RESIDUALLY-COMPLETE GRAPHS

Paul ERDÖS
Hungarian Academy of Science ar:d the University of Colorado
Frank HARARY
University of Michigan in Ann Arbor, Ann Arbor, MI. LI.S.A.
Maria KLAWE
Oakland University in Rochester. Rochester, MI, U.S.A.

Abstract

If G is a graph such that the deletion from G of the points in each closed neighborhood results in the complete graph K_{n}. then we say that G is K_{n}-residual. Similarly, if the removal of m consecufive closed neighborhoods yields K_{n}, then G is called m - K_{n}-residual. We determine the minimum order of the $m-K_{n}$-residual graphs for all m and n. The minimum order of the connected K_{n}-residual graphs is found and all the extremal graphs are specified.

1. Introduction

A graph G is said to be F-residual if for every point u in G, the graph obtained by removing the closed neighborhood of u from G is isomorphic to F. We inductively define multiply- F-residual graphs by saying that G is m - F-residual if the removal of the closed neighborhood of any point of G results in an ($m-1$)- F-residual graph, where of course a $1-F$-residual graph is simply an F-residual graph.

We are concerned with residually-complete graphs, i.e., graphs which are m -K_{n}-residual for some m and n. It is easy to see that there exists such a graph for any m and n, since $(m+1) K_{n}$ is clearly such a graph. Actually we show that there exist infinitely many connected $m-K_{n}$-residual graphs for ariy m and n.

It is natural to ask what is the minimum number of points that an $m-K_{n}$. residual graph must contain. We easily prove that this number is $(m-1) n$ and that the only $m-K_{n}$-residual gwaph with this number of points is $(m+1) K_{n}$. The same question for consected $n_{1}-K_{n}$-residual graphs is more interesting. We are able to show that a connected K_{n}-residual graph must have at least $2 n+2$ points if $n \neq 2$. Furthermore, the cartesian product $K_{n+1} \times K_{2}$ is the only such graph with $2 n+2$ points for $n \neq 2,3,4$. We complete the result by determining all connected K_{n}-residual graphs of minimal order for $n=2,3,4$.

Although we have not obtained the minimum number of points for a connected $m_{i}-K_{n}$-residual graph, we include some canonical examples which might be expected to have smallest order when n is large.

In general the notation folfows that of [1]. In particular $p(G)$ is the number of points in a graph $G, N(u)$ is the neighborhood of a point u consisting of all points adjacent to $u . N^{*}(u)$ is the closed neighborhood of u. Also, for any real x, the symbol $\lceil x\rceil$ denotes the ceiling of x defined as the smallest integer $n \geqslant x$.

2. Residually-complete graphs of minimum order

We begin this section with a simple observation which will turn out to be extremely useful.

Remark 1. If G is F-residual, then for any point u in G, the degree $d(u)=$ $p(G)-p(F)-1$. Hence every F-residual graph is regular, though this is generally not true for multiply- F-residual graphs (see Example 3).

Theorem 1. Every $m-K_{n}$-residual graph has at least $(m+1) n$ points, and $(m+1) K_{n}$ is the only $m-K_{n}$-residual graph with $(m+1) n$ points.

Proof. Let G be K_{n}-residual, and u, v nonadjacent points in G. Then $H_{1}=$ $G-N^{*}(u)$ and $H_{2}=G-N^{*}(v)$ are disjoint copies of K_{n} contained in G, so $p(G) \geqslant 2 n$. If $p(G)=2 n$, then $G=H_{1} \cup H_{2}$ so all that remains to be shown is that there are no lines between H_{1} and H_{2}, which is clear since G is $(n-1)$-regular by Reinark 1.

Using induction on m, the rest of the theorem can easily be proved by similar arguments.

Theorem 2. Every connected K_{n}-residual graph has at least $2 n+2$ points if $n \neq 2$.
The proof of this theorem requires a few preliminary results. We begin with the following definition.

For two points u, v in G, we say u is K_{n}-adjacent to v if there exists a copy of K_{n} in G which contains both u and v.

Lemma 2a. Let G be a K_{n}-residual graph with $p(G)<2 n+\left\lceil\frac{1}{2} n\right\rceil$, and let u, v, w be points in G such that u is K_{n}-adjacent to v and v is K_{n}-adjacent to w. Then u is adjacent to w, in fact, u is K_{n}-adjacent to w.

