SOME ASYMPTOTIC FORMULAS ON GENERALIZED DIVISOR FUNCTIONS, IV

by
P. ERDŐS and A. SÁRKÖZY

1. Throughout this paper, we use the following notation: $c_{1}, c_{2}, \ldots, X_{0}, X_{1}, \ldots$ denote positive absolute constants. We denote the number of elements of the finite set S by $|S|$. We write $e^{x}=\exp (x)$. We denote the least prime factor of n by $p(n)$. We write $p^{\alpha} \| n$ if $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n . v(n)$ denotes the number of the distinct prime factors of n, while the number of all the prime factors of n is denoted by $\omega(n)$ so that

$$
v(n)=\sum_{p \mid n} 1 \quad \text { and } \quad \omega(n)=\sum_{p^{*} \| n} \alpha .
$$

We write

$$
\begin{aligned}
v(n, x, y) & =\sum_{\substack{p \mid n \\
x<p \leqq y}} 1, \quad \omega(n, x, y)=\sum_{\substack{p^{x}\| \| n \\
x<p \leqq y}} \alpha, \\
v^{+}(n, x) & =\sum_{\substack{p \mid n \\
p>x}} 1 \text { and } \omega^{+}(n, x)=\sum_{\substack{p^{p \times \| n} \\
p>x}} \alpha
\end{aligned}
$$

(so that $v^{+}(n, 1)=v(n, 1, n)=v(n), \omega^{+}(n, 1)=\omega(n, 1, n)=\omega(n), v(n, x, y)=\nu^{+}(n, x)-$ $-v^{+}(n, y)$ and $\left.\omega(n, x, y)=\omega^{+}(n, x)-\omega^{+}(n, y)\right)$. The divisor function is denoted by $d(n)$:

$$
d(n)=\sum_{d \mid n} 1 .
$$

Let A be a finite or infinite sequence of positive integers $a_{1}<a_{2}<\ldots$. Then we write

$$
\begin{aligned}
& N_{A}(x)=\sum_{\substack{a \in A \\
a \leq x}} 1, \\
& f_{A}(x)=\sum_{\substack{a \in A \\
a \leqq x}} \frac{1}{a}, \\
& d_{A}(n)=\sum_{\substack{a \in A \\
a \mid n}} 1
\end{aligned}
$$

[^0]Key words and phrases. Sets of integers, divisor functions.
(in other words, $d_{A}(n)$ denotes the number of divisors amongst the a_{i} 's) and

$$
D_{A}(x)=\max _{1 \leqq n \leqq x} d_{A}(x) .
$$

The aim of this series is to investigate the function $D_{A}(x)$. (See [1], [2] and [3]; see also Hall [5].) Clearly,

$$
\sum_{1 \leqq n \leqq x} d_{A}(n)=x f_{A}(x)+O(x)
$$

so that we have $D_{A}(x) / f_{A}(x) \gg 1$.
In Part I of this paper we proved that for an infinite sequence A, we have

$$
\lim _{x \rightarrow+\infty} \sup D_{A}(x) / f_{A}(x)=+\infty
$$

and we proved some other related results.
In Part II, we sharpened this theorem. In fact, we proved that

$$
\lim _{x \rightarrow+\infty} f_{A}(x)=+\infty
$$

implies that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \sup D_{A}(x) / \exp \left(c_{1}\left(\log f_{A}(x)\right)^{2}\right)=+\infty . \tag{1}
\end{equation*}
$$

The proof was based on the fact that

$$
f_{A}(x)>\exp \left((\log \log x)^{1 / 2}\right)
$$

implies that writing $y=\exp \left((\log x)^{2}\right)$, we have

$$
D_{A}(y)>\exp \left(c_{2}\left(\log f_{A}(x)\right)^{2}\right) .
$$

In Part III, we estimated $D_{A}(y)$ in terms of $f_{A}(x)$ for $y=x$; in fact, we proved
Theorem 1. For all $\Omega>0$ and for $x>X_{0}(\Omega)$,
implies that

$$
f_{A}(x)>(\log \log x)^{20}
$$

$$
D_{A}(x)>\Omega f_{A}(x) .
$$

(In both Parts II and III, we proved also some other related results.)
In this paper, our aim is to seek for a possibly small function $y=y(x)$ such that $f_{A}(x) \rightarrow+\infty$ implies that $D_{A}(y(x)) / f_{A}(x) \rightarrow+\infty$. In fact, we prove

