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BERNOULLI NUMBERS
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Abstract

The fractional parts of the Bernoulli numbers are dense in the interval (0, 1) .
For every positive integer k, the set of all m for which B 2. has the same
fractional part as B21 has positive asymptotic density .

1. Introduction

The Bernoulli numbers are the coefficients Bn of the power series

tl (e t - 1) = I Bn to/n !
n=0

It is well known that they are rational numbers and that B n = 0 for odd n > 1 .
We have B2 = 1/6, B 4 = - 1/30, B6 = 1/42, etc. The fractional parts {B2k} may
be computed easily by the von Staudt-Clausen theorem, which says that
B2k + Y 1/p is an integer, where the sum is taken over all primes p for which
(p - 1) 2k .
Several years ago one of us computed {B20) for 2 < 2k < 10000 and noted

two curious irregularities in their distribution : (1) There were large gaps, e .g .,
the interval [0.167, 0 .315], which contained none of these numbers. More com-
putation showed that the gaps tend to be filled in if one used enough 2k's . We
prove in Section 2 that the fractional parts are dense in (0, 1) . (2) A few
rationals appeared with startling frequency . For example, 1/6 occurred 834
times among the 5000 numbers, that is, almost exactly 1/6 of the time . When
the calculation was extended to 2k = 100000 it was found that the fraction of
m < x for which {B 2mi} = 1/6 remained close to 1/6 for 100 < x < 50000 . We
prove in Section 4 that for every k >- 1, the set of all m for which {B2m} = {B2k}
has positive asymptotic density . The set of such m was known to be infinite (see
p. 93 of [6]).

Since our proof gives no indication of the value of the asymptotic density, we
list in a table the {B2k } which occur most frequently for 2k 5 100000. Let )0 2k

denote {p : p is prime and p - 1 I 2k} . The table shows Y-p E?02k 1/p, the first 2k for
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BERNOULLI NUMBERS FRACTIONAL PARTS DIST

0 .00

	

0 .13

	

0 .25

	

0.36

	

0.50

	

0.63

	

0.75

	

0.86

	

1.00

which 4'2k appears, {Bzk}, the number and density of 2m < 100000 with
'~#zm = °p2k, and the elements of -9p2k . (Note that {Bzk} _ {B2m } if and only if
°~zk = ~)/0zm, by the von Staudt-Clausen theorem .)

Generally speaking, {B20 occurs more often when there are fewer and smal-
ler primes in ')A 2k . Not every finite set of primes which includes 2 and 3 can be a
2*'Zk . For instance, if 5, 7 and 11 are in the set, then it must contain 61 as well .
Likewise, if the set contains 13, then 5 and 7 must be in it, too .

We also show the graph of the distribution function

F.(z) = x -1 - (the number of m < x for which {B2m} < z)

for x = 10000 and 0 < z < 1 . The graph is virtually indistinguishable from
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those of F1ooo and Fsooo . The size of the vertical jump at z = { BZk} approxi-
mates the asymptotic density of the set of m for which {B2.} _ {B Zk} . We show
in Section 4 that the limiting distribution F(z) = lim., F,r(z) exists . We also
mention several open questions at the end .

2. The fractional parts are dense in (0, 1)

Let S(2m) _ IP C "'2. 1/p. We want to prove that the {Bzk} are dense in (0, 1) .
According to the von Staudt-Clausen theorem, the denominator of B Zk (in
lowest terms) is HPE Bzk P* Hence {BZk } is never zero, and {B Zk} = 1 - JS(2k)1 .
Thus it suffices to prove that the fractional parts of the S(2k) are dense in (0, 1) .
Note that S(2k) >_ 5/6 because both 2 - 1 and 3 - 1 divide every 2k, and
1/2 + 1/3 = 5/6 .

THEOREM 1 . For all a >_ 5/6 and r. > 0, there are infinitely many even integers
2m,for which I S(2m) - a I < r. .

Proof. Let p„ denote the nth prime . Let r be a large integer . (Later we will
choose r sufficiently large depending on f: .) Let A, = 2P,P,+ I . .. P"+ - If p = -1
(mod PZ P3 . . . p, I), and p - 1 is squarefree, then (p - 1) I A, for all sufficiently
large s. It follows from the prime number theorem for arithmetic progressions
and a simple sieve argument that 1] 1/p diverges, where p runs over primes
p - -1 (mod PZ p3 ' ' , p r _ 1 ) with p - 1 squarefree . Thus we can choose s so
that S(A s) > a . We prove the theorem by removing the factors pr+s, Pr+s-1, etc .,
from A s , one by one, until S(AJ is close to a . It suffices to show that S(AJ -
S(A s ,) < r provided pr is large enough .