Proof. Let H_{1} and H_{2} be copies of K_{n} contained in G with $u, v \in H_{1}$ and $v, w \in H_{2}$. Suppose u is not adjacent to w. Then $w \in H_{3}=G-N^{*}(u)$ which is another copy of K_{n} in G. Clearly $H_{1} \cap H_{3}=\emptyset$ since $H_{1} \subset N^{*}(u)$. Thus $p\left(H_{2}-H_{3}\right) \geqslant p\left(H_{2} \cap H_{1}\right)$ and we see that $p\left(H_{1}-H_{2}\right)+p\left(H_{2}-H_{3}\right) \geqslant p\left(H_{1}\right)=n$. This shows that $\max \left\{p\left(H_{1}-H_{2}\right), p\left(H_{2}-H_{3}\right)\right\} \geqslant\left\lceil\frac{1}{2} n\right\rceil$. Now consider the degrees of v and w. We have

$$
d(v) \geqslant p\left(\boldsymbol{H}_{2}\right)-1+p\left(H_{1}-\boldsymbol{H}_{2}\right)=n-1+p\left(\boldsymbol{H}_{1}-\boldsymbol{H}_{2}\right)
$$

$$
d(w) \geqslant p\left(H_{3}\right)-1+p\left(H_{2}-H_{3}\right)=n-1+p\left(H_{2}-H_{3}\right) .
$$

Hence there exists a point y in G with $d(y) \geqslant n-1+\left\lceil\frac{1}{2} n\right\rceil$. showing that

$$
p(G) \geqslant n+\left(n-1+\left\lceil\frac{1}{2} n\right\rceil\right)+1=2 n+\left\lceil\frac{1}{2} n\right\rceil
$$

by Remark 1, which contradicts the hypothesis $p(G)<2 n-\left\lceil\frac{1}{2} n\right\rceil$. Thus we see that u is adjacent to w. By repeating this argument, it is clear that u is adjacent to every point in H_{2}, and hence u is K_{n}-adjacent to w.

Remark 2. If G is a K_{n}-residual graph with $p(G)<2 n+\left\lceil\frac{1}{2} n\right\rceil$, then for any two nondisjoint copies H_{1} and H_{2} of K_{n} contained in G, we have $H_{1} \cup H_{2} \cong K_{s}$ where $s=p\left(H_{1} \cup H_{2}\right)$.

Proof. Choose $v \in H_{1} \cap \boldsymbol{H}_{2}$, and let u, w be any two points in $H_{1} \cup H_{2}$. Clearly u is K_{n}-adjacent to v and v is K_{n}-adjacent to w, so by Lemma 2a. u and w are adjacent.

Lemma 2b. If G is a connected K_{n}-residual graph with $p(G)<2 n-\left\lceil\frac{1}{2} n\right\rceil$, then G contains a copy of K_{n+1}.

Proof. Since G is connected and K_{n}-residual, by Theorem 1 we have $p(G) \geqslant$ $2 n+1$. Choose some copy of K_{n} in G, denoted by H_{1}, and let u be a point in H_{1}. Since $p(G) \geqslant 2 n+1$, we have $d(u) \geqslant n$ and thus we can find $v \in N^{*}(u)-H_{1}$. If $\left\langle\boldsymbol{H}_{1} \cup\{v\}\right\rangle \cong K_{n+1}$ we are done, so assume there exists $w \in H_{1}-N^{*}(v)$. let $H_{2}=$ $G-N^{*}(v)$. Now H_{1} and H_{2} are nondisjoint copies of K_{n} in G, so $\left\langle H_{1} \cup H_{2}\right\rangle \cong K_{s}$ where $s=p\left(H_{1} \cup H_{2}\right) \geqslant n+1$ since $u \in H_{1}-H_{2}$.
We are now ready to prove Theorem 2 . Let G be a connected K_{n}-residual graph. The case where $n=1$ is obvious since neither of the connected graphs of order $3, P_{3}$ and K_{3}, is K_{1}-residual. Thus we assume $n \geqslant 3$. If $p(G) \geqslant 2 n+\left\lceil\frac{1}{2} n\right\rceil$ wẹ are done since $\left\lceil\frac{1}{2} n\right\rceil \geqslant 2$. If $p(G)<2 n+\left\lceil\frac{1}{2} n\right\rceil$, then G contains a copy of K_{n+1} which we denote by H. Since G is connected and $G-H \neq \emptyset$, we must have $d(u) \geqslant n+1$ for some point u in H, and thus

$$
p(G) \geqslant n+(n+1)+1=2 n+2
$$

by Remark 1.
The next result determines the connected K_{n}-residual graphs of minimum order. It is interesting to note that for $n \neq 3,4$ the graph is unique.

