R. Daniel Mauldin Department of Mathematics North Texas State University Denton, Texas 76203/USA
and
Paul Erdos
Hungarian Academy of Sciences
Budapest, Hungary

The ideas presented here having arisen from the consideration of the following problem of Erdos.

Let T be the unit circle and suppose S_{1} and S_{2} are subsets of T such that for each $i, i=1,2$, there is an infinite subset R_{i} of T so that the sets $r S_{i}$, where $r \in R_{i}$ are pairwise disjoint. Is it true that the inner measure of $S_{1} \cup S_{2}$ is zero?

The answer to this question is yes and we shall present two solutions to this problem. Neither solution is difficult. But, each seems to lead to some interesting problems which will be formulated here. Our first solution which is contained in the following theorem is based on the fact that the circle group is amenable.

THEOREM 1. Let G be a locally compact T_{2} group with left invariant Haar measure λ and such that G admits an invariant mean. Let S_{1}, \ldots, S_{k} be subsets of G such that for each i, $1 \leq i \leq k$, there is an infinite subset R_{i} of G so that the sets $r S_{i}$, where $r \in R_{i}$, are pairwise disjoint and \bar{R}_{i} is compact. Then the inner Haar measure of $\bigcup_{i=1}^{k} S_{i}$ is zero.

PROOF. Since G admits an invariant mean, there is a nonnegative, finitely additive extension μ, of λ to all subsets of G which is also left invariant.

It is enough to prove the theorem under the assumption that the sets S_{i} are pairwise disjoint.
Assume U_{i} has positive inner measure. Let F be a compact set $F \subset \cup S_{i}$, with $\lambda(F)>0$. Let $D_{i}=F \cap S_{i}$. Now, the sets $r D_{i}$, where $r \in R_{i}$ are pairwise disjoint and $U\left\{r D_{i}: r \in R_{i}\right\}$ is a subset of the compact set RF. Therefore, for each $i, \mu\left(D_{i}\right)=0$.

This means $\mu\left(U D_{i}\right)=0=\mu(F)=\lambda(F)>0$. This contradiction establishes the theorem.

Next we give an example to show that the conclusion of this theorem may be false if the group is not amenable.
Example. Let G be the orthogonal group on E^{3}. Notice that G acts transitively on S, the unit sphere of E^{3}. Let N be the north pole of S and let H be the stability subgroup of G at $N . H=\{g \in G: g(N)=N\}$. Then F is a closed subgroup of the compact group G. Let θ be the one-to-one map of the left coset space G / H onto $S: \theta(g H)=g(N)$.
Now, according to Hausdorff

$$
S=A \cup B \cup C \cup D,
$$

where A, B, C, and D are disjoint, D is countable and (*) $A \cong B \cup C, A \cong B$, $\mathrm{A} \cong \mathrm{C}$.
Let $E=U\left\{\theta^{-1}(d): d \in D\right\}$. Since $\lambda(H)=0$ and D is countable, $\lambda(E)=0$. Let $S_{1}=U\left\{\theta^{-1}(a): a \in A\right\} S_{2}=U\left\{\theta^{-1}(t): t \in B \cup C\right\}$. Then $S_{1} \cup S_{2}$ is a G_{δ} set with $\lambda\left(S_{1} \cup S_{2}\right)>0$. Also, because of (${ }^{*}$), there are infinitely many pairwise disjoint translates of S_{1} and S_{2}.

Thus, the first method of proof leads to the following problem.
PROBLEM. Let G be a locally compact T_{2} group so that the conclusion of Theorem 1 holds. Is there a finitely additive left invariant extension of Haar measure to all subsets of G ?

Before giving the second method of proof, let us state the following lemma.

LEMMA. Let G be a locally compact group with left invariant Haar measure λ. Let F be a compact set such that $0<\lambda(F)<\infty$. For each positive integer n, there is a neighborhood V of e so that if h_{1}, \ldots, h_{n} are points of V, then $\lambda\left(\cap\left\{h_{i} F: i \leq n\right\}\right)>0$.
The second method of proof is formulated for abelian groups.
THEOREM 2. Let G be a locally compact abelian group with Haar measure λ and let k be a positive integer. For each $i, l \leq i \leq k$, let S_{i} and R_{i} be subsets of G such that R_{i} is infinite, \bar{R}_{i} is compact, and the sets $S_{i}+g, g \in R_{i}$ are pairwise disjoint. The $\bigcup_{i=1}^{k} S_{i}$ has inner measure zero. PROOF. Again, notice that we can and do assume that the sets S_{i} are disjoint. Let us assume that F is a compact set lying in $U S_{i}$ and $\lambda(F)>0$.