Let d,, . . ., dk be all of the divisors of A s_, . Write q for pr+s . Then d,, . . ., d k,
qd,, . . . , qdk are all of the divisors of A s . Thus (o denotes the sum of divisors
function)

S(Aj

	

1
s - S(AsI ) = Y

	

y_-
p- 1IA s but P

	

p- 1 =qdi
p- 1-~As 1

	

for some i

1

	

1

	

1 k

	

di

	

6(As-1)

< q i=, di

	

q i=, As-,

	

qAs-1

1 -

P

k

i =1,
1 +qdi
is prime

1
1 + qd i

<
R

log log A,-, <
q

log (pr+s - 1 - P,)

< c 2 log q < c2 logPr < s
q

	

Pr



for large enough r and some absolute constants C1, C2 . The estimates of (J(A S _,)
and log AS _, follow from Theorems 323 and 414 of [6], respectively . This
completes the proof.

3. A result on divisibility by p - 1

In this section we prove that numbers which have a large divisor of the form
p - 1 are rare . This result (Theorem 2) is the essential ingredient in our proof of
Theorem 3, and has some independent interest as well .

THEOREM 2 . For each s > 0, there is a T = T(e) so that if x > T, then the
number of m < x which have a divisor p - 1 > T, with p prime, is less than sx .

Notation . The counting function of a set of integers will be denoted by the
corresponding Latin letter, e.g ., A(n) is the number of a e with 1 < a < n .
Let 0,(m) be the number of primes < R which divide m (counting multiplicity) .
Write 0(m) for Q,,,(m) .

Proof of Theorem 2 . Let T be a fixed large number . Let sad be the set of all
natural numbers which have a divisor p - 1 > T, with p prime. We will prove
the theorem by showing that there are positive constants c 3 and µ such that
A(x) < c 3 x/log" T for all sufficiently large T and x .

Every element m of Vl can be written in the form m = (p - 1)n, where p is
prime and p - 1 > T. We separate the elements of Q/ into three classes,
depending on the number of prime factors of p - 1 and of n . Some elements
may appear in more than one class, but this does not matter, since we require
only an upper bound on A(x) . The classes are defined by

(1)

(2)

and

(3)
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Q(p - 1) < (2/3) log log p,

Q p (n) < ( 2/3) log log p,

Q(p - 1) -> (2/3) log log p and S2p ( n) >_ (2/3) log log p .

Lemmas 1, 2, and 4 will estimate the counting functions of these three classes .

LEMMA 1 . There are positive constants c 4 , 6, y o such that ifx > T >- y o , then
the number D, (x) of m < x for which there is a prime p > T + 1 with (p - 1) 1 m
and S2(p - 1) < (2/3) log log p satisfies

Dl(x) < c 4 x/logó T.

Proof. It was shown in [2] that the number of primes p < y with

Q(p - 1) < (2/3) log log y is O(y/log y+sy) provided y > yo .
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For each such p, there are [x/(p - 1)] multiples of p - 1 which are < x. Thus,
for x > T >- y o , we have

D1 (x) <
p prime
p>T+1

Q(p - 1) < (2/3)loglogp

Y-
p prime
p>T+1

O(p- 1) < (2/3)loglogp

_ ,• p og a p

x

S log' T

x

p

LEMMA 2 . There are positive constants c s , 11 such that if x > T > e, then the
number D 2(x) of m < x for which there is a prime p > T + 1 with (p - 1) 1 m and
Qp(m/(p - 1)) < (2/3) log log p satisfies

D2 (x) < c, x/log" T.

Proof. According to Theorem 5 .9 of [7], there is a positive constant n such
that the number of n < y for which Q,i(n) < (2/3) log log R is 0(y/log" R),
provided y >_ 1. For each prime p between T + 1 and x + 1, we apply the
theorem with R = p, n = m/(p - 1), and y = x/(p - 1). Summing the estimates,
we find

x

D2(x)
<

	

Y-

	

p - ,

p prime

	

log" P
T+1<p<x+l

•

	

x 1
p prime P log" P
p>T+1

°°

	

dt
•

	

x~
	 ( T/lo g T) t log t log" (t log t)

x

•

	

log" (T/log T)

The lemma follows since T/log T > ,,/ T.