Theorem 3. If $n \neq 2$, then $K_{n+1} \times K_{2}$ is a connected K_{n}-residual graph of minimum order, and except for $n=3$ and $n=4$, it is the only such graph. For each of the cases

Fig. 1. Two examples of $K_{n+1} \times K_{2}$.
$n=3$ and $n=4$ there is exactly one other such graph. Finally, C_{5} is the only connected K_{2}-residual graph of minimum order.

The graphs $K_{4} \times K_{2}$ and $K_{5} \times K_{2}$ are shown in Fig. 1 while the other smallest connected K_{n}-residual graphs for $n=3$ and 4 are given in Figs. 2 and 3.

Proof. It is easy to verify that $K_{n+1} \times K_{2}$ is a connected K_{n}-residual graph for any n. Since $p\left(K_{n+1} \times K_{2}\right)=2 n+2$, Theorem 2 shows that $K_{n+1} \times K_{2}$ has minimum order for $n \neq 2$. Suppose $n \geqslant 5$ and that G is a connected K_{n}-residual graph with $p(G)=2 n+2$. Then $p(G)<2 n+\left\lceil\frac{1}{2} n\right\rceil$ so G contains a copy of K_{n+1}, which we denote by $L=\left\langle x_{1}, \ldots, x_{n+1}\right\rangle$. Since $d\left(x_{i}\right)=n+1$, it follows that $N^{*}\left(x_{i}\right)-L=\left\{y_{i}\right\}$. Also $G=\bigcup_{i=1}^{n} N^{*}\left(x_{i}\right)$ since otherwise we would have $L \subset G-N^{*}(u)$ for some point u in G. This shows that $G-L=\left\langle y_{1}, \ldots, y_{n+1}\right\rangle$ and since $p(G-L)=n+1$ we find that the y_{i} 's are distinct. Moreover, for $i \neq j$ we see that $y_{i}, y_{j} \in G-N^{*}\left(x_{k}\right)$ for any $k \neq i, j$ and hence y_{i} and y_{j} are adjacent, showing that $G-L \cong K_{n+1}$. Clearly $G \cong \boldsymbol{K}_{n+1} \times \boldsymbol{K}_{2}$.

Fig. 2. Stefs in the construction of the other smalles\% connected K_{3}-residuai graph.

Fig. 3. The other smallest connected K_{4}-residual graph.
We now prove the remainder of the theorem involving the small cases $n \leqslant 4$. For $n=1, K_{2} \times K_{2}=C_{4}$ is the only regular connected graph of degree 2 on 4 points, and similarly for $n=2, C_{5}$ is the only regular connected graph of degree 2 on 5 points.

For $n=3$, suppose G is a connected K_{3}-residual graph with $p(G)=8$. If G contains a copy of K_{4}, then the same proof as for $n \geqslant 5$ will show that $G \cong$ $K_{4} \times K_{2}$. Thus we may assume that G does not contain a copy of K_{4}. Let

$$
V(G)=\left\{u, v_{1}, v_{2}, v_{3}, v_{4}, w_{1}, w_{2}, w_{3}\right\}
$$

where $N(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\langle\boldsymbol{W}\rangle=\left\langle w_{1}, w_{2}, w_{3}\right\rangle \cong K_{3}$ (see Fig. 2a). Since $K_{4} \not \subset G$ we see that $W \notin N\left(v_{i}\right)$ for any i, and for the same reason $N\left(w_{i}\right) \cap$ $N(u) \neq N\left(w_{j}\right) \cap N(u)$ if $i \neq j$. Thus for each pair of distinct i and j we have

$$
p\left(N\left(w_{i}\right) \cap N(u) \cap N\left(w_{i}\right)\right)=1 .
$$

By symmetry we may assume that $N\left(w_{1}\right)=\left\{v_{1}, v_{2}, w_{2}, w_{3}\right\}$ and $N\left(w_{2}\right)=$ $\left\{v_{1}, v_{4}, \boldsymbol{w}_{1}, \boldsymbol{w}_{3}\right\}$. These imply $\left\langle\boldsymbol{u}, v_{3}, v_{4}\right\rangle \cong \boldsymbol{K}_{3}$ and $\left\langle\boldsymbol{u}, v_{2}, v_{3}\right\rangle \cong \boldsymbol{K}_{3}$. In particular v_{3} is adjacent to v_{4} and v_{2} is adjacent to v_{3} (see Fig. 2b). Since $\boldsymbol{W} \not \subset N\left(v_{1}\right), v_{1}$ is not adjacent to w_{3}, hence either v_{2} or v_{4} is adjacent to w_{3}, and by symmetry we may assume v_{4} is adjacent to w_{3}. Thus $N\left(v_{4}\right)=\left\{u, v_{3}, w_{2}, w_{3}\right\}$ so $\left\langle v_{1}, v_{2}, w_{1}\right\rangle \cong K_{3}$ and in particular v_{1} is adjacent to v_{2} (see Fig. 2c). Finaliy, since $N\left(v_{1}\right)=\left\{u, v_{2}, w_{1}, w_{2}\right\}$ we have $\left\langle v_{3}, v_{4}, w_{3}\right\rangle \cong K_{3}$ so v_{3} is adjacent to w_{3}. Now every point in G has degree 4 , so the construction is finished (see Fig. 2d).

