ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS AND ON SOME RELATED **QUESTIONS**

P. ERDŐS, member of the Academy and I. KÁTAI (Budapest), corresponding member of the Academy

1. Let (a, b) and [a, b] be the greatest common divisor and the least common multiple of a and b, respectively. p_n denotes the nth prime; p, q, q_1 , q_2 , ... are prime numbers. A sum \sum and a product \prod denote a summation and a multiplication, respectively, over primes indicated. The symbol # {...} denotes the number of elements indicated in the bracket $\{\ \}$. P_{μ} is the product of the first μ primes.

The aim of this paper is to continue our investigation on the distribution of

the maximal value of additive functions in small intervals.

In the sequel let g(n) be a non-negative strongly additive function,

(1.1)
$$f_k(n) = \max_{j=1,...,k} g(n+j).$$

Let

(1.2)
$$\varrho(k,\varepsilon) = \sup_{x \ge 1} \frac{1}{x} + \{n \le x | f_k(n) > (1+\varepsilon) f_k(0) \},$$

(1.3)
$$\delta(k_0, \varepsilon) = \sup_{x \ge 1} \frac{1}{x} + \{n \le x | \exists k, k > k_0, f_k(n) > (1+\varepsilon)f_k(0)\},$$

$$\theta(k, \varepsilon) = \limsup_{x \to \infty} \frac{1}{x} + \{n \le x | f_k(n) > f_k(0)(1+\varepsilon)\}.$$

It is obvious that

(1.4)
$$\theta(k, \varepsilon) \leq \varrho(k, \varepsilon)$$
,

and that

(1.5)
$$\delta(k_0, \varepsilon) \ge \sup_{k \ge k_0} \varrho(k, \varepsilon).$$

In [1] we tried to determine those additive g(n) for which the relation

(1.6)
$$\delta(k_0, \varepsilon) \to 0 \quad (k_0 \to \infty), \quad \forall \varepsilon > 0$$

holds. There we noticed that (1.6) implies

(1.7)
$$\sum_{p} \frac{\min(1, g(p))}{p} < \infty,$$

but we could not decide if the condition

$$(1.8) \sum_{p} \frac{g(p)}{p} < \infty$$

were necessary. Now we shall prove this. More exactly, we shall prove the following assertion.

THEOREM 1. If

(1.9)
$$\theta(k, \varepsilon) \rightarrow 0 \quad (k \rightarrow \infty)$$

for all $\varepsilon > 0$, then

$$(1.10) \sum_{p} \frac{g(p)^{r}}{p} < \infty,$$

for every $r \ge 1$.

Let F(x) be the limit distribution function of g(n), the existence of which is guaranteed by (1.7).

THEOREM 1'. Assume that

$$(1.11) k(1-F(f_k(0)(1+\varepsilon))) \rightarrow 0$$

holds for every $\varepsilon > 0$. Then (1.10) holds for every $r \ge 1$.

Theorem 1 is an immediate consequence of Theorem 1'. Indeed, (1.11) implies that the density of integers n, satisfying $g(n) > (1+\varepsilon) f_k(0)$ is o(1/k), consequently (1.9) holds.

Perhaps (1.11) implies that

$$(1.12) \sum_{p} \frac{e^{ug(p)} - 1}{p} < \infty$$

for every u>0. We could not give a counter example.

THEOREM 2. If for some constant A>0

(1.13)
$$k(1-F(f_k(0)+A)) \to 0 \quad (k \to \infty),$$

thne (1.12) holds for every u>0.

On the other hand, we shall prove that (1.6) does not imply g(p) = O(1). This will follow easily from the following

Theorem 3. Let L(k) be a function on $[1, \infty)$ tending to infinity arbitrary slowly. Then there exists a strongly additive non-negative g(n) with $\lim_{n \to \infty} g(p) = \infty$, so that

(1.14)
$$\sup_{k \ge 1} \frac{1}{x} \# \{ n \le x | \exists k \ge k_0, f_k(n) > L(k) \} \to 0 \quad (k_0 \to \infty).$$

We are interested in the conditions that imply

(1.15)
$$\sup_{x \ge 1} \frac{1}{x} \# \{ n \le x | \exists k > k_0, f_k(n) > f_k(0) + A \} \to 0 \quad (k_0 \to \infty),$$

with some suitable constant A.

THEOREM 4. If $g(p) = \frac{1}{p}$, then

(1.16)
$$\sup_{x \ge 1} \frac{1}{x} \# \{ n \le x | \exists k > k_0, f_k(n) > f_k(0) + \lambda_k \} \to 0 \quad (k_0 \to \infty),$$

where $\lambda_k = 3/(\log \log k)$.

THEOREM 5. If $g(p)=1/p^{\delta}$, $0<\delta<1$, $\varrho>0$ being an arbitrary constant, then

(1.17)
$$\lim_{k \to \infty} \lim_{x \to \infty} \frac{1}{x} # \{n \le x | f_k(n) > f_k(0) + (\log k)^{1-\delta-\varrho} \} = 1.$$

By somewhat more trouble we could prove that

(1.18)
$$\sup_{x \ge 1} \frac{1}{x} \# \{ n \le x | \exists k > k_0, f_k(n) < f_k(0) + (\log k)^{1-\delta-\varrho} \} \to 0,$$

as $k_0 \to \infty$.

Let $F_{\delta}(x)$, $F_{\gamma}(x)$ denote the limit distribution functions corresponding to $g(p)=1/p^{\delta}$, $g(p)=(\log p)^{-\gamma}$, respectively; $G_{\delta}(x)=1-F_{\delta}(x)$, $G_{\gamma}(x)=1-F_{\gamma}(x)$.

We shall consider G(x) for large x(>0).

Theorem 6. We have for $\delta = 1$:

(1.19)
$$\log \log \frac{1}{G_1(\tau)} \ge e^{\tau - a} - c\tau^2 e^{-\tau},$$

where $a=\gamma-\sum_{k\geq 2}\sum_{p}\frac{1}{kp^{k}}$; γ being Euler's constant, c denotes a suitable constant. Furthermore, if $0<\delta<1$,

(1.20)
$$\log \frac{1}{G_{\delta}(\tau)} \ge (\tau \log \tau)^{1/(1-\delta)} (1 + O(\log \tau)^{-1}) \quad (\tau > 1),$$

and

(1.21)
$$\log \frac{1}{G_{\gamma}(\tau)} \ge \tau (\log \tau)^{\gamma+1} - c_1 \tau (\log \tau)^{\gamma},$$

 c_1 being a positive constant depending on γ .

REMARK. It is easy to see that the previous inequalities are quite sharp. Indeed, if g is monotonically decreasing on the set of primes p, then for $P_{\mu} \leq k < P_{\mu+1}$ we have

$$1 - F(g(P_{\mu})) \ge \frac{1}{P_{\mu}} \ge \frac{1}{k}.$$

Hence, after some simple computation, we have the following inequalities for $\tau > 1$:

(i)
$$\log \log \frac{1}{G_{\delta-1}(\tau)} \le e^{\tau-a} + O(e^{-B\tau})$$
, B being an arbitrary but fixed number;

(ii)
$$\log \frac{1}{G_{\delta}(\tau)} \le (\tau \log \tau)^{1/(1-\delta)} (1 + O((\log \tau)^{-1})), \text{ if } 0 < \delta < 1;$$

(iii)
$$\log \frac{1}{G_{\tau}(\tau)} \leq \tau (\log \tau)^{\gamma+1} (1 + O((\log \tau)^{-1})).$$