LEMMA 3 . There are positive constants c 6 , ~, To such that ifx > T > To , then

the number of m < x for which there is some t > T with Q,(m) > (4/3) log log t is

less tha'd c b x/log' T.
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Proof. By Norton's Theorem 5 .12 [7], there are positive constants c 7 and q
such that for every t, the number of m < x with Q,(m) >_ (7/6) log log t is
< c, x/log" t.
Now let t i = exp (i l l") . We apply Norton's theorem to those ti > T. Since

°°

	

1

	

°°

	

i-2 <

	

1

i=1 log" t,

	

i-1

	

1 + log"/2 T ,
ii > T

	

i > log"/2 T

we see that there is a positive c 6 such that the number of m < x for which
S2„ (m) _> (7/6) log log t i for some t i > T is less than c 6 x/log"/ 2 T.

Now let m < x, and suppose there is a t with Q,(m) >- (4/3) log log t . If
ti _ I < t < t i and i is large enough, then we have

Q,, (m) >_ S2, (m) -i (4/3) log log t >- (4/3) log log ti t _> (7/6) log log t i .

Thus, for sufficiently large i (or T), the number of such m < x does not exceed
the number of m < x for which Q,,(m) >_ (7/6) log log t i for some t i > T. We
showed above that the latter number is less than c 6 x/log' T, with .i = q/2 .

Remark . In fact a much sharper statement than Lemma 3 is announced in
[3] . A modification of our proof would give the stronger result, which can also
be demonstrated by the methods of probabilistic number theory .

LEMMA 4. There are positive constants c 8 , A, To such that if x > T > To , then
the number D 3(x) of m < x for which there is a prime p > T + 1 with (p - 1) I m,

Q(p - 1) >_ (2/3) log log p and Q p(m/(p - 1)) >_ (2/3) log log p

satisfies
D 3(x) < c 8 x/log' T.

Proof. The hypotheses imply Q P(m) >- (4/3) log log p, so that this lemma is
immediate from the preceding one .
Theorem 2 now follows at once from Lemmas 1, 2, and 4 because

A(x) < D,(x) + D 2 (x) + D3(X)-

4. The asymptotic density is positive

We wish to show that for every k > 1, the set of all m for which {B zrn} _ {B 20
has positive asymptotic density . In view of the von Stands-Clausen theorem,
this is equivalent to :

THEOREM 3 . For every k >_ 1, the set of all m for which -94zr,, _ ~ zk has posi-
tive asymptotic density.

We introduce a little more notation . Let LCM (a, b) denote the least
common multiple of a and b . Write .V(V) for the set of all positive multiples of
elements of mil .
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Proof of Theorem 3 . Let 2k be given . Let .' be the set of all positive
multiples of 2k . Let o be the set of all m such that J . _ ')02k . We may assume
without loss of generality that 2k is the least element of A- 0 . Note that this just
says that 2k is the least common multiple of all of the numbers p - 1 with
p E ')02k . Thus dro c . Let .4 be the set of all LCM (p - 1, 2k) for which p is
a prime not in )02k (i .e ., (p - 1),[2k .) Then

	

is the disjoint union of -co and
4(.4). Write the elements of V in increasing order as a, < az < • • * .

We will use Theorem 2 with e = 1/4k ; this gives us T. Each a i in .4 was
formed as a i = LCM (p i - 1, 2k) for some prime p i with p i - 1 < a i <
2k(p i - 1) . Choose the least r for which a r >_ 2kT. Then, for i >- r, we have
pi - 1 >_ ai/2k -> T . Let 4, = {a,, . . ., a r} and sd 2 = '4 -,4 i . We have
A2(x) < A(x) < n(x + 1) < 2x/log x for all large x . Therefore, by [4] or
Theorem 14, p . 262 of [5], ,4(,4) and (-4 2 ) possess asymptotic density .
Clearly 4(,4 1 ) has asymptotic density, too . By Theorem 2, we have (with d
denoting asymptotic density)

d( (.4 z )) < 1/4k.

	

(1)

Let T„(q,, . . ., qJ denote the asymptotic density of the sequence consisting of
all those multiples of n which are not divisible by any q i (i = 1, . . ., s). Behrend
[1] (see also Lemma 5, p . 263 of [5]) proved that

T, (q ,, . . ., gJT,(gs+i, . . ., qs+,) <_ T, (q ,, . . ., qs+,)

always. A slight modification of his proof yields the relativized version

T„(q,, . . ., qs)T„(9s +,, . . .> q,,,)< nT„(gi, . . ., qs+,) .

