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In this paper we prove (in a rather more precise form) two conjectures of P .
Erdős about the maximum and minimum values of the divisor function on inter-
vals of length k .

INTRODUCTION

In this paper we prove two conjectures of P . Erdős concerning the divisor
function -r(n) . These are

CONJECTURE A. For each fixed integer k, we have

Y max{r(n), -r(n + 1), . . ., r(n + k - 1)) " kx log x .
n<x

CONJECTURE B . For each fixed integer k, there exists a g, < 1, such that
lim(gk : k, oo) =log 2, and such that for every e > 0 and x > x 0(e, k), we have

x(log x) ek- < Y min{r(n), r(n + 1), . . ., r(n + k - 1)} < x(log x)ek
+F

n<x

In each case we prove slightly more-it turns out that B is much more
difficult than A .

THEOREM 1 . Conjecture A is true. Moreover, the formula holds for k -> oo
as x ---)- oo, provided
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k = o((log x)3-2(2)112) .

176



DIVISOR FUNCTION

	

177

THEOREM 2 . Conjecture B is true . More precisely, let k be fixed,

ak = k(21 /k - 1) .

Then for sufficiently large x,

C,(k) x(log x)°k

5

	

min{-r(n), r(n + k - 1)} <_ C,(k) x(log x)"k
(loglog X) 11k2 n<x

Remarks . It would be of interest to know how large k may be, as a
function of x, for the formula in Theorem 1 to be valid .

The llk2 appearing in Theorem 2 is not the best that could be obtained
from the present technique, but the exponent of loglog x certainly tends to
infinity with k . It seems possible that no power of loglog x is needed, so that
the sum is determined to within constants : this would need a new idea, and
of course an asymptotic formula would be much better .

Before embarking on the proofs we establish several lemmas . Lemma 9,
which is rather too technical to be comprehensible standing alone, appears
in the middle of the proof of Theorem 2 .

0-Constants, and those implied by <, are independent of all variables . The
constants A i and B in Lemma 9 depend on k . Constants Ci(k) also depend,
at most, on k. The usual symbols for arithmetical functions are used : thus
v(n) and w(n) stand for the number of distinct, and the total number of
prime, factors of n . The least common multiple of d,, . . ., dk_, will be
denoted by [d,, . . ., dk _,] .

LEMMA 1 . For all positive integers a and k, we have

and

jl/k ,
k

	 l
fg(N

I 1)1/k - (g - 11 Rl/k} .

We sum this for g = 1, 2, 3, . . ., a .

Proof. For positive integers k and ~, we have

k

Hence

1 +
21/k + 31Ik + . . . + al/k , k{- 1 a(a + 1)l1k .

{k + 1 + k(p - 1)} RlIk % kp(p + 1)1 /'°
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LEMMA 2 . Let fk(n) be the multiplicative function generated by

.fk(p a) = la + 1)1/k _ a1/k,

	

fk(1) = 1 .

Then for all positive integers n, we have

I fk(d) log d <_
log n

din

	

k + 1 din~
.fk(d) •

Proof. Let n = PI Jp2 2 . . . prrr, and set

We have to show that

g'(0) \ log n
g(0)

	

k + 1

But the left-hand side is

(2 1 / k - 1) +2(3 1 /k	(ak+1. . .	a«(+ 1)1/k- «1/k) loge
v'll n

But

g(s) _

	

(1 } A(pi) + . . . +	 fk(Pi) = fk(d)
i=l

	

pi

	

pi

	

d

1 +21 /k	 +31/k + . . . +, al/k
(1 -	a(a + 1)1/k

	

) a logp,
v°II n

1

	

log n
k

	

1

	

a log e

	

k+ 1'
O ° In

using the inequality proved in Lemma 1 .

LEMMA 3 . For all positive integers k and n, we have

Proof. We have

by Lemma 2. The result follows .