Let now

(1.22)
$$\sum_{p} \frac{g(p)}{p} = \infty; \quad \sum_{p} \frac{g^{2}(p)}{p} < \infty,$$

$$A_x = \sum_{p \le x} \frac{g(p)}{p};$$

$$\psi(y) = \sum_{p \le y} g(p),$$

(1.25)
$$F_k(n) = \max_{1 \le i \le k} \{g(n+j) - A_{n+j}\},$$

THEOREM 7. Let 0 < t(x) monotonically tend to zero in $[1, \infty)$, let g(n) be strongly additive defined for primes p by g(p)=t(p). If (1.22) holds, then for every fixed k, $P_{\mu} \leq k < P_{\mu+1}$, we have

$$(1.26) F_k(n) \ge \psi(P_\mu) + A_{\log k} - \varepsilon_k$$

for every but $O(\delta_k x)$ of $n \le x$; $\varepsilon_k \to 0$, $\delta_k \to 0$ as $k \to \infty$. Suppose, in addition, that

Suppose, in addition, that
$$\lim_{y \to \infty} \frac{\psi(y)}{yt(e^{e^{y^0}})} = \infty$$
for every $\delta > 0$, and that

for every $\delta > 0$, and that

$$(1.28) \qquad \sum_{p>y} \frac{t^2(p)}{p} \ll t^2(y) (\log \log y)^{\gamma} \quad (y \to \infty)$$

for a suitable $\gamma > 0$. Then

(1.29)
$$\lim_{k_0 \to \infty} \sup_{x \ge 1} \frac{1}{x} \# \left\{ n \le x | \exists k > k_0, \left| \frac{F_k(n)}{\psi(\log k)} - 1 \right| \ge \epsilon \right\} = 0,$$

for every $\varepsilon > 0$.

 Asymptotic of distribution functions for large values. Let g(n)≥0 be strongly additive. Then for every $u \ge 0$

$$(2.1) \qquad \sum_{n \leq x} e^{ug(n)} \leq x \prod_{p \leq x} \left(1 + \frac{e^{ug(p)} - 1}{p}\right).$$

As it is well known

(2.2)
$$\frac{1}{x} \sum_{n \leq x} e^{ug(n)} \to K(u) = \prod_{p} \left(1 + \frac{e^{ug(p)} - 1}{p}\right),$$

if the infinite product on the right hand side converges. Let $F(\tau)$ be the distribution function of g(n). Then

(2.3)
$$1 - F(\tau) \le K(u)e^{-u\tau} \quad (0 < u < \infty).$$

By choosing u appropriately, we shall use (2.3) to give an upper estimate for $G(\tau)$ = $=1-F(\tau)$ for some special additive functions.

Let t(x), $x \in [1, \infty)$, tend to zero monotonically, g(p) = t(p) for primes p, $\psi(y) = \sum t(p)$. Suppose that t(x) is differentiable.

Let the values t_0 , t_1 be defined by the relations

(2.4)
$$ut(t_0) = \log t_0 + H; \quad ut(t_1) = \log t_1 - H,$$

where H>1. Let

$$K(u) = K_1(u)K_2(u)K_3(u),$$

where in $K_i(u)$ (i=1, 2, 3) the product is extended over the primes in the intervals $(1, t_0], (t_0, t_1], (t_1, \infty),$ respectively.

For $p \in (1, t_0)$ we use the inequality

$$\log\left(1 + \frac{e^{ug(p)} - 1}{p}\right) < \log\frac{e^{ug(p)}}{p} + e^{-ug(p)}p \le ug(p) - \log p + e^{-H},$$

and deduce

and deduce (2.5)
$$\log K_1(u) < u\psi(t_0) - \sum_{p \le t_0} \log p + \sum_{p \le t_0} p e^{-ug(p)}.$$
 Since

Since

$$1 + \frac{e^{uq(p)} - 1}{p} \le 1 - \frac{1}{p} + e^{H} < e^{H+1}$$

in $p \in (t_0, t_1]$, therefore

(2.6)
$$\log K_2(u) < (H+1)(\pi(t_1) - \pi(t_0)).$$

Furthermore

(2.7)
$$\log K_3(u) < \sum_{p>t_1} \frac{e^{ug(p)}-1}{p},$$

We shall give an upper estimate for the right hand side of the last inequality when $t(x)=x^{-\delta}$ $(0<\delta\leq 1)$; $t(x)=(\log x)^{-\gamma}$. For this we use the prime number theorem in the form

$$\pi(x) = \text{li } x + R(x), \quad |R(x)| \le c_2 x (\log x)^{-c_3},$$

where c_a is a large constant. Let

(2.8)
$$f(x) = \frac{e^{ut(x)} - 1}{x}.$$

Then

$$\sum_{p>t_1} \frac{e^{uq(p)}-1}{p} = I_1 + I_2, \quad I_1 = \int_{t_1}^{\infty} \frac{f(x)}{\log x} dx, \quad I_2 = \int_{t_1}^{\infty} f(x) dR(x).$$

For the estimation of I_2 we integrate by parts:

(2.9)
$$I_2 = R(x)f(x)\Big|_{t_1}^{\infty} - \int_{t_1}^{\infty} R(x)f'(x) dx.$$

Suppose that

$$f'(x) = \frac{e^{ut(x)}(ut'(x)x-1)+1}{x^2}$$

changes its sign in $[t_1, \infty)$ at most once, for example at z_0 . Then, by integrating by parts, we have

$$\begin{split} \int\limits_{t_1}^{\infty} |R(x)| |f'(x)| \, dx & \leq c_2 \left| \int\limits_{t_1}^{z_0} \frac{x}{(\log x)^{c_2}} f'(x) \, dx \right| + c_2 \left| \int\limits_{z_0}^{\infty} \frac{x}{(\log x)^{c_2}} f'(x) \, dx \right| \ll \\ & \ll f(t_1) \frac{t_1}{(\log t_1)^{c_2}} + \int\limits_{t_1}^{\infty} \frac{f(x)}{(\log x)^{c_2}} \, dx. \end{split}$$

So, observing that

$$f(t_1) = \frac{e^{-H}t_1 - 1}{t_1} \le e^{-H},$$

we get

$$(2.10) I_2 \ll e^{-H} \frac{t_1}{(\log t_1)^{c_3}} + \frac{1}{(\log t_1)^{c_3-1}} \cdot I_1.$$

To estimate I_1 , we write

$$(2.11) I_1 = \int_{\log t_1}^{\infty} \frac{e^{ut(e^{\lambda})} - 1}{\lambda} d\lambda = \sum_{k=1}^{\infty} \frac{u^k}{k!} \int_{\log t_1}^{\infty} \frac{t(e^{\lambda})^k}{\lambda} d\lambda \doteq \mathcal{H}(g; \log t_1).$$

For the integral

$$J(y, h) = \int_{y}^{\infty} \lambda^{h} e^{-\lambda} d\lambda$$

we have

$$J(y, h) = y^h e^{-y} + hJ(y, h-1).$$

Let now $t(p)=p^{-\delta}$ (0< $\delta \le 1$). Then

$$\int_{\log t_1}^{\infty} \frac{t(e^{\lambda})^k}{\lambda} d\lambda = \int_{\log t_1}^{\infty} \frac{e^{-\lambda \delta k}}{\lambda} d\lambda = J(\delta k \log t_1, -1) < \frac{e^{-\delta k \log t_1}}{\delta k \log t_1},$$

and so

$$\mathcal{H}\left(\frac{1}{p^{\delta}}; \log t_1\right) \leq \sum_{k=1}^{\infty} \frac{(ut_1^{-\delta})^k}{k! \, k\delta \log t_1}.$$

Since $ut_1^{-\delta} = \log t_1 - H$, we have

$$I_1 \leq \frac{4e^{-H}t_1}{\delta(\log t_1)^2},$$

if $H < \frac{1}{2} \log t_1$.

