RESIDUALLY-COMPLETE GRAPHS

Paul ERDÖS

Hungarian Academy of Science and the University of Colorado

Frank HARARY

University of Michigan in Ann Arbor, Ann Arbor, MI. U.S.A.

Maria KLAWE

Oakland University in Rochester. Rochester, MI, U.S.A.

If G is a graph such that the deletion from G of the points in each closed neighborhood results in the complete graph K_n , then we say that G is K_n -residual. Similarly, if the removal of m consecutive closed neighborhoods yields K_n , then G is called $m - K_n$ -residual. We determine the minimum order of the $m - K_n$ -residual graphs for all m and n. The minimum order of the connected K_n -residual graphs is found and all the extremal graphs are specified.

1. Introduction

A graph G is said to be F-residual if for every point u in G, the graph obtained by removing the closed neighborhood of u from G is isomorphic to F. We inductively define multiply-F-residual graphs by saying that G is *m*-F-residual if the removal of the closed neighborhood of any point of G results in an (m-1)-F-residual graph, where of course a 1-F-residual graph is simply an F-residual graph.

We are concerned with residually-complete graphs, i.e., graphs which are m- K_n -residual for some m and n. It is easy to see that there exists such a graph for any m and n, since $(m+1)K_n$ is clearly such a graph. Actually we show that there exist infinitely many connected m- K_n -residual graphs for any m and n.

It is natural to ask what is the minimum number of points that an $m-K_n$ -residual graph must contain. We easily prove that this number is (m+1)n and that the only $m-K_n$ -residual graph with this number of points is $(m+1)K_n$. The same question for connected $m-K_n$ -residual graphs is more interesting. We are able to show that a connected K_n -residual graph must have at least 2n + 2 points if $n \neq 2$. Furthermore, the cartesian product $K_{n+1} \times K_2$ is the only such graph with 2n+2 points for $n \neq 2, 3, 4$. We complete the result by determining all connected K_n -residual graphs of minimal order for n = 2, 3, 4.

Although we have not obtained the minimum number of points for a connected $m-K_n$ -residual graph, we include some canonical examples which might be expected to have smallest order when n is large.

In general the notation follows that of [1]. In particular p(G) is the number of points in a graph G, N(u) is the neighborhood of a point u consisting of all points adjacent to u. $N^*(u)$ is the closed neighborhood of u. Also, for any real x, the symbol [x] denotes the ceiling of x defined as the smallest integer $n \ge x$.

2. Residually-complete graphs of minimum order

We begin this section with a simple observation which will turn out to be extremely useful.

Remark 1. If G is F-residual, then for any point u in G, the degree d(u) = p(G) - p(F) - 1. Hence every F-residual graph is regular, though this is generally not true for multiply-F-residual graphs (see Example 3).

Theorem 1. Every $m - K_n$ -residual graph has at least (m+1)n points, and $(m+1)K_n$ is the only $m - K_n$ -residual graph with (m+1)n points.

Proof. Let G be K_n -residual, and u, v nonadjacent points in G. Then $H_1 = G - N^*(u)$ and $H_2 = G - N^*(v)$ are disjoint copies of K_n contained in G, so $p(G) \ge 2n$. If p(G) = 2n, then $G = H_1 \cup H_2$ so all that remains to be shown is that there are no lines between H_1 and H_2 , which is clear since G is (n-1)-regular by Remark 1.

Using induction on m, the rest of the theorem can easily be proved by similar arguments.

Theorem 2. Every connected K_n -residual graph has at least 2n + 2 points if $n \neq 2$.

The proof of this theorem requires a few preliminary results. We begin with the following definition.

For two points u, v in G, we say u is K_n -adjacent to v if there exists a copy of K_n in G which contains both u and v.

Lemma 2a. Let G be a K_n -residual graph with $p(G) < 2n + \lfloor \frac{1}{2}n \rfloor$, and let u, v, w be points in G such that u is K_n -adjacent to v and v is K_n -adjacent to w. Then u is adjacent to w, in fact, u is K_n -adjacent to w.