Theorem 2. For all $\Omega>1$, there exist constants $c_{3}=c_{3}(\Omega), X_{1}=X_{1}(\Omega)$ such that $x>X_{1}$,

$$
\begin{equation*}
f_{A}(x)>c_{3} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[x^{\left.1-1 /\left(f_{A}(x)\right)^{1 / 3}, x\right] \cap A=\emptyset}\right. \tag{3}
\end{equation*}
$$

imply that

$$
\begin{equation*}
D_{A}(x)>\Omega f_{A}(x) . \tag{4}
\end{equation*}
$$

Corollary 1. For all $\Omega>0$, there exist constants $c_{4}=c_{4}(\Omega), X_{2}=X_{2}(\Omega)$ such that $x>X_{2}$ and

$$
f_{A}(x)>c_{4}
$$

imply that writing $y=x^{1+1 /\left(f_{A}(x)\right)^{1 / 4}}$, we have

$$
\begin{equation*}
D_{A}(y)>\Omega f_{A}(x) . \tag{5}
\end{equation*}
$$

Corollary 2. For all $\Omega>1$, there exist constants $c_{5}=c_{5}(\Omega), X_{3}=X_{3}(\Omega)$ such that $x>X_{3}$,

$$
\begin{equation*}
f_{A}(x)>c_{5} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{A}(x) \leqq \Omega f_{A}(x) \tag{7}
\end{equation*}
$$

imply

$$
N_{A}(x)>x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}} .
$$

Section 2 is devoted to the proof of Theorem 2, while in Section 3, we deduce Corollaries 1 and 2 from Theorem 2.

On the other hand, we show that Theorem 2 is not true if we replace the exponent $1-1 /\left(f_{A}(x)\right)^{1 / 3}$ on the left-hand side of (3) by $1-1 / c_{6}^{f}{ }^{4}(x)$:

Theorem 3. There exist absolute constants $c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}$ and X_{4} such that for

$$
\begin{equation*}
x>X_{4} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{6}<t<c_{7} \log \log x, \tag{9}
\end{equation*}
$$

there exists a sequence A satisfying

$$
\begin{gather*}
c_{8} t<f_{A}(x)<c_{9} t, \tag{10}\\
\left(x^{1-1 / c_{10} f_{1}(x)}, x\right] \cap A=\emptyset \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
D_{A}(x)<c_{11} f_{A}(x) . \tag{12}
\end{equation*}
$$

We prove this theorem in Section 4.
Finally, in Section 5, we discuss some other related problems.
2. Proof of Theorem 2. If x is sufficiently large and we have

$$
f_{A}(x)>(\log \log x)^{20}
$$

then (4) holds by Theorem 1. Thus we may assume that
Let us put

$$
\begin{equation*}
f_{A}(x) \leqq(\log \log x)^{20} . \tag{13}
\end{equation*}
$$

and write A in the form

$$
\begin{equation*}
y=x^{1 /\left(f_{A}(x)\right)^{1 / 3}} \tag{14}
\end{equation*}
$$

where A_{1} consists of the integers a such that $a \in A$ and there exists an integer u satisfying

$$
\begin{equation*}
(\log x)^{3}<u<y^{1 / 2 \Omega f_{A}(x)} \tag{16}
\end{equation*}
$$

and $u\left[a\right.$, while A_{2} consists of the integers a such that $a \in A$ and $u \nmid a$ for all u satisfying (16). We have to distinguish two cases.

Case 1. Assume first that

$$
\begin{equation*}
f_{A_{1}}(x)=\sum_{a \in \Lambda_{1}} \frac{1}{a} \geqq \frac{1}{2} f_{A}(x) . \tag{17}
\end{equation*}
$$

For $a \in A_{1}$, write a in the form

$$
a=u(a) b(a)
$$

where $u(a)$ denotes the least integer u such that u satisfies (16) and $u \mid a$. Then by (3), for $a \in A_{1}$ we have $b(a) \leqq a \leqq x \mid y$ and $(\log x)^{3}<d(a)$ so that

$$
\begin{gather*}
f_{A_{1}}(x)=\sum_{a \in \Lambda_{1}} \frac{1}{a}=\sum_{a \in \Lambda_{1}} \frac{1}{u(a) b(a)}= \\
=\sum_{b \leqq x \mid y} \frac{1}{b} \sum_{\substack{a \in A_{1} \\
b(a)=b}} \frac{1}{u(a)}<\sum_{b \leqq x \mid y} \frac{1}{b} \sum_{\substack{a \in A_{1} \\
b(a)=b}} \frac{1}{(\log x)^{3}}= \\
=\frac{1}{(\log x)^{3}} \sum_{b \leqq x \mid y} \frac{1}{b} \sum_{\substack{a \leq A_{1} \\
b(a)=b}} 1 \leqq \frac{1}{(\log x)^{3}}\left(\max _{b \leqq x \mid y} \sum_{\substack{a \in A_{1} \\
b(a)=b}} 1\right) \sum_{b \leqq x} \frac{1}{b}< \tag{18}\\
\leqq \frac{1}{(\log x)^{3}}\left(\max _{b \leqq x \mid y} \sum_{\substack{a \in A_{1} \\
b(a)=b}} 1\right) 2 \log x=\frac{2}{(\log x)^{2}}\left(\max _{b \leqq x \mid y} \sum_{\substack{a \in A_{1} \\
b(a)=b}} 1\right) .
\end{gather*}
$$

