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Some Applications of Ramsey's Theorem to
Additive Number Theory

About 50 years ago, Sidon called a sequence of integers A = {al < a 2 < • } a B,
sequence if the number of representations of n as the sum of r or fewer a's is at most k and
for some n is exactly k . In particular he was interested in B21) , or, for short, B2 sequences .
For a B 2 sequence the sums a,+ai are all distinct . In 1933 Sidon asked me to find a B 2
sequence for which an increases as slowly as possible . I observed that the greedy algorithm
immediately gives that there is a B 2 sequence for which

an < cn 3

	

(1)

holds for every n . I also proved that for every B2 sequence

lim sup an/n 2 = oo .

	

(2)
n -0

Turán and I [3] showed that there is a B 2 sequence for which

lim inf an/n2 < cu .

	

(3)
n-+m
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There is a big gap between (1) and (2) . It seemed likely that there is a B2 sequence for
which

an < n2+E

	

(4)

holds for every n > no(s), but the proof or disproof of (4) is nowhere in sight . Rényi and I
proved by probabilistic methods that there is a k = k(--) for which there is a B 2 sequence
satisfying (4) .

First of all I wanted to show that there is a B2 sequence for which an = o (n 3 ) . Very
recently Ajtai, Komlós and Szemerédi by a deep and ingenious application of combina-
torial analysis to number theory proved the existence of such a B 2 sequence. But their
result falls far short of (4) and only gives

an <n 3/(log n)' .

A few years ago Donald Newman and I (independently of each other) asked: Is there a
B(2k) sequence which is not the union of a finite number of B2 sequences? We both
expected that such a B2 sequence will exist . I wanted to attack the problem by
probabilistic methods . In our proof of (4) for B2 sequences with Rényi we built our
sequence by choosing n with probability n -2-15 and then easily proved that for suitable S
almost all such sequences satisfy (4) and have property BJ' . I wanted to show that almost
all of these sequences are not the union of a finite number of B2 sequences. This is almost
certainly true and would be interesting for its own sake but I have not been able to prove it .
Recently I observed that our conjecture with Newman follows easily from Ramsey's
theorem. In fact I prove the following slightly stronger

THEOREM 1 . There is a B2 sequence A so that if A = UT 1 A, is any decomposition of
A as the union of a finite number of subsequences then at least one of the A i is again a B2(3)
sequence .

43
0195-669 / 0/010043+04$01.00/0

	

© 19 0 Academic Press Inc . (London) Limited



44

	

P. Erdős

Let nl < n2< . . . satisfy n,+i /n, _-4 ; in particular we can take n ; = 4'. Our B(23) sequence
A will be the integers of the form n; +n ;, i j . The inequality n, +1 /n i % 4 implies that the
integers of this form are all distinct and in fact every integer is the sum of distinct n's in at
most one way. Denote by f (m) the number of solutions of m = a; + a ;. Observe that if m is
the sum of four distinct n's n i + n; + n, + n s then f (m) = 3, if m = 2 n ; + n, + n s or 2n i + 2n ;,
then f (m) = 1 and for all other integers f(m) = 0. Thus our A has property B23 . Now if we
decompose A into the union of finitely many sequences A„ r = 1, . . . , T, then this can be
interpreted as the colouring of the edges of a complete graph of infinitely many vertices by
T colours. (The vertices of our graph are the n ;, the edges the n; + n;, i .e ., the elements of A,
the edges of the rth colour are the numbers in Ar ) . Now by Ramsey's theorem there is a
monochromatic complete graph, i .e. one of the Ar's contains all the numbers of the form
{n; +n;} for some infinite subsequence of the n's . In other words Ar has property B23>-as
stated. Thus Theorem 1 is proved .

CONJECTURE . For every k there is a B2k, sequence A so that if A = UT 1 A, then at
least one of the Ar's is a B2k, sequence .

THEOREM 1' . Our conjecture holds for k = 3, all k = 2 5 , and all 2(ss ), s = 1, 2, . . . .

For k = 3 we already proved Theorem 1' . For k = 2 letA consist of the integers of the
form {n; + n;}, i 54 j (mod 2) . ClearlyA is Bz) . Theorem 1' now follows from the well known
result that if the edges of an infinite complete bipartite graph are coloured by a finite
number of colours then there always is a monochromatic C4 .

If k = 2 5 , s > 1, then A consists of the integers of the form n,, + ni2 +

	

+ ns+l where the
r = 1, . . . , s + 1, form a complete set of residues (mod s + 1) . If k = 2(ss ) then A consists

of all integers which are the sum of s distinct n's . Theorem 1' then easily follows by
Ramsey's theorem for s-tuples or for k = 2 s by a result of mine [2] .

These methods can no doubt be applied for other values of k too, but it is doubtful if it
will work for every k . In particular I cannot at present prove my conjecture for k = 5 .

More generally I conjecture that for every k and r there is a sequence A which has
property B ;k) and if we decompose A into the union of finitely many subsequences
{A S}, 1 - s , T, then at least one of them again has property B r k . We can prove this by the
simple methods used here for every r and infinitely many k .