Let now $t(p) = (\log p)^{-\gamma}$, $(\gamma > 0)$. Then, from (2.11),

$$\mathcal{H}((\log p)^{-\gamma}; \log t_1) = \sum_{k=1}^{\infty} \frac{u^k}{k!} \int_{\log t_1}^{\infty} \lambda^{-k\gamma - 1} d\lambda =$$

$$= \sum_{k \ge 1} \frac{(u(\log t_1)^{-\gamma})^k}{k!(k\gamma + 1)} = \sum_{k \ge 1} \frac{(\log t_1 - H)^k}{k!(k\gamma + 1)} \le \frac{4e^{-H}t_1}{\gamma \log t_1},$$

if $H < \frac{1}{2} \log t_1$.

So for
$$t(p)=p^{-\delta}$$
 $(0<\delta\leq 1)$

(2.13)
$$\log K_3(u) \le Be^{-H} \frac{t_1}{(\log t_1)^2},$$

while for $t(p) = (\log p)^{-\gamma} (\gamma > 0)$

$$\log K_3(u) \le Be^{-H} \frac{t_1}{\log t_1},$$

B being a constant.

For the sake of brevity we shall write $u_1 = \log u$, $u_2 = \log u_1$, $u_3 = \log u_2$. Let us first consider the case $t(p) = p^{-1}$. By choosing H = 1, and collecting our inequalities we have

$$\log K(u) < u \sum_{p \le t_0} \frac{1}{p} - t_0 + O\left(\frac{t_0}{\log t_0}\right),$$

where

$$t_0 = \frac{u}{\log t_0 + 1}, \quad t_1 = \frac{u}{\log t_1 - 1}.$$

Since, from the prime number theorem

$$\sum_{p \le t_0} \frac{1}{p} = \log \log t_0 + a + O(u_1^{-2}),$$

where

$$a = \gamma - \sum_{k \equiv z} \sum_{p} \frac{1}{kp^k},$$

(y being Euler's constant), and observing that

$$\log \log t_0 = u_2 - \frac{u_2}{u_1} + O(u_2 u_1^{-2}), \quad t_0 = \frac{u}{u_1} + O(u u_2 u_1^{-2}),$$

we get

$$\log K(u) < u \left[u_2 + a - \frac{u_2 + 1}{u_2} \right] + O(uu_2^2 u_1^{-2}).$$

So, from (2.3),

$$\log \left(1 - F(\tau)\right) \le u \left[u_2 + a - \tau - \frac{u_2 + 1}{u_1}\right] + O(uu_2^2 u_1^{-2}).$$

Let u be chosen according to the equation

$$\tau = u_2 + a - u_2 u_1^{-1}.$$

Then, by an easy calculation, we get

$$\log \left(1 - F(\tau)\right) \le -\frac{u}{u_1} + O(uu_2^2 u_1^{-2}),$$

$$\mathscr{L} \stackrel{\mathrm{def}}{=} \log \log \frac{1}{1 - F(\tau)} \ge u_1 - u_2 + O(u_2^2 u_1^{-1}).$$

Since

$$u_1 = e^{\mathfrak{r} - a} + \frac{u_2}{u_1} = e^{\mathfrak{r} - a} \left(1 + \frac{u_2}{u_1} + O\left(\frac{u_2^2}{u_1^2}\right) \right) = e^{\mathfrak{r} - a} + u_2 + O\left(\frac{u_2^2}{u_1}\right),$$

we have $\mathcal{L} \ge e^{\tau - a} - c \tau^2 e^{-\tau}$, that is (1.19) holds.

Now we consider the case $t(p)=p^{-\delta}$, $0<\delta<1$. By choosing H=1, we have

$$t_0^{\delta} = \frac{u}{\log t_0 + 1} < \frac{u}{\log t_1 - 1} = t_1^{\delta},$$

and so $t_1/t_0 \le e^2$. Consequently, by (2.3)

$$\log \frac{1}{1 - F(\tau)} \ge \tau u - u \psi(t_0) + t_0 + O(t_0/(\log t_0)).$$

Since

$$\psi(t_0) = \sum_{p \le t_0} 1/p^{\delta} = \frac{t_0^{1-\delta}}{(1-\delta) \log t_0} \left(1 + O\left(\frac{1}{\log t_0}\right) \right),$$

and $u=t_0^{\delta}(\log t_0+1)$, we have

$$u\psi(t_0) = \frac{t_0}{1-\delta} \left[1 + O\left(\frac{1}{\log t_0}\right) \right],$$

and so

$$\log \frac{1}{1 - F(\tau)} \ge \tau u - \frac{\delta}{1 - \delta} t_0 + O(t_0/(\log t_0)).$$

By choosing t_0 to satisfy

$$\tau = \frac{t_0^{1-\delta}}{(1-\delta)\log t_0},$$

we have

$$\log \frac{1}{1 - F(\tau)} \ge t_0 + O\left(\frac{t_0}{\log t_0}\right) = (\tau \log \tau)^{1/(1 - \delta)} \left(1 + O\left(\frac{1}{\log \tau}\right)\right),$$

and so (1.20) holds.

To prove (1.21), we observe that

$$\log \frac{1}{1 - F(\tau)} \ge \tau u - \log K(u) \ge u\tau + t_0 - \frac{ut_0}{(\log t_0)^{\gamma+1}} - \frac{c_4 t_0}{\log t_0}.$$

By choosing $u=(\log \tau)^{\gamma+1}$, we have

$$\log \frac{1}{1 - F(\tau)} \ge \tau (\log \tau)^{\gamma + 1} - c_1 \tau (\log \tau)^{\gamma}$$

and this proves (1.21).

Now we shall prove Theorem 4. Let g(p)=1/p,

$$g_{y}(n) = \sum_{\substack{p \mid n \ p < y}} g(p); \quad g(y; n) = g(n) - g_{y}(n).$$

Then

$$\mathscr{S}_{\varDelta} \stackrel{\mathrm{def}}{=\!\!\!=} \frac{1}{x} \, \# \, \big\{ n \leq x \big| g_{t_0}(n) \geq \psi(t_0) + \varDelta \big\} \leq e^{-u(\psi(t_0) + d)} \prod_{p \leq t_0} \bigg(1 + \frac{e^{ug(p)} - 1}{p} \bigg),$$

where $u=u_{t_0}$ is defined according to (2.4), i.e. $u_{t_0}=t_0$ (log t_0+H). By using (2.5), we get

$$\log \mathcal{S}_d < -\Delta u - t_0 + O\left(\frac{t_0}{(\log t_0)^c}\right) + \sum_{p \leq t_0} p e^{-u/p},$$

where c is an arbitrary large constant. Since

$$\sum_{\frac{y}{2}$$

by choosing $y=y_k=\frac{t_0}{2^k} (k=0, 1, 2, ...)$, we have

$$\sum_{p \le t_0} p e^{-u/p} \ll \frac{t_0^2 e^{-u/t_0}}{\log t_0} = \frac{e^{-H} t_0}{\log t_0}.$$

By choosing $H=c \log \log t_0$, with a fixed c,

(2.14)
$$\log \mathcal{S}_A < -\Delta u_{t_0} - t_0 + B \frac{t_0}{(\log t_0)^c}$$
,

B being a constant.