If x and $c_{3}($ in (2)) are sufficiently large in terms of Ω then (2), (17) and (18) yield that

$$
\begin{gathered}
\max _{b \geqq x \mid y} \sum_{\substack{a \in A_{1} \\
b(a)=b}} 1>\frac{(\log x)^{2}}{2} f_{A_{1}}(x) \geqq \\
\geqq \frac{(\log x)^{2}}{2} \frac{1}{2} f_{A}(x)>(\log x)^{2}>\Omega \sum_{n \leqq x} \frac{1}{n}+1 \geqq \Omega f_{A}(x)+1
\end{gathered}
$$

so that there exists an integer b_{0} for which

$$
\begin{equation*}
1 \leqq b_{0} \leqq x / y \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{a \in A_{1} \\ b(a)=b_{0}}} 1>\Omega f_{A}(x)+1 \tag{20}
\end{equation*}
$$

Put $s=\left[\Omega f_{A}(x)\right]+1$. Then by (20), there exist integers $a_{1}, a_{2}, \ldots, a_{s}$ such that $a \in A$ and a_{i} can be written in the form
where (with respect to (16))

$$
a_{i}=b_{0} u\left(a_{i}\right)=b_{0} u_{i}
$$

$$
\begin{equation*}
\left((\log x)^{3}<\right) u_{i}<y^{1 / 2 \Omega f_{A}(x)} \tag{21}
\end{equation*}
$$

Let

$$
m=b_{0} u_{1} u_{2} \ldots u_{s} .
$$

Then by (2), (19) and (21), for sufficiently large c_{3} we have

$$
\begin{equation*}
m=b_{0} u_{1} u_{2} \ldots u_{s} \leqq \frac{x}{y}\left(y^{1 / 2 \Omega f_{\Lambda}(x)}\right)^{s}<\frac{x}{y}\left(y^{1 / 2 \Omega f_{\Lambda}(x)}\right)^{2 \Omega f_{\Lambda}(x)}=x \tag{22}
\end{equation*}
$$

and, obviously, $a_{i}=b_{0} u_{i} / m$ and $a_{i}=b_{0} u_{i} \in A$ so that

$$
\begin{equation*}
d_{A}(m) \geqq s=\left[\Omega f_{A}(x)\right]+1>\Omega f_{A}(x) . \tag{23}
\end{equation*}
$$

(22) and (23) yield (4) and this completes the proof of Theorem 2 in this case.

Case 2. Assume now that

$$
\begin{equation*}
f_{A_{1}}(x)=\sum_{a \in A_{1}} \frac{1}{a}<\frac{1}{2} f_{A}(x) . \tag{24}
\end{equation*}
$$

Then (2), (15) and (24) yield that

$$
\begin{equation*}
f_{A_{2}}(x)=\sum_{a \in A_{2}} \frac{1}{a} \geqq \sum_{a \in A} \frac{1}{a}-\sum_{a \in A_{1}} \frac{1}{a}>f_{A}(x)-\frac{1}{2} f_{A}(x)=\frac{1}{2} f_{A}(x)\left(>\frac{c_{3}}{2}\right) . \tag{25}
\end{equation*}
$$

Let us write all $a \in A_{2}$ in the form

$$
a=e(a) v(a) \quad \text { where } e(a) \leqq(\log x)^{3} \text { and } p(v(a)) \geqq y^{1 / 2 \Omega \int_{\Lambda}(x)} .
$$

(Note that if x is sufficiently large in terms of Ω then by (13) we have

Again, we have to distinguish two cases.
Case 2.1. Let

$$
\begin{equation*}
\max _{v \leq x \mid y} \sum_{\substack{a \in A=1 \\ v(a)=v}} \frac{1}{e(a)}>2 \log f_{A}(x) . \tag{26}
\end{equation*}
$$

Note that if $v(a)=v$ for some $a \in A_{2}$ then by (3) we have

$$
\begin{equation*}
v \leqq a \leqq x \mid y . \tag{27}
\end{equation*}
$$

We are going to show that (26) implies

$$
\begin{equation*}
\max _{\substack{v \leqq x \mid y}} \sum_{\substack{a \in A_{2} \\ v(a)=v}} 1>\Omega f_{A}(x) . \tag{28}
\end{equation*}
$$

In fact,

$$
\sum_{\substack{a \in \mathcal{A}_{2} \\ v(a)=v}} 1 \leqq \Omega f_{A}(x)
$$

implies by (2) that if c_{3} is sufficiently large in terms of Ω then we have

$$
\sum_{\substack{a \in A_{2} \\ v(a)=v}} \frac{1}{e(a)} \leqq \sum_{1 \leqq e \leqq \Omega f_{A}(x)} \frac{1}{e}<\frac{3}{2} \log \Omega f_{A}(x)<2 \log f_{A}(x) .
$$

By (26), this cannot hold for all v, which proves (28).
But (28) yields that there exists an integer v_{0} such that

$$
\sum_{\substack{a \in \mathcal{A}_{2} \\ v(a)=v_{0}}} 1>\Omega f_{A}(x) .
$$

This implies that writing $s=\left[\Omega f_{A}(x)\right]+1$, there exist integers $e_{1}<e_{2}<\ldots<e_{s}$ such that $v_{0} e_{i} \in A_{2}$ and

$$
\begin{equation*}
e_{i} \leqq(\log x)^{3} \tag{29}
\end{equation*}
$$

for $i=1,2, \ldots, s$. Write

$$
h=v_{0} e_{1} e_{2} \ldots e_{s} .
$$

Then by (13), (27) and (29),

$$
\begin{equation*}
h=v_{0} e_{1} e_{2} \ldots e_{s} \leqq \frac{x}{y}\left((\log x)^{3}\right)^{s} \leqq \tag{30}
\end{equation*}
$$