Let $n>k$. According to the lemma, there is some neighborhood V of e so that if $h_{p} \in V, p=1, \ldots, n^{k}$, then $\lambda(M)>0$, where

$$
\left.M=F \cap\left(\cap\left\{F-h_{p}: p \leq n^{k}\right\}\right)\right)
$$

For cach i, $1 \leq i \leq k$, obtain $n+1$ distinct points $g_{i 0}, \ldots, g_{i n}$ of R_{i} so that for each k-tuple, $p=\left(p_{1}, \ldots, p_{k}\right)$ of the first n positive integers,

$$
h_{p}=d_{1_{p_{1}}}+\ldots+d_{k_{k}}
$$

is in V, where $d_{i t}=g_{i 0}-g_{i t}$.
According to the lemma, there is some x in $F \cap\left(\cap\left\{F-h_{p}: p=\left(p_{1}, \ldots, p_{k}\right) \in\right.\right.$ $\{1, \ldots, n\}^{k}$).
For each i, let $M_{i}=\left\{p: x+h_{p} \in S_{i}\right\}$. The sets M_{i} are pairwise disjoint and each k-tuple of the first n-integers is in some M_{i}.
A contradiction will be reached by examining the cardinalities of the sets M_{i}. Notice that M_{i} has the following property. If ($p_{1}, \ldots, p_{i}, \ldots$, $\left.p_{k}\right) \in M_{i}$ and ($r_{1}, \ldots, r_{i}, \ldots, r_{k}$) is such that $r_{j}=p_{j}$, if $j \neq i$ and $r_{i} \not p_{i}$, then $\left(r_{1}, \ldots, r_{k}\right) \& M_{i}$. The reason for this is that if they were both in M_{i}, then $\left(x+d_{1 p}+\ldots+d_{i p_{i}}+d_{k p_{k}}\right)+g_{i p_{i p}}=x+d_{1 p_{1}}+\ldots+g_{i 0}+\ldots+d_{k p_{k}}=$ $\left(x+d_{1 r_{1}}+\ldots+d_{i r_{i}}+\ldots+d_{k r_{p}}\right)+g_{i r_{k}}$. Thus, the sets $S_{i}+g_{i p_{i}}$ and $S_{i}+g_{i r_{i}}$ would not be disjoint.
Now, because of this property of the sets M_{i}, we know that, $\operatorname{card}\left(M_{i}\right) \leq$ $\mathrm{n}^{\mathrm{k}-1}$. Therefore,

$$
\mathrm{n}^{\mathrm{k}}=\operatorname{card}\left(U M_{i}\right) \leq \mathrm{kn}^{\mathrm{k}-1} .
$$

This contradiction establishes the theorem. Q.E.D.
Both of these proofs raise the question of estimating the size of a subset S of T which can be partitioned into k sets each of which has n pairwise disjoint rotations.
As Mycielski pointed out to us, one can use the extension of Haar measure to all subsets of T and argue along the lines of Theorem 1 to obtain the following estimate.

Theorem 3. If $S \subset T$ and $\operatorname{SC} \cup\left\{A_{i}: i \leq k\right\}$ where each set A_{i} has n pairwise disjoint rotations then the inner measure of S is $\leq k / n$.

The proof of Theorem 2 was based on some simple combinational properties of finite sets. The problem we pose is that of estimating the size of a measurable subset M of T from the fact that M possesses two sets of rotations which avoid the contradiction obtained in Theorem 2 . We formulate this as follows.

STATEMENT 1. Let $0<\alpha$. There is a positive integer $n_{0}(\alpha)$ so that if M is a measurable subset of T with $\lambda(M)>\alpha$ and R_{1} and R_{2} are subsets of T with $\left|R_{1}\right|,\left|R_{2}\right|>n_{0}(\alpha)$, then there are points $g_{1 i}$ of $R_{1}, g_{2 i}$ of R_{2}, $\mathrm{i}=0,1, \ldots, 4$ such that

$$
M \cap\left(\cap\left\{M-h_{p}: p=\left(p_{1}, \ldots, p_{3}\right) \in\{1, \ldots, 3\}^{2}\right\}\right) \neq \emptyset,
$$

where

$$
h_{p}=\left(g_{10}-g_{1 p_{1}}\right)+\left(g_{20}-g_{2 p_{2}}\right) .
$$

In fact, statement 1 leads to the consideration of the following statement.

STATIMINT 2. Suppose $a>0$. There is a positive integer $t_{0}(\alpha)$ and a $\beta>0$ so that if $M \subset T, \lambda(M)>\alpha$ and $R \subset T,|R|>t_{0}(\alpha)$, then there are points $g_{0}, g_{1}, g_{2}, g_{3}$ of R so that

$$
\lambda\left(\bigcap_{i=0}^{3} M+\left(g_{0}-g_{i}\right)\right)>\beta .
$$

Clearly, statement 2 implies statement 1.
We have been unable to determine whether statement 2 is true. However, we have been led to the following statement.

STATIMINT 3. For each $c>0$, there is an integer $\ell_{0}(c)$ and an integer N_{0} (c) so that if $\ell>\ell_{0}$ (c) and $N>N_{0}$ (c) and

$$
1 \leq a_{1}<a_{2}<\ldots<a_{t} \leq N \text { where } t>c N \text {, }
$$

then for each ℓ integers

$$
b_{1}<\ldots<b_{l}<N,
$$

there is an arithmetic progession of three terms among the a's of difference some $b_{j}-b_{i}$.
At this time, we do not know which if any, of the preceding three statements is true.