Let $u_{t_1}=t_1 (\log t_1-H)$. Then, by choosing $H=c \log \log t_1$,

(2.15)
$$\frac{1}{x} \# \{n \le x | g(t_1, n) \ge R\} \le \exp\left(-Ru_{t_1} + B\frac{t_1}{(\log t_1)^{c+2}}\right).$$
Let

$$t_0 = t_1 = (\log k)^{1+\epsilon_k}, \quad \varepsilon_k = \frac{\log \log \log k}{\log \log k};$$

$$f_k^{(1)}(n) = \max_{j=1,\dots,k} g_{i_0}(n+j); \quad f_k^{(2)}(n) = \max_{j=1,\dots,k} g(t_0; n+j).$$

Let

$$H_k \stackrel{\text{def}}{=} \psi(t_0) - \log k = \log (1 + \varepsilon_k) + O\left(\frac{1}{\log \log k}\right) = \frac{\log \log \log k}{\log \log k} + O\left(\frac{1}{\log \log k}\right).$$

Let k be so large that $H_k < 2e_k$. Then, by (2.14),

$$(2.16) a(x, k, 2\varepsilon_k) \stackrel{\text{def}}{=} \frac{1}{x} # \{n \le x | f_k^{(1)}(n) \ge \psi(\log k) + 2\varepsilon_k\} \le$$

$$\le \left(1 + \frac{k}{x}\right) \frac{k}{x+k} # \{n \le x + k | g_{t_0}(n) \ge \psi(t_0)\} \le$$

$$\le \left(1 + \frac{k}{x}\right) k \exp\left(-t_0 + B \frac{t_0}{(\log t_*)^c}\right) \le \left(1 + \frac{k}{x}\right) k^{-\log\log k + c},$$

c being a constant. Similarly, from (2.15),

$$(2.17) b(x, k, \varepsilon_k) = \frac{1}{x} \# \{n \le x | f_k^{(2)}(n) \ge \varepsilon_k\} \le$$

$$\le \left(1 + \frac{k}{x}\right) k \exp\left[-\varepsilon_k u_{t_1} + O\left(\frac{t_1}{(\log t_*)^c}\right)\right] \ge \left(1 + \frac{k}{x}\right) k^{-\log \log k}.$$

So for $k \le x$ we have

(2.18)
$$\frac{1}{x} \# \{ n \le x | f_k(n) > \psi(\log k) + 3\varepsilon_k \} < 1/k^3,$$

if k is large. For k>x, $n \le x$ we have

$$f_k(0) \le f_k(n) \le f_{k+x}(0) = \psi(\log k) + O\left(\frac{1}{\log k}\right).$$

Hence it follows immediately that

$$\frac{1}{x} \# \left\{ n \leq x | \exists k > k_0, f_k(n) \geq \psi(\log k) + 3\varepsilon_k \right\} < \frac{1}{k_0^2}.$$

By this, Theorem 4 has been proved.

3. Proof of Theorem 7. Suppose that the conditions of Theorem 7 are satisfied. Let $\tilde{g}(n)$ be strongly additive defined for primes by

$$\tilde{g}(p) = \begin{cases} g(p) & \text{if} \quad p > p_{\mu} \\ 0 & \text{if} \quad p \leq p_{\mu}. \end{cases}$$

It is obvious that $g(P_{\mu}m) = g(P_{\mu}) + \tilde{g}(m)$. From the Turán—Kubilius inequality

$$\sum_{m \leq x/P_{\mu}} \{\tilde{\mathbf{g}}(m) - A'\}^2 \ll \frac{x}{P_{\mu}} \sum_{p > p_{\mu}} \frac{g^2(p)}{p},$$

if $P_{\mu} < x$; $A' = A_{x/P_{\mu}} - A_{p_{\mu}}$. Hence we get immediately

$$(3.1) M_B \stackrel{\text{def}}{=} \# \left\{ m \leq \frac{x}{P_u} \middle| |\tilde{g}(m) - A'| \geq B \right\} \ll \frac{x}{P_u B^2} \sum_{p>p_u} \frac{g^2(p)}{p}.$$

If $\tilde{g}(m) - A' \cong -B$, then

$$g(P_u m) = \psi(p_u) + \tilde{g}(m) \ge \psi(p_u) + A' - B.$$

So for $P_{\mu}(m-1) < n < P_{\mu}m$ we get

$$(3.2) F_{P_{\mu}}(n) \ge g(P_{\mu}m) - A_{(m+1)P_{\mu}} \ge \psi(p_{\mu}) + A_{x/P_{\mu}} - A_{(m+1)P_{\mu}} - A_{p_{\mu}} - B.$$

Let now $x \to \infty$. For $m \ge \sqrt{x}$ we have

$$A_{x/P_{\mu}} - A_{(m+1)p_{\mu}} \ll \left(\sum \frac{1}{p}\right)^{1/2} \left(\sum \frac{g^{2}(p)}{p}\right)^{1/2} \to 0 \quad (x \to \infty),$$

where the summation is over the primes in $\left[(m+1)p_{\mu}, \frac{x}{P}\right]$. By choosing

$$B_{\mu} = B = \left(\sum_{p>p_{\mu}} \frac{g^2(p)}{p}\right)^{1/4}$$

we obtain (1.26) immediately for $k=P_{\mu}$.

Let now $P_{\mu} < k < P_{\mu+1}$. To prove (1.26) it is enough to observe that $F_k(n) \ge F_{P_{\mu}}(n)$, and that $A_{\log k} - A_{p_{\mu}} \to 0$ $(k \to \infty)$. Now we assume that (1.27), (1.28) hold. If $P_{\mu} \le k < P_{\mu+1}$ then, $\psi(\log k) = 0$ $=\psi(p\mu)(1+o(1))=\psi(p_{\mu+1})(1+o(1))$ and $F_{p_{\mu+1}}(n) \ge F_k(n) \ge F_{p_{\mu}}(n)$, and so it is enough to prove (1.29) for $k=P_{\mu}$. From (1.28) we have

$$M_B \ll \frac{X}{P_\mu B^2} t^2 (p_\mu) (\log \log p_\mu)^{\gamma}.$$

From the monotonicity of t we have

$$\frac{t^2(p_{\mu})}{\psi^2(p_{\mu})} \le 1/\mu^2$$
,

so by choosing $B = \lambda_u \psi(p_u)$, $0 < \lambda_u < 1$, we have

$$M_B \ll \frac{x}{P_\mu \lambda_\mu^2} \frac{(\log \log \mu)^\gamma}{\mu^2}$$
.

Let $x>P^3_\mu$. In the interval $n\in[1,x]$ we drop the n's for which $n\le x^{1/3}$. Observing that $A_{p\mu}=o(\psi(p_\mu))$, and that $A_y-A_{y^2}=O(1)$ $(0<\alpha<1)$, from (3.2) we get that

 $F_{p_n}(n) \geq (1-2\lambda_n)\psi(p_n)$

for all but $\frac{x (\log \log \mu)^{\gamma}}{n^2 \lambda^2}$ of $n \le x$, if λ_{μ} tends to zero sufficiently slowly. Let $x < P_{\mu}^3$. Then, for every $n \le x$,

 $F_{P_{\mu}}(n) = \max_{j=1,\ldots,\,p_{\mu}} \left(g(n+j) - A_{n+j}\right) \geq \psi\left(p_{\mu}\right) - A_{x+P_{\mu}}.$

Since

$$A_{x+P_{\mu}} - A_{P_{\mu}} \ll \left(\sum_{p_{\mu} p_{\mu}} \frac{t^{2}(p)}{p} \right)^{1/2} \ll$$

 $\ll t(p_{\mu}) (\log \log p_{\mu})^{\gamma} (\log p_{\mu})^{1/2} \ll \frac{\psi(p_{\mu})}{u} (\log \log p_{\mu})^{\gamma} (\log p_{\mu})^{1/2} = o(\psi(p_{\mu})),$

therefore

$$F_{P_n}(n) \ge (1-2\lambda_n)\psi(p_n)$$

holds for every n if μ is large. Applying this argument for the sequence $x=2^{\nu}$, we get the relation:

$$\forall \varepsilon > 0 \colon \lim_{k_0 \to \infty} \sup_{x \ge 1} \frac{1}{x} + \{n \le x | \exists k > k_0, F_k(n) < (1 - \varepsilon) \psi(\log k)\} = 0.$$