$\leqq \frac{x}{x^{1 /\left(f_{A}(x)\right)^{1 / 10}}} \exp \left(4 \Omega f_{A}(x) \log \log x\right)<\frac{x}{x^{1 /(\log \log x)^{2}}} \exp \left((\log \log x)^{22}\right)<x$
and $v_{0} e_{i} / A$ and $v_{0} e_{i} \in A$ for $i=1,2, \ldots, s$ so that

$$
\begin{equation*}
d_{A}(h) \geqq s=\left[\Omega f_{A}(x)\right]+1>\Omega f_{A}(x) . \tag{31}
\end{equation*}
$$

(30) and (31) yield (4) and this completes the proof of Theorem 2 in this case.

Case 2.2. Let

$$
\begin{equation*}
\sum_{\substack{a \in \lambda_{2} \\ v(a)=v}} \frac{1}{e(a)} \leqq 2 \log f_{A}(x) \text { for all } v \leqq x / y . \tag{32}
\end{equation*}
$$

Let us write A_{2} in the form

$$
A_{2}=A_{3} \cup A_{4}
$$

where $a \in A_{3}$ if and only if $a \in A_{2}$ and

$$
v^{+}\left(a, y^{1 / 2 \Omega f_{A}(x)}\right)=v^{+}\left(v(a), y^{1 / 2 \Omega f_{A}(x)}\right)>\frac{2}{5} \log f_{A}(x)
$$

and

$$
A_{4}=A_{2}-A_{3} .
$$

Then by (25) and (32) we have

$$
\begin{align*}
& f_{A_{3}}(x)=f_{A_{2}}(x)-f_{A_{4}}(x)> \\
& >\frac{1}{2} f_{A}(x)-\quad \sum_{a \in A_{2}} \quad \frac{1}{a}= \\
& v+\left(v(a), y^{1 / 2 \Omega f_{A}(x)}\right) \cong \frac{2}{5} \log f_{A}(x) \\
& =\frac{1}{2} f_{A}(x)-\sum_{\substack{v \leq x / y \\
p(v)>y^{1 / 2 \Omega f_{A}}(x)}} \sum_{\substack{a \in A_{2} \\
v(a)=v}} \frac{1}{v(a) e(a)}= \\
& v+\left(v, y^{1 / 2 \Omega f_{A}(x)}\right) \leq \frac{2}{5} \log f_{A}(x) \tag{33}\\
& =\frac{1}{2} f_{A}(x)-\sum_{\substack{v \leq x / y \\
p(v)>y^{1 / 2 \Omega f_{A}}(x)}} \frac{1}{v} \sum_{\substack{a \in A_{2} \\
v(a)=v}} \frac{1}{e(a)} \geqq \\
& \begin{array}{c}
p(v)>y^{1 / 2 \Omega \int_{A}(x)} \\
v^{+}\left(v, y^{1 / 2 \Omega f_{A}(x)}\right)=\frac{2}{5} \frac{2}{5} \log f_{A}(x)
\end{array} \\
& \geqq \frac{1}{2} f_{A}(x)-2 \log f_{A}(x) \\
& \sum_{\substack{v \leq x \\
p(v)>y^{1 / 2 \Omega f_{A}}(x)}} \frac{1}{v}
\end{align*}
$$

By using the Stirling-formula and the well-known formula

$$
\sum_{p \leqq u} \sum_{\alpha=1}^{+\infty} \frac{1}{p^{\alpha}}=\log \log u+c_{12}+o(1)
$$

and with respect to (2), for sufficiently large c_{3} we obtain that

$$
\left[\frac{2}{5} \log f_{A}(x)\right]
$$

$$
\leqq 1+\sum_{j=1}^{\left[\frac{2}{5} \log f_{A}(x)\right]} \frac{1}{j!}\left(\sum_{y^{1 / 2 \Omega f_{A}(x)<p \leqq x}} \frac{1}{p^{\alpha}}\right)^{j} \leqq 1+\sum_{j=1}^{\left[\frac{2}{5} \log f_{A}(x)\right]} \frac{1}{j!}\left(\log \frac{\log x}{\log y^{1 / 2 \Omega \rho_{A}(x)}}\right)^{j}==
$$

$$
=1+\sum_{j=1}^{\left[\frac{2}{5} \log f_{A}(x)\right]} \frac{1}{j!}\left(\log 2 \Omega\left(f_{A}(x)\right)^{4 / 3}+c_{13}\right)^{j}<1+\sum_{j=1}^{\left[\frac{2}{5} \log f_{A}(x)\right]} \frac{1}{j!}\left(\frac{134}{100} \log f_{A}(x)\right)^{j}<
$$