{T(n)} 1 / k < ( k + 1)

		

fk(d) •
din,d<n1 /k

{7- (n) }1 / k =

	

fk(d) •
dIn

{fk(d) : d > n' 1k) < k

	

fk(d)
	 log d

din

	

d In

	

log n

k k 1 d
fk(d)
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LEMMA 4. For each k, there exist a CO(k) such that for all x,

E {T(n) T(n + 1) . . . r(n + k - 1)ll/k < Qk) x(log#k.
n<x

Proof. Put yk = x + k. By Lemma 3, we have

{T(n + j)}llk < (k + 1)

	

1

	

.fk(d) .
dicn+il .d<Y

Hence the sum above does not exceed

We have

(k + 1)k

	

. . .

	

fk(do) . . .fk(dk-,) card{n < x: di 1 (n +j) ej}
dp<N

	

dk-1<Y

(k + 1)k Y . . .

	

~~fk(d0) a2fk(dkkl) .
dp«

	

dk- 1<Y

dod1d2 . . . dk-1 < {do , di , . . ., dk-11 11 (di , di)
i<i

and we note that if the congruences n + j =- 0 (moddi) have a solution, then
(di , d1) I (j - i) for every i < j . If we write

then the sum above does not exceed

C1(k) = f1 (j - i),
O<i<i<k

C,(k)(k + 1) k x (
fk(d)

)
d<31

•

	

C,(k)(k + 1)k x (1 + MA + fk(2 + . . .) k
P<Y

	

p

	

p

•

	

C,(k)(k + 1)k x exp (k(21 ik - 1)	 1 )
P<Y

p-1

•

	

Q(k) x(log y)~ k.

We may assume that x > k, as otherwise our result is trivial . Thus yk < 2x,
and the result follows .

LEMMA 5 . For each integer k and all x, we have

I {T(n) T(n + k))112 < akk) x(log x)" .
n< x

This is proved in a similar manner to Lemma 4.
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LEMMA 6 . For any real numbers x; _>_ 0 (0 < j < k) we have

Proof. Let xo be the maximum. Plainly

LEMMA 7 . For positive integers k, t, and for all positive x,

E max {uit(n +j)) < k(t!)(.x + k)(loglog(x + k))t .
n<x 0<1<k

Proof. For each fixed y 0 < 2, we ha4e

yw(n) < C(yo) X(log X) Y-1
n<x

for 0< y < y0 . Put y0 = 3/2, and for sufficiently large x, log y = 1/loglog x .
Then

Hence

and the result follows .

LEMMA 8 . Let 'r k(n) denote the number of divisors of n which have no
prime factor exceeding k . Then

max x; , x; - (xix;) 112

k-1

[., x; <

	

(xoxl)"' .
=1

	

0<s

y_	(co(n))t 	< Y, ywtn,
< x.

n<x t ! (1Og1O9 x)t

	

n<x

(w(n +l)) t < k(t!)(x + k)(loglog(x + k))t
0<7<k n<x'

k~ ---~1
y_ 1 1 { rk(n +.i)} t < (x + k)(tk)W.
n<x i=0

Proof. Write n = qm, where the prime factors of q and m are, respec-
tively, <k, and >k. Then

Y, (Tk(n))t < Y. (rk(q))t 1 1 < X (rk(« t

n<x

	

q<x

	

m<x/q

	

q

	

q

~

	

21

	

3tX
l l

( 1 + _ + 2 + ' .') .
P- k

	

p

	

p



But
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`° (a+1)t

	

- (u + 2)t

	

t t

	

r	rldu =

	

( 2 1-
P°

	

o

	

Pn

	

\r)

	

(log p)r+ 1

t

	

ti
2t+i Y

	

< 2tt! < t t ,r=o (t-r)I

using the fact that log p > 1/2 . So we have

Y- (rk(n))t < xt tk .
n<x

The result now follows from Hölder's inequality .

Proof of Theorem 1 . We have

Y max{r(n), r(n + 1), . . ., r(n + k - 1)}

and, by Lemma 5, this is

We therefore have

n<x
k-1

r(n +J)
i=0 n<x

This is the result stated .

k{x log x + (2y - 1)x} + O(k2 log x + kx1 1 2)