Proof. Let H_1 and H_2 be copies of K_n contained in G with $u, v \in H_1$ and $v, w \in H_2$. Suppose u is not adjacent to w. Then $w \in H_3 = G - N^*(u)$ which is another copy of K_n in G. Clearly $H_1 \cap H_3 = \emptyset$ since $H_1 \subset N^*(u)$. Thus $p(H_2 - H_3) \ge p(H_2 \cap H_1)$ and we see that $p(H_1 - H_2) + p(H_2 - H_3) \ge p(H_1) = n$. This shows that $\max\{p(H_1 - H_2), p(H_2 - H_3)\} \ge \lfloor \frac{1}{2}n \rfloor$. Now consider the degrees of v and w. We have

$$d(v) \ge p(H_2) - 1 + p(H_1 - H_2) = n - 1 + p(H_1 - H_2)$$

 $d(w) \ge p(H_3) - 1 + p(H_2 - H_3) = n - 1 + p(H_2 - H_3).$

Hence there exists a point y in G with $d(y) \ge n-1+\lfloor \frac{1}{2}n \rfloor$, showing that

$$p(G) \ge n + (n - 1 + \lceil \frac{1}{2}n \rceil) + 1 = 2n + \lceil \frac{1}{2}n \rceil$$

by Remark 1, which contradicts the hypothesis $p(G) < 2n - \lfloor \frac{1}{2}n \rfloor$. Thus we see that *u* is adjacent to *w*. By repeating this argument, it is clear that *u* is adjacent to every point in H_2 , and hence *u* is K_n -adjacent to *w*.

Remark 2. If G is a K_n -residual graph with $p(G) < 2n + \lceil \frac{1}{2}n \rceil$, then for any two nondisjoint copies H_1 and H_2 of K_n contained in G, we have $H_1 \cup H_2 \cong K_s$ where $s = p(H_1 \cup H_2)$.

Proof. Choose $v \in H_1 \cap H_2$, and let u, w be any two points in $H_1 \cup H_2$. Clearly u is K_n -adjacent to v and v is K_n -adjacent to w, so by Lemma 2a. u and w are adjacent.

Lemma 2b. If G is a connected K_n -residual graph with $p(G) < 2n - \lfloor \frac{1}{2}n \rfloor$, then G contains a copy of K_{n+1} .

Proof. Since G is connected and K_n -residual, by Theorem 1 we have $p(G) \ge 2n+1$. Choose some copy of K_n in G, denoted by H_1 , and let u be a point in H_1 . Since $p(G) \ge 2n+1$, we have $d(u) \ge n$ and thus we can find $v \in N^*(u) - H_1$. If $\langle H_1 \cup \{v\} \rangle \cong K_{n+1}$ we are done, so assume there exists $w \in H_1 - N^*(v)$. let $H_2 = G - N^*(v)$. Now H_1 and H_2 are nondisjoint copies of K_n in G, so $\langle H_1 \cup H_2 \rangle \cong K_s$ where $s = p(H_1 \cup H_2) \ge n+1$ since $u \in H_1 - H_2$.

We are now ready to prove Theorem 2. Let G be a connected K_n -residual graph. The case where n = 1 is obvious since neither of the connected graphs of order 3, P_3 and K_3 , is K_1 -residual. Thus we assume $n \ge 3$. If $p(G) \ge 2n + \lceil \frac{1}{2}n \rceil$ we are done since $\lceil \frac{1}{2}n \rceil \ge 2$. If $p(G) < 2n + \lceil \frac{1}{2}n \rceil$, then G contains a copy of K_{n+1} which we denote by H. Since G is connected and $G - H \neq \emptyset$, we must have $d(u) \ge n+1$ for some point u in H, and thus

$$p(G) \ge n + (n+1) + 1 = 2n+2$$

by Remark 1.

The next result determines the connected K_n -residual graphs of minimum order. It is interesting to note that for $n \neq 3, 4$ the graph is unique.