$$
\left.<\log f_{A}(x) \frac{1}{\left[\frac{2}{5} \log f_{A}(x)\right]!}\left(\frac{134}{100} \log f_{A}(x)\right)^{\left[\frac{2}{5} \log f_{A}(x)\right.}\right]<
$$

$$
<c_{14}\left(\log f_{A}(x)\right)^{1 / 2}\left(\frac{\frac{134}{100} e \log f_{A}(x)}{\left[\frac{2}{5} \log f_{A}(x)\right]}\right)^{\left[\frac{\sum_{5}^{2} \log f_{A}(x)}{}\right]}<c_{14}\left(\log f_{A}(x)\right)^{1 / 2}\left(\frac{\frac{14}{10} e^{\frac{2}{5}}}{)^{\frac{2}{5} \log f_{A}(x)}}=\right.
$$

$$
=c_{14}\left(\log f_{A}(x)\right)^{1 / 2}\left(f_{A}(x)\right)^{\frac{2}{5} \log \frac{7}{2} e}<c_{14}\left(\log f_{A}(x)\right)^{1 / 2}\left(f_{A}(x)\right)^{91 / 100}<\left(f_{A}(x)\right)^{92 / 100} .
$$

By (2), (33) and (34) yield for sufficiently large c_{3} that
(35) $f_{A_{3}}(x)>\frac{1}{2} f_{A}(x)-2\left(\log f_{A}(x)\right)\left(f_{A}(x)\right)^{92 / 100}>\frac{1}{2} f_{A}(x)-\left(f_{A}(x)\right)^{93 / 100}>\frac{1}{4} f_{A}(x)$.

Let S denote the set of the integers n such that $n \leqq x$ and n can be written in the form

$$
\begin{equation*}
n=a u \text { where } a \in A_{3} \text { and } \omega\left(u, y^{1 / 2 \Omega f_{A}(x)}, y\right)>\frac{99}{100} \log f_{A}(x) . \tag{36}
\end{equation*}
$$

For fixed $n \in S$, let $\varphi(n)$ denote the number of representations of n in the form (36).

Then we have
(37)

In order to estimate the last sum, we need the following lemma:
Lemma 1. Let us write

$$
\begin{equation*}
Q(u)=u-(1+u) \log (1+u) . \tag{38}
\end{equation*}
$$

Then for $1 \leqq t, 2 t<z \leqq v, 0 \leqq \alpha \leqq 1$ we have

$$
\sum_{\omega(n, t, z) \leqq(1-\alpha)}^{\substack{\sum_{t \leq p \leq z}^{1 / p}}} 1<c_{15} v \exp \left(Q(-\alpha) \log \frac{\log z}{\log t}\right) .
$$

This lemma is identical with Lemma 2 in [3]; in fact, it is a consequence of a result of K. K. Norton (see [6]; see also Halász [4]).

By using Lemma 1 with $y^{1 / 2 \Omega f_{\Lambda}^{(x)}}, y, x / a$ and $1 / 200$ in place of t, z, v and α, respectively (note that $1 \leqq t$ and $2 t<z \leqq v$ hold by (2), (3), (13) and (14)), we obtain for sufficiently large c_{3} that

$$
\begin{align*}
& \sum_{\substack{u \leq x / a \\
\equiv \frac{199}{200}}} 1<c_{15} \frac{x}{a} \exp \left(Q\left(-\frac{1}{200}\right)\right. \tag{39}\\
& <c_{15} \frac{x}{a} \exp \left(-10^{-5} \log 2 \Omega f_{A}(x)\right)<\frac{1}{4} \frac{x}{a} .
\end{align*}
$$

Furthermore, by (2), and with respect to the well-known formula

$$
\begin{equation*}
\sum_{p \leqq u} \frac{1}{p}=\log \log u+c_{16}+o(1) \tag{40}
\end{equation*}
$$

for sufficiently large c_{3} (depending on Ω) we have

$$
\begin{gather*}
\frac{199}{200} \sum_{y^{1 / 2 \Omega f_{A}(x)<p \leqq y}} \frac{1}{p}>\frac{199}{200}\left(\log \frac{\log y}{\log y^{1 / 2 \Omega f_{A}^{(x)}}}-c_{17}\right)= \tag{41}\\
=\frac{199}{200}\left(\log 2 \Omega f_{A}(x)-c_{17}\right)>\frac{99}{100} \log f_{A}(x)
\end{gather*}
$$

(39) and (41) yield that

$$
\begin{align*}
& \sum_{u \leq x \mid a} 1 \leqq \quad \sum_{u \leq x / a} \quad 1<\frac{1}{4} \frac{x}{a} . \tag{42}
\end{align*}
$$

We obtain from (35), (37) and (42) that

$$
\begin{gather*}
\sum_{n \leqq x} \varphi(n)>\sum_{a \in A_{3}}\left(\sum_{u \geqq x / a} 1-\frac{1}{4} \frac{x}{a}\right)=\sum_{a \in A_{3}}\left(\left[\frac{x}{a}\right]-\frac{1}{4} \frac{x}{a}\right)>\sum_{a \in A_{3}}\left(\frac{1}{2} \frac{x}{a}-\frac{1}{4} \frac{x}{a}\right)= \tag{43}\\
=\frac{1}{4} x f_{A_{3}}(x)>\frac{1}{16} x f_{A}(x) .
\end{gather*}
$$