Next, we apply Lemma 6, with x; = r(n +j) . We have to estimate, from
above,

{T(n + i) r(n +j)}1/2
i<i n<x

Q(j
-

i) x(log x)-2 < k2x(log x)a2 .
i<i j - i

Y max{r(n), -r(n + 1), . . ., r(n + k - 1)}
n<x

= kx log x + O(k'x(log x)") - kx log x

provided

k = o((log X)3-2(2) 1 /2 ) .
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Proof of Theorem 2 . The upper bound is an immediate deduction from
Lemma 4, since

min{-r(n), •r(n + 1),	r(n + k - 1)} < fj {T(n + j)j 1 1k
0<j<k

It remains to prove the lower bound . Let us define

Tk(x, v) = card{n < x: min T(n + j) >, 2v}.0<j<k

Then for each v,

m~n{T(n +j)} > 2vTk(x, v) .
n<x

Let M < x13 be squarefree, v(M) = kv, and suppose moms • mk_ 1 = M,
v(mj) = v for allj. There exists N, 0 < N < M, such that N - -j (mod mj)
for each j, and we put N + j = m jaj . For l + 1 < x/M put

qj = qj(1) _ (Mlmj)l + aj

so that g jmj = Ml + N + j, for each j. Plainly n = Ml + N is counted by
Tk(x, v) .

Let (u k (n) denote the total number of prime factors of n which exceed k .
We restrict 1 so that

wk 11 qj(1) ~ < r ;
0<j<k

indeed, we denote by Sr(x ; )'no, ml , . . ., mk_ 1 ) the number of 1, 1 < 1 <
(x/M) - 1 for which this inequality is satisfied . We have

Y_ Y_ Sr(x ; mo , ml , . . ., Mk-1) < ~:' R(n)
M (m j )

	

n<x

where Y_' is restricted to numbers n contributing to Tk(x, v) and R(n) denotes
the number of times n is repeated in our construction . Let us write

n + j = gjmj = qj-q,+mj ,

where the prime factors of qj-, qj+ are, respectively, <, >k; moreover,
w(qj+) = s . The number of ways of writing n + j in this way is

< Tk(n +j)
(wk(n

s+J))



and so

k-1

	

k-1

R(n) - 11 Tk(n +A

	

r7 (w k (n +I))

j=0

	

sp}31} • • • }sk_1~T 7
1=10

	

S7

k-1
( 11 Tk(n +i)) ax {w(n + J)} T.

Moreover, for any t > 1 we have

Y Y S,(x ; rn o , m i , . . ., Mk 1)

	

(Tk(x, v))1 1/t
(
I Rt(n))1 /t .

M (mj )

	

n<x

By Lemmas 7 and 8, and the Schwarz inequality, we have

1 g(M)1 = 1, M = x l
/3 ,

Proof. Set
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( 1] Rt(n))1/t

	

k_1
{

	

1/2t(

	

max{w(n + j)}2Tt
1/2t

-<,,, (I

	

T k(n + j)12t)

	

)
n<x

	

n<x jj=0

	

n<x

x 1/t(2tk)k2 k 1 /2t(2rt loglog x)T .

We set t = [loglog x] . For this t, we have

Y_ Y_ ST( •X ; mo , tn1 -- Ink-1)
M (mj )

C x1 /t(Tk (x, v)) 1-1 1t(2k)k2(2r)T(loglog x)k2}2T .

We require a lower bound for S T(x), and we employ the Selberg sieve, in the
lower bound form given by Ankeny and Onishi [1], and set out in Halberstam
and Richert [2], Chapter 7 . We do not attempt to give the best result which
could be obtained from a weighted sieve procedure, since this would not
affect our final result .

LEMMA 9 . In the above notation, we have

ST(x; mo , m 1 , m2 , . . ., Mk-1) % Qk)(x/M)(log x)-k,

where C4(k) > 0 depends only on k, provided only

k-1
f(1) _ [1 (Mil + aj),

j=o

v(M) = kv, v = 0(loglog x),

	

r = 5k2 .



S(A, B, z) = card{/: 1 = 1 = X, (f(1), P) = 1}.