Theorem 3. If $n \neq 2$, then $K_{n+1} \times K_2$ is a connected K_n -residual graph of minimum order, and except for n = 3 and n = 4, it is the only such graph. For each of the cases

Fig. 1. Two examples of $K_{n+1} \times K_2$.

n=3 and n=4 there is exactly one other such graph. Finally, C_5 is the only connected K_2 -residual graph of minimum order.

The graphs $K_4 \times K_2$ and $K_5 \times K_2$ are shown in Fig. 1 while the other smallest connected K_n -residual graphs for n = 3 and 4 are given in Figs. 2 and 3.

Proof. It is easy to verify that $K_{n+1} \times K_2$ is a connected K_n -residual graph for any n. Since $p(K_{n+1} \times K_2) = 2n+2$, Theorem 2 shows that $K_{n+1} \times K_2$ has minimum order for $n \neq 2$. Suppose $n \ge 5$ and that G is a connected K_n -residual graph with p(G) = 2n+2. Then $p(G) < 2n + \lfloor \frac{1}{2}n \rfloor$ so G contains a copy of K_{n+1} , which we denote by $L = \langle x_1, \ldots, x_{n+1} \rangle$. Since $d(x_i) = n+1$, it follows that $N^*(x_i) - L = \{y_i\}$. Also $G = \bigcup_{i=1}^n N^*(x_i)$ since otherwise we would have $L \subset G - N^*(u)$ for some point u in G. This shows that $G - L = \langle y_1, \ldots, y_{n+1} \rangle$ and since p(G - L) = n+1 we find that the y_i 's are distinct. Moreover, for $i \neq j$ we see that $y_i, y_j \in G - N^*(x_k)$ for any $k \neq i, j$ and hence y_i and y_j are adjacent, showing that $G - L \cong K_{n+1}$. Clearly $G \cong K_{n+1} \times K_2$.

Fig. 2. Steps in the construction of the other smallest connected K_3 -residual graph.

Fig. 3. The other smallest connected K_4 -residual graph.

We now prove the remainder of the theorem involving the small cases $n \le 4$. For n = 1, $K_2 \times K_2 = C_4$ is the only regular connected graph of degree 2 on 4 points, and similarly for n = 2, C_5 is the only regular connected graph of degree 2 on 5 points.

For n=3, suppose G is a connected K_3 -residual graph with p(G)=8. If G contains a copy of K_4 , then the same proof as for $n \ge 5$ will show that $G \cong K_4 \times K_2$. Thus we may assume that G does not contain a copy of K_4 . Let

$$V(G) = \{u, v_1, v_2, v_3, v_4, w_1, w_2, w_3\}$$

where $N(u) = \{v_1, v_2, v_3, v_4\}$ and $\langle W \rangle = \langle w_1, w_2, w_3 \rangle \cong K_3$ (see Fig. 2a). Since $K_4 \notin G$ we see that $W \notin N(v_i)$ for any *i*, and for the same reason $N(w_i) \cap N(u) \neq N(w_i) \cap N(u)$ if $i \neq j$. Thus for each pair of distinct *i* and *j* we have

$$p(N(w_i) \cap N(u) \cap N(w_i)) = 1$$

By symmetry we may assume that $N(w_1) = \{v_1, v_2, w_2, w_3\}$ and $N(w_2) = \{v_1, v_4, w_1, w_3\}$. These imply $\langle u, v_3, v_4 \rangle \cong K_3$ and $\langle u, v_2, v_3 \rangle \cong K_3$. In particular v_3 is adjacent to v_4 and v_2 is adjacent to v_3 (see Fig. 2b). Since $W \notin N(v_1)$, v_1 is not adjacent to w_3 , hence either v_2 or v_4 is adjacent to w_3 , and by symmetry we may assume v_4 is adjacent to w_3 . Thus $N(v_4) = \{u, v_3, w_2, w_3\}$ so $\langle v_1, v_2, w_1 \rangle \cong K_3$ and in particular v_1 is adjacent to v_2 (see Fig. 2c). Finally, since $N(v_1) = \{u, v_2, w_1, w_2\}$ we have $\langle v_3, v_4, w_3 \rangle \cong K_3$ so v_3 is adjacent to w_3 . Now every point in G has degree 4, so the construction is finished (see Fig. 2d).