Now we are going to give an upper estimate for $\sum_{n \leqq x} \varphi(n)$. Obviously, for $n \leqq x$ we have

$$
\varphi(n) \leqq d_{A}(n) \leqq D_{A}(x)
$$

hence

$$
\begin{equation*}
\sum_{n \leqq x} \varphi(n)=\sum_{n \in S} \varphi(n) \leqq \sum_{n \in S} D_{A}(x)=|S| D_{A}(x) . \tag{44}
\end{equation*}
$$

Thus in order to obtain an upper bound for $\sum_{n \leqq x} \varphi(n)$, we have to estimate $|S|$. If $n \in S$ then by (36) and the definition of the set A_{3}, we have

$$
\begin{gathered}
\omega\left(n, y^{1 / 2 \Omega f_{A}(x)}, x\right)=\omega\left(a u, y^{1 / 2 \Omega f_{A}(x)}, x\right)=\omega\left(a, y^{1 / 2 \Omega f_{A}(x)}, x\right)+\omega\left(u, y^{1 / 2 \Omega f_{A}(x)}, x\right) \geqq \\
\geqq v\left(a, y^{1 / 2 \Omega f_{A}(x)}, x\right)+\omega\left(u, y^{1 / 2 \Omega f_{A}(x)}, y\right)=v^{+}\left(a, y^{1 / 2 \Omega f_{A}(x)}\right)+\omega\left(u, y^{1 / 2 \Omega f_{A}(x)}, y\right)> \\
>\frac{2}{5} \log f_{A}(x)+\frac{99}{100} \log f_{A}(x)=\frac{139}{100} \log f_{A}(x)
\end{gathered}
$$

hence

$$
\begin{equation*}
|S| \leqq \sum_{\substack{n \leqq x \\ \omega\left(n, y^{\left.1 / 2 \Omega f_{\Lambda}(x), x\right)}>\frac{139}{100} \log f_{\Lambda}(x)\right.}} 1 . \tag{45}
\end{equation*}
$$

In order to estimate this sum, we need the following
Lemma 2. For $1 \leqq t, 2 t<z \leqq v, 0<\alpha \leqq \beta<1$ we have

$$
\sum_{\omega(n, t, z) \geqq(1+\alpha) \leq}^{\substack{n \leq p \leqq z}}{ }^{1 / p} 1<c_{18}(\beta) \alpha^{-1} v\left(\sum_{t<p \leqq z} \frac{1}{p}\right)^{-1 / 2} \exp \left(Q(\alpha) \log \frac{\log z}{\log t}\right)
$$

(where $Q(u)$ is defined by (37)).
This lemma is identical with Lemma 3 in [3]; in fact, it is a consequence of a result of K. K. Norton (see [6]; see also Halész [4]).

By using Lemma 2 with $y^{1 / 2 \Omega f_{A}(x)}, x, x, \frac{1}{30}$ and $\frac{1}{2}$ in place of t, z, v, α and β, respectively (note that $1 \leqq t$ and $2 t<z \leqq v$ hold by (2), (13) and (14)), and with
respect to (2), (14) and (40), we obtain for sufficiently large c_{3} that

$$
\begin{equation*}
\sum_{\substack{n \leq x\\) \geq \frac{31}{30}{ }_{y^{1 / 2 \Omega}}} \underset{A^{(x)}<p<x}{\sum} \underset{\sim}{1 / p}} \tag{46}
\end{equation*}
$$

$=c_{19} x \exp \left(Q\left(\frac{1}{30}\right) \log \frac{\log x}{\log x^{1 / 2 \Omega\left(S_{A}(x)\right)^{4 / 3}}}\right)=c_{19} x \exp \left(Q\left(\frac{1}{30}\right) \log 2 \Omega\left(f_{A}(x)\right)^{4 / 3}\right)<$

$$
<c_{19} x \exp \left(-5 \cdot 10^{-4} \cdot \frac{4}{3} \log f_{A}(x)\right)<x\left(f_{A}(x)\right)^{-6 \cdot 10^{-4}}
$$

Furthermore, by (2), (14) and (40), we obtain that if c_{3} is sufficiently large (in terms of Ω) then

$$
\begin{gathered}
\frac{31}{30} y_{y^{1 / 2 \Omega f_{A}(x)}<p \leqq x} \frac{1}{p}<\frac{31}{30}\left(\log \frac{\log x}{\log y^{1 / 2 \Omega f_{A}(x)}}+c_{20}\right)= \\
=\frac{31}{30}\left(\log \frac{\log x}{\log x^{1 / 2 \Omega\left(f_{A}(x)\right)^{1 / 3}}}+c_{20}\right)=\frac{31}{30}\left(\log 2 \Omega\left(f_{A}(x)\right)^{4 / 3}+c_{20}\right)< \\
<\frac{31}{30} \cdot \frac{134}{100} \log f_{A}(x)<\frac{139}{1 C 0} \log f_{A}(x) .
\end{gathered}
$$