To prove the second half of (1.29) we choose $\log \log t_0 = p_\mu^\delta$, where $0 < \delta < \gamma$ (see (1.27), (1.28)), and define $g(t_0, n)$, $g_{t_0}(n)$ to be strongly additive satisfying

$$g(t_0; p) = \begin{cases} 0 & \text{if} \quad p \leq t_0, \\ g(p), & \text{if} \quad p > t_0, \end{cases}$$
$$g_{t_0}(n) = g(n) - g(t_0; n).$$

Let $A_x^{t_0} = A_x - A_{t_0}$. For every $u \ge 0$ we have

$$D(x, u) \stackrel{\text{def}}{=} \sum_{n \le x} e^{u(g(t, n) - A_x^{t_0})} \le x \prod_{t_0$$

whence it follows that

$$\frac{1}{x} \# \left\{ n \leq x | g(t_0, n) \geq \Delta \right\} \leq \exp \left(-\Delta u + u^2 \sum_{p > t_0} \frac{g^2(p)}{p} \right),$$

if $u = \frac{1}{2t(t_0)}$. Let $\Delta = \eta_\mu \psi(p_\mu)$, $\eta_\mu \to 0$ slowly. Then, from (1.27)

$$\Delta u = u \frac{\psi(p_{\mu})}{2t(t_0)} > 4p_{\mu},$$

if μ is large. Furthermore, from (1.28)

$$\frac{1}{4t^2(t_0)} \sum_{p>t_0} \frac{g^2(p)}{p} \ll (\log \log t_0)^{\gamma} = p_{\mu}^{\delta \gamma} = o(p_{\mu}),$$

since $\delta \gamma < 1$. Consequently

$$(3.3) # \{n \leq x | g(t; n) \geq \eta_{\mu} \psi(p_{\mu})\} \ll x/P_{\mu}^{3}.$$

Let $C_r(x)$ be the number of those $n \le x$, that have at least r prime factors in [1, t_0]. We have by Stirling's formula,

$$C_r(x) \le x \cdot \frac{1}{r!} \left(\sum_{p < t_0} \frac{1}{p} \right)^r \le x \exp\left(-r \log \frac{r}{e(p_{\mu}^{\delta} + O(1))} + O(\log r)\right).$$

Let $r=[(1+4\varrho)\mu]$, ϱ being a small positive constant. Then,

$$r\log\frac{r}{e(p_{\mu}^{\delta}+O(1))} \cong (1+4\varrho)(1-2\delta)\,p_{\mu} \cong (1+2\varrho)\,p_{\mu},$$

if δ is small enough. Consequently

$$C_r(x) \ll \frac{x}{P_n^{1+\varrho}}$$
.

Let n be a such number that has $s(>\mu)$ prime factors in [1, t_0]. From the monotonicity of t(y) we get

$$g_{t_0}(n) \leq g(p_1 \dots p_s) \leq \psi(p_\mu) + (s-\mu)t(p_\mu) \leq \left(\frac{s}{\mu} - 1\right)\psi(p_\mu).$$

So, if $g_{t_0}(n) \ge (1+4\varrho)\psi(p_\mu)$, then $s \ge r$. Consequently

From (3.3) and (3.4) we get immediately that

$${n \le x | \max_{j=1,...,k} g(n+j) > (1+5\varrho)\psi(p_{\mu})} \ll \frac{x}{P_{\mu}^{\varrho}}$$

if $P_{\mu} < x$.

For $P_{\mu} > x$ we have

$$F_{P_{\mu}}(n) \le \max_{n \le x + P_{\mu}} g(n) \le \psi(p_{\mu+1}) = \psi(p_{\mu}) + o(1).$$

Applying this estimation for $x=2^{\nu}$ ($\nu=1,2,...$) and summing up for $\mu \ge \mu_0$, we have

$$\sup_{x \ge 1} \frac{1}{x} \left\{ n \le x | \exists \mu > \mu_0, \, F_{P_{\mu}}(n) > (1 + 5\varrho) \psi(p_{\mu}) \right\} \ll \frac{1}{P_{\mu_0}^{\varrho}}.$$

By this we proved (1.29).

4. Proof of Theorem 1' and Theorem 2. To prove Theorem 1' we suppose that (1.11) holds. From the existence of the distribution function F(x),

$$\sum_{p} \frac{\min(1, g(p))}{p} < \infty.$$

Let $\delta > 0$ be fixed, \mathcal{P}_k be the set of those primes p, for which

$$(1+\delta)f_k(0) \le g(p) < (1+\delta)f_{2k}(0)$$

holds. Then

$$\sum_{p \in \mathcal{P}_k} 1/p < \infty,$$

if
$$f_k(0) \neq 0$$
. Let $b(n) = (n+1)...(n+k)$; $R_k = \prod_{p \in \mathscr{P}_k} p$.

From (1.11),

$$\sum_{\substack{n \le x \\ (b(n), R_n) = 1}} 1 \ge (1 - \varepsilon)x,$$

if $k > k_0(\delta, \varepsilon)$. Since $1 - F(f_k(0)) \ge 1/k$ for every k, from (1.11) it follows that $f_{wb}(0) \le (1 + \varepsilon)f_k(0)$

for every fixed v, if k is large. So $f_k(0) = O(k^e)$ and for $p \in \mathcal{P}_k$ we have $p/k \to \infty$ $(k \to \infty)$. Consequently

 $\prod_{p \in \mathcal{B}_n} \left(1 - \frac{k}{p} \right) > 1 - \varepsilon,$

and

$$\sum_{p \in \mathscr{D}_k} \frac{k}{p} < 2\varepsilon,$$

if k is sufficiently large.

So we have

$$\sum_{g(p)>(1+\delta)f_k(0)} \frac{g(p)^r}{p} < \sum_{2^v = k_0} \frac{\varepsilon(1+\delta)^r f_{2^v}^r(0)}{2^v} \ll \sum \frac{2^{\varepsilon v}}{2^v} < \infty,$$

and Theorem 1' has been proved.

The proof of Theorem 2 is almost the same. We need to observe only that from (1.13)

$$(4.1) f_k(0) = o(\log k)$$

follows. Since for fixed v

$$vk(1-F(f_{vk}(0))) \ge 1,$$

and

$$vk(1-F(f_k(0)+A)) \rightarrow 0 \quad (k \rightarrow \infty),$$

therefore $f_{vk}(0) < f_k(0) + A$ if k is large, that implies (4.1).

5. Proof of Theorem 3. Let $L(k)/\infty$ be given. We can give $L_1(k)/\infty$, so that $L_1(k) \le L(k)$, $L_1(k+k^2) \le 2L_1(k)$, $L_1(k)$ has integer values with jump 1. It is enough to prove our theorem for $L_1(k)$ instead of L(k).

Let $\mathscr{P} = \{q_1 < q_2 < ...\}$ be a rare sequence of primes. We shall define g(n) so

that $g(q_i) / \infty$, and g(p) = 0 for $p \notin \mathcal{P}$.

Let B_k be a sequence tending to infinity monotonically, $\mathscr P$ be so rare and the increase of $g(q_i)$ so slow that

(i)
$$\sum_{q_i > k} \frac{g(q_i)}{q_i} < \frac{B_k}{k},$$

(ii)
$$g\left(\prod_{q_i \le k} q_i\right) \le \frac{1}{4} L_1(k)$$

hold for every $k \ge 1$.

