_{h_{2}}-z_{2}$ which coincide in their first m summands and one of them say $s_{i 1}-z_{1}$ has at least three extra summands with $\varepsilon_{i}=+1$. Now since $\left|s_{i 1}-s_{i 2}\right| \leqq 1 \leqq\left|z_{m}\right|$ we have

$$
\left|\left(s_{h_{1}}-z_{1}\right)-\left(s_{i_{2}}-z_{2}\right)\right| \leqq \leqq\left|z_{m}\right| .
$$

On the other hand the extra summands with $\varepsilon_{i}=+1$ give $\left(\left|z_{i}\right| \leqq\left|z_{m / 2}\right|\right.$ for $m \geqq i>\left[\frac{m}{2}\right]$ and the z_{i} are all in the same quadrant)

$$
\left|\left(s_{h_{1}}-z_{1}\right)-\left(s_{k_{2}}-z_{2}\right)\right| \geqq 3 \sqrt{ } 2\left|z_{m}\right|
$$

an evident contradiction, which proves our Theorem.

Paul Erdös

The same argument gives that if the z_{i} are vectors in k dimensional space satisfying (1) then the number of summands (2) in a sphere of radius C_{r} is less than $c 2^{k} r^{2 k} 2^{n} / m^{\frac{3}{2}}$.

It is not clear to me what happens if the vectors z_{i} are in Hilbert space. At the moment I cannot even prove that only $o\left(2^{n}\right)$ sums (2) can be in the interior of C_{r}.

References

1 P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 5 (1945), 898-902.
2 G. Halász, Estimates for the concentration function of combinatorical number theory and probability. Period. Math. Hungar. 8 (1977), 197-211.
3 J. H. van Lint, Representation of O as $\sum_{k=-N}^{N} \varepsilon_{k} k$, Proc. Amer. Math. Soc. 18 (1967), 182-184.
4 D. K. Kleitman, On a lemma of Littlewood and Offord on the distribution of linear combination of vectors, Advances in Math. 5 (1970), 115-117.
5 A. Sárközy and E. Szeméredi, Über ein Problem von Erdös und Moser, Acta Arithmetica 11 (1965-66), 205-208.
(Issued 27 June 1980)