We obtain from (45), (46) and (47) that

$$
\begin{gather*}
|S| \leqq \sum_{\substack{n \leq x}} 1 \leqq \sum_{\substack{n \leq x \\
\omega\left(n, y^{1 / 2 \Omega f_{A}}(x), x\right)>\frac{139}{100} \log f_{A}(x)}} 1<{ }_{\omega\left(n, y^{\left.1 / 2 \Omega f_{A}(x), x\right) \equiv \frac{31}{30} y^{1 / 2 \Omega f_{A}} \sum_{A}^{\Sigma(x)<p \leq x}} 1 / p\right.} 1<x\left(f_{A}(x)\right)^{-6 \cdot 10-4} .
\end{gather*}
$$

(43), (44) and (48) yield that

$$
\frac{1}{16} x f_{A}(x)<\sum_{n \leqq x} \varphi(n) \leqq|S| D_{A}(x)<x\left(f_{A}(x)\right)^{-6 \cdot 10-4} D_{A}(x)
$$

hence

$$
D_{A}(x)>\frac{\left(f_{A}(x)\right)^{6 \cdot 10-4}}{16} f_{A}(x) .
$$

If c_{3} in (2) is sufficiently large in terms of Ω then this implies (4). Thus (4) holds also in Case 2.2 and this completes the proof of Theorem 2.
3. Proof of Corollary 1. By using Theorem 2 with $x^{1+1 /\left(f_{A}(x)\right)^{1 / 4}}$ in place of x, we obtain (5) (with $y=x^{1+1 /\left(f_{A}(x)\right)^{1 / 4}}$).

Proof of Corollary 2.
Put

$$
\begin{equation*}
c_{6}=\max \left(2 c_{3}, 3\right) . \tag{49}
\end{equation*}
$$

Then by using Theorem 1 with $A \cap\left[0, x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}}\right]$ and 2Ω in place of A and Ω, respectively, we obtain that for sufficiently large x (6) and (7) imply

$$
f_{A}\left(x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}}\right) \leqq \frac{f_{A}(x)}{2} .
$$

Thus we have

$$
\begin{equation*}
\sum_{x^{1-1 /\left(f_{A}\right.} \sum_{(x))^{1 / 3}<a \leqq x}} \frac{1}{a}=f_{A}(x)-f_{A}\left(x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}}\right) \geqq \frac{f_{A}(x)}{2} . \tag{50}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \sum_{x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}<a \leqq x}} \frac{1}{a} \leqq \sum_{x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}<a \leqq x}} \frac{1}{x^{1-1 /\left(S_{A}(x)\right)^{1 / 3}}}= \tag{51}\\
& =\frac{1}{x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}}} \sum_{x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}<a \leqq x}} 1 \leqq \frac{N_{A}(x)}{x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}}} .
\end{align*}
$$

With respect to (6) and (49), (50) and (51) yield that

$$
N_{A}(x) \geqq \frac{f_{A}(x)}{2} x^{1-1 /\left(f_{A}(x)^{1 / 3}\right)}>x^{1-1 /\left(f_{A}(x)\right)^{1 / 3}}
$$

which completes the proof of Corollary 2.
4. Proof of Theorem 3. Assume that (8) and (9) hold, and define y by

$$
y^{2 t}=x^{1 / 2}
$$

1.e.,

$$
\begin{equation*}
y=x^{1 / 2^{2+1}} . \tag{52}
\end{equation*}
$$

For $j=1,2, \ldots, t$, let A_{j} denote the set consisting of the integers a such that
and

$$
x / y^{2^{j}}<a \leqq x / y^{2 j-1}
$$

Let

$$
p(a)>y^{2 J} .
$$

$$
A=\bigcup_{j=1}^{t} A_{j}
$$

We are going to show that this sequence A satisfies (10), (11) and (12) (provided that c_{6}, c_{8} are sufficiently small and $c_{7}, c_{9}, c_{10}, c_{11}, X_{4}$ are sufficiently large).

In order to estimate $f_{A}(x)$, we need the following
Lemma 3. There exist absolute constants c_{21}, c_{22} such that if $u \geqq 3, v \geqq u^{2}$ then we have

$$
c_{21}<\sum_{\substack{v<n \leqq v u \\ p(n)>u^{2}}} \frac{1}{n}<c_{22}
$$

This lemma is a consequence of the estimate

$$
c_{23} \frac{x}{\log y}<\sum_{\substack{n \leqq x \\ p(n)>y}} 1<c_{24} \frac{x}{\log y} \quad\left(\text { where } 3 \leqq y<x^{5 / 6}\right)
$$

which can be proved easily by using standard methods of the prime number theory (see e.g. [7]).