So $f_k(0) \le \frac{1}{4} L_1(k)$ for every $k \ge 1$. Let $g_1(n), g_2(n)$ be strongly additive defined for primes as

$$g_1(p) = \begin{cases} 0, & p > k, \\ g(p), & p \le k, \end{cases}$$

$$g_2(p) = g(p) - g_1(p), \quad f_k^{(i)}(n) = \max_{j=1,\dots,k} g_i(n+j).$$

It is obvious that

$$f_k^{(1)}(n) \leq g\left(\prod_{q_i \leq k} q_i\right) \leq \frac{1}{4} L_1(k).$$

Furthermore

$$\sum_{n \leq x} f_k^{(2)}(n) \leq k \sum_{n \leq x+k} g_2(n) \leq k \sum_{q_i > k} g(q_i) \frac{x+k}{q_i},$$

and so for x>k,

$$\frac{1}{x} \sum_{\substack{n \leq x \\ f_k^{(2)}(n) > C_k}} 1 \leq \frac{1}{C_k} \sum_{n \leq x} f_k^{(2)}(n) \leq 2 \frac{k}{C_k} \sum_{q_i > k} \frac{g(q_i)}{q_i} < \frac{2B_k}{C_k} (= \varrho_k).$$

Let $C_k = \frac{1}{4}L_1(k)$, $B_k = \frac{1}{8} \cdot \sqrt{L_1(k)}$. Then $Q_k = (\sqrt{L_1(k)})^{-1}$. Since, for $k \ge x$, $n \le x$,

$$f_k(n) \le f_{k+x}(0) \le \frac{1}{4} L_1(k+x) \le \frac{1}{4} L_1(2k) \le \frac{1}{2} L_1(k).$$

Since $f_k(n) \leq f_k^{(1)}(n) + f_k^{(2)}(n)$, therefore

$$\sup_{n\geq 1} \frac{1}{x} \# \left\{ n \leq x | f_k(n) > \frac{1}{2} L_1(k) \right\} \leq \varrho_k.$$

Let now k_0 be fixed, the sequence $k_1 < k_2 < ...$ be defined by

$$k_{v} = \min_{L_{1}(k)=2L_{1}(k_{v-1})} k.$$

It is clear that

$$\lambda(k_0) = \sum_{\nu=0}^{\infty} \varrho_{k_{\nu}} < \frac{c}{\sqrt{L_1(k_0)}},$$

 $\lambda(k_0) \rightarrow 0 \ (k_0 \rightarrow \infty).$

Applying this argument for $x=2^{\mu}$ ($\mu=0,1,2,...$) we deduce that

$$\sup_{x \geq 1} \frac{1}{x} \# \left\{ n \leq x | \exists v : f_{k_v}(n) > \frac{1}{2} L_1(k) \right\} \leq \lambda(k_0).$$

Let now n be such a number for which $f_{k_v}(n) < \frac{1}{2} L_1(k_v)$ (v = 0, 1, 2, ...) holds. Then for every $k \in (k_{v-1}, k_v)$,

$$f_k(n) \le f_{k_v}(n) \le \frac{1}{2} L_1(k_v) = L_1(k_{v-1}) \le L_1(k).$$

This finishes the proof of Theorem 3.

6. Proof of Theorem 5. Let $\varepsilon > 0$ and t be given, \mathscr{P}_1 , \mathscr{P}_2 , \mathscr{P}_3 be the set of primes in the intervals $[1, (1-\varepsilon)t]$, $((1-\varepsilon)t, t]$ $(t, (1+\varepsilon)t]$ P_i be the product of the elements \mathscr{P}_i , i.e.

 $P_i = \prod_{p \in \mathscr{P}_i} p.$

Let r, s be natural numbers. In this section $b_r, b_r^{(j)}, j=1, 2, ...,$ denote a number that is a product of r distinct elements of \mathscr{P}_2 . Similarly $c_s, c_s^{(1)}, c_s^{(2)}, ...$ denote such numbers that are the product of s distinct primes from \mathscr{P}_3 . Let H and K be the number of elements in \mathscr{P}_2 , and in \mathscr{P}_3 , respectively.

Then the number of b_r^* s is $\binom{H}{r}$, and the number of c_s^* s is $\binom{K}{s}$.

From the prime number theorem

(6.1)
$$H = \frac{\varepsilon t}{\log t} + O\left(\frac{t}{(\log t)^2}\right), \quad K = \frac{\varepsilon t}{\log t} + O\left(\frac{t}{(\log t)^2}\right).$$

Let \mathscr{A} be the set of those integers that have the form $n = \frac{P_2}{b_r}m$, where $(m, P_u) = 1$, and that contains at least s prime factors from \mathscr{P}_3 . Let

$$F(n) = \sum_{e_n \mid m} 1,$$

if $n \in \mathcal{A}$, and F(n) = 0 otherwise.

Let $0 < \delta < 1$, $r = [t^{\delta}]$, s = [cr], c > 1 being a constant.

To prove our theorem we shall deduce a Turán-Kubilius' type inequality for the sum

(6.1)
$$\mathscr{E}(y) \stackrel{\text{def}}{=} \sum_{n \leq y} \left[\sum_{i=1}^{P_2} F(n+i) - A \right]^2,$$

where

$$A = (\sum b_r)(\sum 1/c_s).$$

For the sake of simplicity we shall assume that r, s, t are large but temporarily fixed numbers, $y \rightarrow \infty$.

Let

(6.3)
$$S(y, i) = \sum_{n \le y} F(n) F(n+i).$$

Squaring out (6.1) we get easily that

(6.4)
$$\mathscr{E}(y) = \sum_{i=1}^{P_2} 2(P_2 - i)S(y, i) + P_2 \sum_{n \le y} F^2(n) - 2AP_2 \sum_{n \le y} F(n) + A^2 y + O(P_2^3 y^{1/10}) =$$

$$= \sum_{i=1}^{(1)} P_2 \sum_{i=1}^{(2)} -2AP_2 \sum_{i=1}^{(3)} A^2 y + O(P_2^3 y^{1/10}).$$

We shall use Eratosthenian sieve for some primes in \mathcal{P}_2 . We note that

$$\prod_{p \in \mathcal{P}_2} \left(1 - \frac{\gamma(p)}{p} \right) = 1 + O\left(\frac{\varepsilon}{\log t} \right) \quad (t \to \infty)$$

if $\gamma(p)$ is bounded by an absolute constant.

Then

$$H(z) = \sum_{\substack{n \leq z \\ (n, P_s) = 1}} 1 = z \prod_{p \in \mathscr{P}_2} (1 - 1/p) + O(2^H).$$

Consequently

(6.5)
$$\sum_{m \le \frac{b_r y}{P_2}} \sum_{\substack{c_s \mid m \\ (m_r P_2) \le 1}} \sum_{c_s \mid m} 1 = \sum_{b_r \mid c_s} H\left(\frac{b_r y}{P_2 c_s}\right) = \frac{1}{P_2} \left(1 + O\left(\frac{\varepsilon}{\log t}\right)\right) A y + O_t(1),$$

where t in the order term denotes that the constant involved may depend on t. We shall give an upper estimate for $\sum_{i=1}^{n} t_i$. We have

(6.6)
$$\sum_{b_r} \sum_{c_s^{(1)}, c_s^{(2)}} \sum_{n \leq \frac{b_r y}{P_2(c_s^{(1)}, c_s^{(2)})}} 1 \leq B \frac{y}{P_2} (\sum b_r),$$

where

(6.7)
$$B = \sum \frac{1}{[c_s^{(1)}, c_s^{(2)}]}.$$

Let ε_{μ} be a fixed product of μ prime factors from \mathscr{P}_3 . The equation $\varepsilon_{\mu}==(c_s^{(1)},\,c_s^{(2)})$ has

$$\binom{K-\mu}{2(s-\mu)}\binom{2(s-\mu)}{s-\mu}$$

solutions. For all of them $[c_s^{(1)}, c_s^{(2)}] \ge t^{2s-\mu}$ holds. ε_{μ} can be chosen $\binom{K}{\mu}$ times Consequently

(6.8)
$$B \leq \sum_{\mu=0}^{s} t^{\mu-2s} {K \choose \mu} {K-\mu \choose 2(s-\mu)} {2(s-\mu) \choose s-\mu}.$$

Furthermore it is obvious that

$$\sum b_r \leq t^r \binom{H}{r}$$
.