We apply this inequality with n = 2k to the elements of d. For the r chosen
above, and any s, we obtain

We have

T2k(a,,

	

ar)T2k(ar +,, . . . . a,) C 2k T2k(a,, . . . . a,J.

S-C

S-a0

1
T2k(a,, . . ., ar ) =

2k - d(?4(~,)) > 0 .

lim T2k(ar +,, . . ., ar+s) = 2k

(2)

(3)

(The positivity may be proved easily by induction on r using (2) with s = 1 .)
Furthermore,

(4)

because d(.I(! z )) exists . (See also Theorem 12, p. 258 of [5] .) Likewise,

lim Tzk(a,, . . . , ar+s 11, - d(M(,d )) = d(ro) .

	

(5)



which is Theorem 3 .

COROLLARY . The distribution function F(z) = limx-, F,(z) exists and is a
jump function. The convergence is uniform and the sum of the heights of the jumps
of F is 1 .

5. Some open questions

It might be interesting to study S(n) _ Y( p _ ,),,, 1/p. We proved that the range
of S is dense in [5/6, oo) and S has a distribution function which is a jump
function . Can one estimate M(x) = max,, S(n)? It is likely that
M(x)/log log x , 0, but that M(x)/log log log x oo . Prachar [8] has shown
that the related function d, (n) _ J( p_, ) , n 1 has average order log log n and
that d, (n) > nc/(log log n" for some c > 0 and infinitely many n .

More generally, let a, < a 2 < - - - be a sequence of integers and b,, b 2 , . . . be a
sequence of positive real numbers . (In our case, a i = p i - 1 and b i = p i .) Define
JA(n) Y_ail n 1/bi . When does it happen that the density of integers m for which
.fÁ (m) = fA(n) is positive? This holds at least when the ai's have this property :

(P) For all n, the set of those m which are divisible by precisely the same a is
as n has positive density .

Property (P) does not hold for all sequences . It fails, for example, for a i = 2i.
Two related problems are to characterize the sequences of ai' s which have
property (P) and to study the distribution offA(n) .

Now consider the fractional parts {B Uk with 2k < x . How many distinct
values are assumed? Theorems 2 and 3 answer o(x) . On the other hand, a lower
bound is (x/log x)(1 + 0(1)) because {B p_,} {Bq ,} when p and q are distinct
primes. The number of distinct {B20 with 2k < x is 284, 566, 2612, and 5131 for
x = 1000, 2000, 10000, 20000, respectively.

We remarked in the introduction that not every finite set of primes can be a
J0 2k . Let 2, 3, . . ., p, be the set of primes < x . How many of the 2' subsets can
be )0 2k's?

Let S2k be the asymptotic density of the set of 2m with {B2mj _ {B Zk} . Can we
ever have b2k = 62m for {B Uk {B2n,}? Clearly ó 2k < 1/2k . What is a positive
lower bound for 620 Is {2UNJ dense in (0, 1)? Probably one could show that
62 is the greatest 62k .

Acknowledgment . We are grateful to Mr . Richard Sunseri, who discovered a
mistake in an earlier version of this paper .
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Formulas (1)-(5) now imply

2kd(` °) >- (2k
- d(.4(. ,)))( 2k - d(-~4('~2))) > 0,
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Table of {B 20 which appear at least 150 times among {B2}, {B4 }, . . ., {B,00000Í

1

p prime, (p- 1)12k p

First

2k

{B2k} Frequency

to 100000

Density

to 100000

Primes p

(p - 1) 1 2k

0 .833333 2 0.166667 7992 0.15984 2, 3
0.845382 82 0.154618 150 0 .00300 2, 3, 83
0.850282 58 0.149718 235 0 .00470 2, 3, 59
0.854610 46 0.145390 261 0 .00522 2, 3, 47
0.876812 22 0.123188 566 0.01132 2, 3, 23
0.924242 10 0.075758 1080 0 .02160 2, 3, 11
0.976190 6 0.023810 1371 0.02742 2, 3, 7
1 .028822 18 0.971178 397 0.00794 2, 3, 7, 19
1 .033333 4 0 .966667 3423 0.06846 2, 3, 5
1 .052201 52 0 .947799 164 0.00328 2, 3, 5, 53
1 .067816 28 0 .932184 309 0.00618 2, 3, 5, 29
1 .076812 44 0.923188 160 0.00320 2, 3, 5, 23
1 .092157 16 0 .907843 713 0.01426 2, 3, 5, 17
1 .124242 20 0.875758 289 0.00578 2, 3, 5, 11
1 .253114 12 0.746886 495 0 .00990 2, 3, 5, 7, 13
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