For n=4, suppose G is a connected K_4 -residual graph with p(G)=10. If G contains a copy of K_5 , then as before one finds $G \cong K_5 \times K_2$. If G does not contain a copy of K_5 , then similar arguments as for the case n=3 will construct the graph shown in Fig. 3.

3. Multiply-K_n-residual graphs

In this section we first note that for any m and n there are infinitely many connected $m-K_n$ -residual graphs, then exhibit some canonical examples, and close with some conjectures on the minimum number of points in a connected $m-K_n$ -residual graph.

Remark 3. For any choice of positive integers m and n, there are infinitely many connected $m - K_n$ -residual graphs.

Proof. Observe that if G_1 and G_2 are disjoint $m - K_n$ -residual graphs, then their join $G_1 + G_2$ (as in [1, p. 21]) is a connected $m - K_n$ -residual graph. Since $(m+1)K_n$ is an $m - K_n$ -residual graph, we can repeatedly use the above technique to construct an infinite collection of graphs.

It is easy to see that G is K_n -residual if and only if \overline{G} is *n*-regular and contains no triangles. This observation of R.W. Robinson verifies Remark 3 at once for m = 1.

Example 1. The join $(m+1)K_n + (m+1)K_n$ is a connected $m - K_n$ -residual graph with 2n(m+1) points.

Example 2. The cartesian product $K_{n+m} \times K_{m+1}$ is a connected $m - K_n$ -residual graph with (n+m)(m+1) points. This is easily proved by induction on m since we have already noted that $K_{n+1} \times K_2$ is K_n -residual.

Notice that for n = m, the graphs of Examples 1 and 2 have the same order although they are not isomorphic unless n = 1.

Example 3. For each $m \ge 1$, the graph G_m defined by

$$V(G_m) = \{u_0, \ldots, u_{m+1}, v_1, \ldots, v_m, w_0, \ldots, w_{m-1}\}$$

and

 $E(G_{m}) = \{u_{i}u_{i+1}, u_{i}w_{i}, u_{i}v_{i-1}, v_{i}w_{i}, v_{i}w_{i-1}\}$

can be shown to be a connected $m-K_2$ -residual graph with 3m+2 points. The graphs G_m for m = 1, 2, 3, 4 are shown in Fig. 4, as well as another connected 3- K_2 -residual with 11 points. Notice that the graph G_m is not regular unless m = 1.

4. Unsolved problems and conjectures

We have only determined the minimum order of the connected K_n -residual graphs. The question is open for $m - K_n$ -residual graphs when $m \ge 2$.

Conjecture 1. If $n \neq 2$, then every connected $m - K_n$ -residual graph has at least $\min\{2n(m+1), (n+m)(m+1)\}$ points.

Every connected m- K_2 -residual graph has at least 3m + 2 points.

Note that this quantity agrees with that of Theorem 2 for m = 1 when $n \neq 2$, and with Theorem 3 when n = 2.

We believe that there will be an analogous uniqueness result for $m \ge 2$.

Fig. 4. Multiply- K_2 -residual graphs of small order.

Conjecture 2. For n large, there is a unique smallest connected $m - K_n$ -residual graph.

The link of a point u of a graph G, written L(u), is the subgraph $\langle N(u) \rangle$ induced by the neighborhood of u. A graph G has constant link if for all $u, v \in V(G), L(u) \cong L(v)$. Clearly G is K_n -residual if and only if its complement \overline{G} has constant link \overline{K}_n .

In general, then, G is an F-residual graph if and only if \overline{G} has constant link \overline{F} . In later communications we propose to investigate F-residual graphs for $F = K_n$. in order to determine the minimum order among such graphs, and to specify the corresponding extremal graphs.

References

[1] F. Harary, Graph Theory. (Addison-Wesley, Reading, MA, 1969).