So by the Stirling formula

$$\sum b_r < \frac{(tH)^r}{r!} < \exp\left(2r\log t - r\delta\log t + O(r)\right) = \exp\left((2-\delta)r\log t + O(r)\right).$$

Similarly, from (6.8),

$$B < \sum_{\mu=0}^{s} \frac{K^{2s-\mu}}{t^{2s-\mu}\mu! (s-\mu)!^2} < \sum_{\mu=0}^{s} \frac{1}{\mu! (s-\mu)!^2} < \exp(-s\delta \log t + O(r)).$$

Consequently

$$(6.9) \qquad \sum^{(2)} \leq \frac{y}{P_2} \exp\left(\left[(2-\delta)r - \delta s\right] \log t + O(r)\right).$$

Now we estimate A. Counting the b,'s and c,'s we have

$$t^{r-s} {H \choose r} {K \choose s} \ge A \ge \frac{(1-\varepsilon)^r}{(1+\varepsilon)^s} \cdot t^{r-s} {H \choose r} {K \choose s}.$$

Since

$$\frac{(H-r)^r}{r!} < \binom{H}{r} < \frac{H^r}{r!},$$

from the Stirling formula we deduce easily that

$$\log A = (r-s)\log t + r\log H + O\left(\frac{r^2}{H}\right) + s\log K + O\left(\frac{s^2}{K}\right) - r\log r - s\log s + O(r),$$
and so by (6.1) that
$$(6.10) \qquad \log A = [2r - (r+s)\delta]\log t + O(r\log\log t).$$

We choose c (s=[cr]) so that

(6.11)
$$\alpha = 2 - (1+c)c > 0.$$

This guarantees that $A \gg 1$.

Let now consider the sum

(6.12)
$$\sum_{B} = \sum_{d>P_s} \frac{b_r^{(1)} b_r^{(2)}}{c_s^{(1)} c_s^{(2)}},$$

where

$$\Delta = \frac{P_2(c_s^{(1)}, c_s^{(2)})}{[b_s^{(1)}, b_s^{(2)}]}.$$

The condition $\Delta > P_2$ implies that $(c_s^{(1)}, c_s^{(2)}) \ge [b_r^{(1)}, b_r^{(2)}]$.

Let δ_l , ε_{μ} be fixed, where the index denotes the number of its prime divisors, and consider those $b_r^{(1)}$, $b_r^{(2)}$, $c_s^{(1)}$, $c_s^{(2)}$ for which $\delta_l = (b_r^{(1)}, b_r^{(2)})$, $\varepsilon_{\mu} = (c_s^{(1)}, c_s^{(2)})$. If $\Delta > P_2$, then

$$\{(1+\varepsilon)t\}^{\mu} \ge \{(1-\varepsilon)t\}^{2r-1}$$

i.e.

$$\frac{1}{(1-\varepsilon)^{2r-(l+\mu)}} \geq \frac{(1+\varepsilon)^{\mu}}{(1-\varepsilon)^{2r-l}} \geq t^{2r-(l+\mu)}, \quad \text{and} \quad \text{a$$

whence

$$1 \ge [(1-\varepsilon)t]^{2r-(t+\mu)},$$

i.e. $l+\mu \ge 2r$.

For fixed l and μ the number of $b_r^{(1)}$, $b_r^{(2)}$, $c_s^{(1)}$, $c_s^{(2)}$ that satisfy $\omega((b_r^{(1)}, b_r^{(2)})) = l$, $\omega([c_s^{(1)}, c_s^{(2)}]) = \mu$ is

$$\binom{H}{l}\binom{H-l}{2(r-l)}\binom{2(r-l)}{r-l}\binom{K}{\mu}\binom{K-\mu}{2(s-\mu)}\binom{2(s-\mu)}{s-\mu} \leq \frac{H^{r-l}}{l!(r-l)!^2}\cdot \frac{K^{s-\mu}}{\mu!(s-\mu)!^2}\,.$$

Since $\frac{b_r^{(1)} b_r^{(2)}}{c_s^{(1)} c_s^{(2)}} \le t^{2(r-s)}$ and H < t, K < t, therefore

(6.13)
$$\sum_{B} \ll t^{2(r-s)} \sum_{l+n \leq 2r} \frac{t^{r+s-l-n}}{l! (r-l)!^2 \mu! (s-\mu)!^2} \ll t^{r-s+1},$$

Consider now

Arguing as before, we have

$$\sum_{C} \leq \left\{ H^{r} \sum_{l=0}^{r} \frac{(t/H)^{l}}{l!(r-l)!^{2}} \right\} \left\{ \sum_{\mu=0}^{s} \frac{(K/t)^{2s-\mu}}{\mu!(s-\mu)!^{2}} \right\} = \sum_{k=0}^{(b)} \cdot \sum_{l=0}^{(c)} \frac{(K/t)^{2s-\mu}}{\mu!(s-\mu)!^{2}} = \sum_{k=0}^{(b)} \frac{(L/t)^{2s-\mu}}{\mu!(s-\mu)!^{2}} = \sum_{k=0}^{(b)} \frac{(L/t)^{2s-\mu}}{\mu!(s-\mu)!^{2s-\mu}} = \sum_{k=0}^{(b)} \frac{(L/t)^{2s-\mu}}{\mu!^{2s-\mu}} = \sum_{k=0}^{(b)} \frac{(L/t)^{2s-\mu}$$

By Stirling's formula

$$\frac{1}{l!(r-l)!^2} < \exp\left(-g(l) + O(\log r)\right),$$

where

$$g(l) = l \log l + 2(r-l) \log (r-l) - 2r + l.$$

By differentiating, we see that the smallest value is achieved at $l=l_0$, where l_0 is the solution of $l_0=(r-l_0)^2$. We have easily that

$$g(l_0) = r \log l_0 - r + O(\sqrt{r}) = r\delta \log t - r + O(\sqrt{r}).$$

Since $H'(t/H)^l \le t'$,

$$\sum^{(b)} < \exp\left(r(1-\delta)\log t - r + O(\sqrt{r})\right).$$

We have similarly that

$$\sum^{(c)} < \exp\left(-s\delta\log t + O(s\log\log t)\right).$$

Consequently

$$(6.15) \sum_{c} < \exp\left(\left[r - \delta(r+s)\right] \log t + O(s \log \log t)\right).$$

Let now consider the sum S(y, i). This is equal to the number of solutions of the equation

(6.16)
$$\frac{P_2}{b_r^{(2)}} c_s^{(2)} v - \frac{P_2}{b_r^{(1)}} c_s^{(1)} u = i, \quad \frac{P_2}{b_r^{(1)}} c_s^{(4)} u \le y,$$

 $\begin{array}{l} (uv,P_2)\!=\!1; \text{ in variable } b_r^{(1)},b_r^{(2)},c_s^{(1)},c_s^{(2)},u,v. \text{ Let } b_r^{(j)},c_s^{(j)} \text{ } (j\!=\!1,2) \text{ be fixed}; \\ \delta\!=\!(b_r^{(1)},b_r^{(2)}); \text{ } \epsilon\!=\!(c_s^{(1)},c_s^{(2)}); \text{ } \xi^{(j)},f^{(j)},\Delta \text{ } (j\!=\!1,2) \text{ be defined by} \end{array}$

$$c_s^{(f)} = \xi^{(f)} \varepsilon, \quad \delta f^{(f)} = b_r^{(f)}; \quad \Delta = \frac{P_2}{[b_r^{(1)}, b_r^{(2)}]} (c_s^{(1)}, c_s^{(2)}).$$

If (6.16) has a solution, then $\Delta | i$. Let $i = \Delta i_1$. Dividing by Δ we reduce (6.16) to (6.17) $\xi^{(2)} f^{(1)} v - \xi^{(1)} f^{(2)} u = i_1$, $(uv, P_v) = 1$.