For $1 \leqq j \leqq t$, put $v=x / y^{2^{j}}, u=y^{2 j-1}$. Then by (8), (9) and (52), for sufficiently small c_{7} and sufficiently large X_{4} we have

$$
u=y^{2 j-1} \geqq y=x^{1 / 2 c^{t+1}}>x^{1 / 2^{c_{7} \log \log x+1}}=\exp \left(\frac{\log x}{2(\log x)^{c_{7} \log 2}}\right) \geqq \exp \left((\log x)^{1 / 2}\right) \geqq 3
$$

and

$$
u^{2}=\frac{u^{2}}{v} v=\frac{y^{2^{j}}}{x / y^{2 J}} v=\frac{y^{2 j+1}}{x} v \leqq \frac{y^{2+1}}{x} v=v,
$$

thus Lemma 3 can be applied. We obtain that

$$
c_{21}<f_{A j}(x)=\sum_{a \in A_{j}} \frac{1}{a}=\sum_{\substack{x / y^{22}<a \leq x \mid 2^{2 j-1} \\ p(a)>y^{2 j}}} \frac{1}{a}<c_{22}
$$

hence

$$
\begin{equation*}
c_{21} t<f_{A}(x)=\sum_{j=1}^{t} f_{A j}(x)<c_{22} t \tag{53}
\end{equation*}
$$

Furthermore, by the construction of the sequence A we have

$$
\begin{equation*}
A \cap\left(\frac{x}{y}, x\right]=\emptyset \tag{54}
\end{equation*}
$$

where, by (53),

$$
\begin{equation*}
\frac{x}{y}=x^{1-1 / 2^{t+1}}<x^{1-1 / 2_{21}^{c_{21}^{1}} f_{A}(x)+1}<x^{1-1 / c_{23} f_{A}(x)} . \tag{55}
\end{equation*}
$$

(54) and (55) yield (11).

Finally, by the construction of the sequences A_{j}, if $n \leqq x, a \in A_{j}$ and $a^{\prime} \in A_{j}$ then $a / n, a^{\prime} / n$ cannot hold simultaneously so that

$$
d_{A_{j}}(n) \leqq 1 \quad \text { for all } 1 \leqq j \leqq t \text { and } n \leqq x \text {, }
$$

hence with respect to (53),

$$
d_{A}(n)=\sum_{j=1}^{t} d_{A_{j}}(n) \leqq \sum_{j=1}^{t} 1<t<\frac{1}{c_{21}} f_{A}(x) \text { for all } n \leqq x
$$

which proves (12) and this completes the proof of Theorem 3.
5. Theorem 2 shows that for relatively small $y, D_{A}(y) / f_{A}(x) \rightarrow+\infty$, while for $y=\exp \left((\log x)^{2}\right)$, the proof of Theorem 2 in [2] yields a good (near best possible)
lower bound for $D_{A}(y)$ (in terms of $f_{A}(x)$). One might like to seek for results "midway" these theorems, i.e., one might like to estimate $D_{A}(y)$ (in terms of $f_{A}(x)$) e.g. for $y=x^{2}$. In fact, the following problems of this type can be raised:

Problem 1. Find a possibly small function $\varphi(x)$ such that for all $\Omega>0$, $x>X_{5}(\Omega)$ and
imply that

$$
\begin{equation*}
D_{A}\left(x^{2}\right)>(\log x)^{\Omega} . \tag{56}
\end{equation*}
$$

In fact, we can show that (56) follows from $f_{A}(x)>(\log x)^{\varepsilon}, x>X_{6}(\varepsilon, \Omega)$ where ε is arbitrary small but fixed positive number (independent of Ω). However, perhaps, it is sufficient to assume that

$$
f_{A}(x)>\exp \left(c_{24}(\Omega)(\log \log x)^{1 / 2}\right)
$$

Our results in Part II suggest that our assumption for $f_{A}(x)$ if true cannot be improved very much.

Problem 2. Is it true that for all $\Omega>0$, there exist constants $c_{25}=c_{25}(\Omega)$ and $X_{7}=X_{7}(\Omega)$ such that $x>X_{7}$ and
imply that

$$
f_{A}(x)>\varphi(x)
$$

$$
D_{A}\left(x^{2}\right)>\left(f_{A}(x)\right)^{\Omega} ?
$$

REFERENCES

[1] Erdős, P. and SÁrközy, A., Some asymptotic formulas on generalized divisor functions, I, Studies in pure mathematics, To the memory of Paul Turán, Akadémiai Kiadó, Budapest (to appear).
[2] Erdős, P. and SÁrközy, A., Some asymptotic formulas on generalized divisor functions, II, J. Number Theory 15 (1982), 115-136.
[3] Erdős, P. and SÁrközy, A., Some asymptotic formulas on generalized divisor functions, III, Acta Arith. (to appear).
[4] Halász, G., Remarks to my paper "On the distribution of additive and the mean values of multiplicative arithmetic functions", Acta Math. Acad. Sci. Hungar. 23 (1972), 425-432. MR 47\#8472.
[5] Hall, R. R., On a conjecture of Erdős and Sárközy, Bull. London Math. Soc. 12 (1980),21-24.
[6] Norton, K. K., On the number of restricted prime factors of an integer, I, Illinois J. Math. 20 (1976), 681-705. MR 54 \# 7403.
[7] Prachar, K., Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. MR 19-393.
(Received September 25, 1981)

[^0]: 1980 Mathematics Subject Classification. Primary 10H25.