We follow the notation of Halberstam and Richert [2] . Let p(p) denote the
number of solutions of the congruence f (1) _- 0 (mod p) . Now by definition,
a^ - aims = j - i, and so we have

and

Thus

It follows that the solutions of the congruences M;1 + a; 0 (mod p) are
distinct, for p > k, and that each congruence has precisely 0 or 1 solutions
according as p I M; or not. Thus

p(p) <k<p,

	

P(P)<1-k
1'

and Halberstam and Richert's condition S2, is satisfied, with A l = k + 1 .
Since M is squarefree, p I M; for at most one j, and so for p > k, we have
p(p) = k - 1 or k according as p I M or not. When p = k, we just have
0 < p(p) < p . Thus for 2 < w < y, we have (condition S22(k, L)) :

k log y - L < I P(P) log P < k logy + A a
w

	

-<P<Y

	

P

	

w

where

(Mil + ai, Mi l + ai) 1 (i - i)

(mi , ai)l(j - i).

(Mi ai , P) = 1 .

Az =

	

logp + O(1) = O(k),
P<k

L _ I logp + I k log p = O((v + k) log k),
P I M.P>k P

	

P<k P
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A = {f(1) : 1 < 1 < X),

B = {p : k < p},

P = P(k, z) _ (p: k < p < z) .

We seek a lower bound for



as v(M) = vk. Next, let d be a squarefree number all of whose prime factors
exceed k . (We can write this in the form (d, B) = 1 .) Set

Then

and

Rd = card{/ : 1 < 1 < X, f (1) -_- 0 (mod d)} - X fj P(p) .
P 1 d P

I Rd I <

	

p(p) < k°cd'
PId

1] f I li(d) I
3°cd' I Rd 1 : d < y, (d, B) = 1}

1] (3k)°(d' < Y(log Y)3k-1 •
dGY

Hence Halberstam and Richert's condition R(k, a) is satisfied (cf. [2, p . 219]),
with a = 1, A 4 = 4k, A, = 0(1) . We may therefore apply their Theorem 7 .4,
and we have (note the misprint!) :

f
S(A, B ' z) > X 11

(1

	

P(P)
p) (1

	

71k
( log z ) -

BL
log	

logX
3k}2

k<PGz

where B = B(A,, A,, A,, A 5) = B(k), provided

k-1
Mf(1) _ F1 (MI + N +j) < (M(X + 1) + k)k < Mk(X + 2)k,

=o

provided M > k. In fact this is automatic, as M has kv distinct prime
factors . It follows that

k log(M(X +2))

	

2 log(M(X + 2))
(') JAW JAW - log z

	

< 3k	
log X
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Z2 = X(JOg X)-4k .

Here 7)k is related to the function G k of Ankeny and Onishi [1] : it is strictly
decreasing, and 1 - 77 k(u) > 0 for u > vk . It is known that v k < 3k for
positive integers k [2, p . 221] . Let assume v = 0(loglog X), and put X = z3k
Then we have

S(A, B, z) > C3(k)X(log X)-k

	

(X > Xo(k)),

where C3(k) > 0, and depends on k only. Moreover, the prime factors of
f(1), for 1 counted by S(A, B, z), are either <k or >z, and we have
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In the application to S, .(x ; mo , ml , . . ., m k -1), we set X = (x/M)-l > x2 / 3 -1,
and so M < )el/3 < ( 1 + X)1 /2 , and

3 log(M(X + 2)) < 5log X

for X > X, . Provided k is fixed and x --- oo, this condition, and the condition
X > X,(k), are automatically satisfied . We therefore have wk(f(1)) = r as
required.

We now return to the proof of our theorem . We have

Qk)
	x

k I1 Y- 1< x1ATk(x, v)) 1 1 /t(loglog x)K,
(log x) M M (,n t )

where K = k2 + 2r = l lk2 , t = [loglog x] . Given M, there are

(kv) !(v !)- k(k!) -1

different choices of m o , m l , . . ., m k_1 ; moreover we find that

Thus

C6(k)	(loglogx+ 0(1»"
« xl

/t(Tk(x,
v)) 1-1

/t(loglog x)K .
sík) (log x)k

	

v!

	

)

We choose

and we have

Csík) (log /t ' 2v < (Tk(x, v))1-1/t(loglog x)K.evk

Since t = [loglog x], this gives

(loglog x+O(1))kv
(kv) !

v = [21/kloglog x + 1]

xevk
C,(k)

(log x)k < 2vTk(x, v)(loglog x)K

and so for this v,

2vTk(x, v) i C,(k) x(log x)°k(loglog x) -llkz .

This gives the result stated .
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