Now we outline the proof of a set theoretic result : let c > N 1 . Then there is a set S of real
numbers, SI = N2 , so that the number of solutions of (a is an arbitrary real number)

x+y=a,

	

xeS,

	

yES

is at most two and if we decompose S into the union of denumerably many subsets
S =Un= 1 S„ then for at least one n there is an a„ for which the number of solutions of
an = x + y, x, y E Sn is two .

The proof follows almost immediately from a result of Hajnal and myself : let JAJ = N 2 ,
JB I = N 1 , A n B = 0, A v B rationally independent . It is clear that if c > N, such A and B
exist. S now is the set of numbers x +y, x e A, y E=- B . If a =X1 + x2 + y 1 +Y2, x E A, y EB
then the number of solutions of a = u + v, u, v E S is two, by the rational independence of
A v B it can never be more than two. Now put S = U~= 1 Sn. This induces a decomposition
of the edges of the complete bipartite graph K(A, B), 1AI = N 2i 1B = N1, into countably
many classes. An old theorem of Hajnal and myself states that at least one of these classes,
say Sn , contains a C4 which shows that there is an an for which the number of solutions of
an = u + v, u, v e Sn is two-as stated .



Finally we state a few extremal problems . Let 1 , a 1 < . . . < a, -- n be a finite B2
sequence. Put max l = f(n) . Turán and I proved

f(n)=(1+o(1))n'-

and we conjecture that
,

f(n) =n 2 +o(1) .

	

(5)

(5) if true is probably very deep . I often offered $500 for a proof or disproof .
Let u 1 < . . . < u n be any set of n integers . Denote by H„ the largest r for which there

always is a subsequence u;, < < u ;,, r = Hn , for which the sums of any two are distinct . I
conjectured that

Hn--(1+o(1))n2 .

	

(6)

Komlós, Sulyok and Szemerédi [4] in a remarkable paper proved a general theorem
which implies

Ramsey's theorem and additive number theory
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,
Hn >cn2 (7)

where c is an absolute constant independent of n and of the sequence U. Their method
does not seem suitable to give (6) .

Let u l < . . . < un be a sequence of integers with property B2 ) . Hnk is the largest integer
for which one can always select a B2 subsequence u i, < . . . < u ;,, l = Hn (k) . It seems likely
that

lim Hnk>/n ' = 00 . ( )

I have not been able to prove ( ), though it is not impossible that even H„k > n2+` holds
for some c > 0 . 1 can only give an upper bound for Hnk ~ .

THEOREM 2

H(n2) < cná,

	

Hn4 < cn 3 .

	

(9)

The proof uses the same method as Theorem 1 and 1' . Our sequence u 1 < . . . < u n ,
n = m 2 are the integers of the form

4' +4',

	

0 < i < 2m,

	

1, j < 2m + 1, i even, j odd .

We observed in Theorem I' that our sequence satisfies B22 ' . Its terms can be represented
by the edges of a complete bipartite graph of m white and m black vertices. The white
vertices are the integers 42 ', i = 0, . . . , m -1 and the black vertices 42'+1, j = 0, . . . , m -1 .
A well known theorem due to W . Brown, V. T. Sós, A. Rényi and myself [1] implies that
every subgraph having clm 2 =c2n' edges contains a Ca, i .e . the corresponding
subsequence cannot have property B2 which proves the first inequality of (9) .

To prove the second inequality of (9) let our sequence u1 < . . . < un, n = m 3 be the
integers of the form

14'+4'+4k}, i=3t, j=3t+1, k=3t+2, 0--t<m .

	

(10)

These integers have property B2 . To complete our proof of (9) we show that any
subsequence of CM 2 terms cannot be a B 2 sequence .

To see this let u 1 , . . . , u t , t = CM 2 be a subsequence of the the integers (10) . Denote by
a (j, k) the number of indices i for which 4'+4+4'

	

k is one of our u's . Clearly

Y-

	

a;,k=t=Cm 2 .

	

(11)
1_j,k_3m
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From (12) we obtain that there are two distinct pairs {ji , k,}, l i2, k2 } for which there are

I

	

M .
1_j,k,n

(a2,k)
>(2)

	

(12)

From (12) we obtain that there are two distinct pairs {jt , kt }, (h i k 2) for which there are
two i's ü and i2 so that all the four numbers

4" +4', +4k ,

	

4`,+4'2+4ká,

	

4 2 +4'1+4 k ,

	

4`2+4'2+4 ká

	

(13)

are Ws. The sum of the first and fourth integer in (13) equals the sum of the second and
third. Thus our subsequence is not a B 2 sequence, which completes the proof of Theorem
2 . This proof could easily be reformulated in the language of hypergraphs .

Perhaps a further development of this method will show that for every e > 0 there is a
ko = ko (e) such that

H„kl < n2+E

	

(14)

I could not decide (14)-in any case I feel fairly sure that ( ) is true .
Note added inproof. Our conjecture has recently been proved for every k by J. Nesetril and
V. Rödl .
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