For $n=4$, suppose G is a connected K_{4}-residual graph with $p(G)=10$. If G contains a copy of K_{5}, then as before one finds $G \cong K_{5} \times K_{2}$. If G does not contain a copy of K_{5}, then similar arguments as for the case $n=3$ will construct the graph shown in Fig. 3.

3. Multiply- \boldsymbol{K}_{n}-residual graphs

In this section we first note that for any m and n there are infinitely many connected $m-K_{n} \cdot$ residual graphs, then exhibit some canonical examples, and close with some conjectures on the minimum number of points in a connected $m-K_{n}$ residual graph.

Remark 3. For any choice of positive integers m and n, there are infinitely many connected $m-K_{n}$-residual graphs.

Proof. Observe that if G_{1} and G_{2} are disjoint m - K_{n}-residual graphs, then their join $G_{1}+G_{2}$ (as in [1, p. 21]) is a connected m - K_{n}-residual graph. Since ($m+1$) K_{n} is an $m-K_{n}$-residual graph, we can repeatedly use the above technique to construct an infinite collection of graphs.

It is easy to see that G is K_{n}-residual if and only if \bar{G} is n-regular and contains no triangles. This observation of R.W. Robinson verifies Remark 3 at once for $m=1$.

Example 1. The join $(m+1) K_{n}+(m+1) K_{n}$ is a connected m - K_{n}-residual graph with $2 n(m+1)$ points.

Example 2. The cartesian product $K_{n+m} \times K_{m+1}$ is a connected m - K_{n}-residual graph with $(n+m)(m+1)$ points. This is easily proved by induction on m since we have already noted that $K_{n+1} \times K_{2}$ is K_{n}-residual.

Notice that for $n=m$, the graphs of Examples 1 and 2 have the same order although they are not isomorphic unless $n=1$.

Example 3. For each $m \geqslant 1$, the graph G_{m} defined by

$$
V\left(G_{m}\right)=\left\{u_{0}, \ldots, u_{m+1}, v_{1}, \ldots, v_{m}, w_{0}, \ldots, w_{m-1}\right\}
$$

and

$$
E\left(G_{m}\right)=\left\{u_{i} u_{i+1}, u_{i} w_{i}, u_{i} v_{i-1}, v_{i} w_{i}, v_{i} w_{i-1}\right\}
$$

can be shown to be a connected $m-K_{2}$-residual graph with $3 m+2$ points. The graphs G_{m} for $m=1,2,3,4$ are shown in Fig. 4, as well as another connected 3-K_{2}-residual with 11 points. Notice that the graph G_{m} is not regular unless $m=1$.

4. Unsolved problems and conjectures

We have only determined the minimum order of the connected K_{n}-residual graphs. The question is open for $m-K_{n}$-residual graphs when $m \geqslant 2$.

Comjecture 1. If $n \neq 2$, then every connected $m-K_{n}$-residual graph has at least $\min \{2 n(m+1),(n+m)(m+1)\}$ points.

Every connected $m-K_{2}$-residual graph has at least $3 m+2$ points.
Note that this quantity agrees with that of Theorem 2 for $m=1$ when $n \neq 2$, and with Theorem 3 when $n=2$.

We believe that there will be an analogous uniqueness result for $m \geqslant 2$.

Fig. 4. Multiply- \boldsymbol{K}_{2}-residual graphs of small order.

Conjecture 2. For n large, there is a unique smallest connected m - K_{n}-residual graph.

The link of a point u of a graph G, written $L(u)$, is the subgraph $\left\langle N^{-}(u)\right\rangle$ induced by the neighborhood of u. A graph G has constant link if for all $u, v \in V(G), L(u) \cong L(v)$. Clearly G is K_{n}-residual if and only if its complement \bar{G} has constant link \bar{K}_{n}.

In general, then, G is an F-residual graph if and only if \bar{G} has constant link \bar{F}. In later communications we propose to investigate F-residual graphs for $F=K_{n}$. in order to determine the minimum order among such graphs, and to specify the corresponding extremal graphs.

References

[1] F. Harary, Graph Theory. (Addison-Wesley, Reading, MA, 1969).