It has a solution if and only if $(i_1, \xi^{(2)}\xi'^{(1)})=1$. The solutions u, v are of the forms

$$u = u_0 + l\xi^{(2)} f^{(1)}, \quad v = v_0 + l\xi^{(1)} f^{(2)} \quad (l = 0, 1, 2, ...).$$

To enumerate the *l*'s for which $(uv, P_2) = 1$, we sieve for primes $p \in \mathcal{P}_2$. Since the number $\gamma(p)$ of the solution of $uv = 0 \pmod{p}$ is 1 or 2, we get

$$\prod_{p \mid F_s} \left(1 - \frac{\gamma(p)}{p} \right) = 1 + O\left(\frac{\varepsilon}{\log t} \right).$$

On the previous assumptions (6.16) has

$$\frac{y(b_r^{(1)}, b_r^{(2)})}{P_2[c_s^{(1)}, c_s^{(2)}]} \left(1 + O\left(\frac{\varepsilon}{\log t}\right)\right) + O_t(1)$$

solutions. O_t denotes that the constant involved by the order term may depend on t. Hence we have

(6.18)
$$\sum^* \stackrel{\text{def}}{=} \sum_{i=1}^{P_2} S(y, i) = \frac{y}{P_2} \left(1 + O\left(\frac{\varepsilon}{\log t}\right) \right) \sum \frac{(b_r^{(1)}, b_r^{(2)})}{[c_s^{(1)}, c_s^{(2)}]} \cdot \sum_{\substack{i_1 \equiv P_2 \mid d \\ (i_1, \xi^{(1)}, \xi^{(2)}) = 1}} 1 + O_t(1).$$

Since

$$\sum_{\substack{l_1 \leq P_2/d \\ (l_1, \xi^{(1)} \xi^{(2)}) = 1}} 1 = \begin{cases} \frac{P_2}{\Delta} \left(1 + O\left(\frac{r}{t}\right) \right) + O(1), & \text{if } \Delta \leq P_2, \\ 0, & \text{if } \Delta > P_2, \end{cases}$$

and $\frac{r}{t} \ll \frac{\varepsilon}{\log t}$ as $t \to \infty$, we have

$$\sum^* = \frac{y}{P_2} \left(1 + O\left(\frac{\varepsilon}{\log t}\right) \right) (A^2 - \sum_B) + O\left(\frac{y}{P_2} \sum_C\right) + O_t(1),$$

i.e.

(6.19)
$$\sum^{*} = \frac{y}{P_{2}} \left(1 + O\left(\frac{\varepsilon}{\log t}\right) \right) A^{2} + O\left(\frac{y}{P_{2}} \left(\sum_{B} + \sum_{C}\right)\right) + O_{t}(1).$$

Similarly, for the sum

(6.20)
$$\sum^{**} \stackrel{\text{def}}{=} \sum_{i=1}^{p_g} iS(y, i)$$

we have

Since

$$\sum_{\substack{i_1 \le P_2 \mid d \\ (i_0, \xi^{(1)}, \xi^{(2)}) = 1}} i_1 = \frac{P_2^2}{2d^2} \left(1 + O\left(\frac{r}{t}\right) \right) + O\left(\frac{P_2}{d}\right)$$

for $\Delta \leq P_2$, we have, as earlier

$$\sum^{**} = \frac{y}{2} \left(1 + O\left(\frac{\varepsilon}{\log t}\right) \right) A^2 + O\left(y(\sum_B + \sum_C)\right) + O_t(1).$$

Consequently for $\Sigma^{(1)}$ defined in (6.4) we have

(6.21)
$$\sum_{t=0}^{t} (1) = 2(P_2 \sum_{t=0}^{t} - \sum_{t=0}^{t}) = y \left(1 + O\left(\frac{\varepsilon}{\log t}\right)\right) A^2 + O(y(\sum_{t=0}^{t} + \sum_{t=0}^{t})) + O_t(1).$$

So, by (6.21) and (6.5) we have

$$\mathscr{E}(y) \leq B_1 \frac{\varepsilon}{\log t} A^2 y + B_2 y \left(\sum_B + \sum_C \right) + O\left(P_2 \sum_2 \right) + O_t(1),$$

where B_1 , B_2 are absolute constants. Now by (6.10), (6.13), (6.15) we get

$$\sum_{C} < t^{-r/2}A, \sum_{B} < 1.$$

From (6.9) $P_2 \sum_2 \ll Ae^{O(r)}$, and so from (6.10), (6.11),

$$Ae^{O(r)} \ll \frac{\varepsilon}{\log t} A^2$$
.

Consequently

(6.22)
$$\mathscr{E}(y) \leq B \frac{\varepsilon}{\log t} A^2 y + O_t(1).$$

Let M(y) be the number of $n \le y$, for which no one of $n+1, \ldots, n+P_2$ is belonging to \mathscr{A} . Then, from (6.22)

(6.23)
$$M(y) \leq B \frac{\varepsilon}{\log t} y + O_t(1).$$

Since

$${P_1(n+1), ..., P_1(n+P_2)} \subseteq {P_1n+1, ..., P_1n+P_1P_2},$$

we have immediately the following assertion.

THEOREM 8. Let $\varepsilon > 0$, $0 < \delta < 1$, c be fixed so that

$$\alpha \stackrel{\text{def}}{=} 2 - (1+c)\delta > 0,$$

t a large constant; $r=[t^{\delta}]$, $s=[ct^{\delta}]$. Let \mathcal{B} be the set of those integers n for which there exist b_r and c_s so that

$$n \equiv 0 \left(\text{mod } \frac{P_1 P_2}{b_s} c_s \right).$$

Let

$$N(x) = \#\{n \le x | \{n+1, ..., n+P_1P_2\} \cap \mathcal{B} = \emptyset\}.$$

Then

$$\overline{\lim}_{x} \frac{N(x)}{x} \leq B \frac{\varepsilon}{\log t},$$

where B is an absolute constant.

Hence we deduce easily Theorem 5. Indeed, if $n \equiv 0 \left(\frac{P_1 P_2}{b_r} c_s \right)$, then

$$g(n) \ge g(P_1 P_2) + g(c_s) - g(b_r).$$

Let $g(p)=p^{-\delta}$. By choosing $r=[t^{\gamma}], s=[ct^{\gamma}], \gamma < 1$,

$$g(c_s) - g(b_r) \ge \frac{s}{[(1+\varepsilon)t]^\delta} - \frac{r}{[(1-\varepsilon)t)^\delta} \ge t^{\gamma-\delta} \left\{ \frac{c}{1+\varepsilon} - \frac{1}{1-\varepsilon} \right\} > c_1 t^{\gamma-\delta}$$

$$(c_1 > 0 \text{ constant})$$

if ε is sufficiently small.

Let $P_1P_2=p_1...p_{\mu} \le k < P_1P_2p_{\mu+1}$. Then $f_k(0)=g(P_1P_2)$. If we put $t=p_{\mu}$, we get immediately Theorem 5.

Reference

 P. Erdős and I. Kátat, On the growth of some additive functions on small intervals, Acta Math. Acad. Sci. Hungar. (in print).

(Received September 12, 1978)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES 1053 BUDAPEST, REÁLTANODA U. 13—15.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE 1088 BUDAPEST, MÚZEUM KRT. 6—8.

A CORRECTION TO OUR PAPER

"ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS..."

By

P. ERDÖS, member of the Academy and I. KÁTAI, corresponding member of the Academy (Budapest)

In our paper [1] we stated erroneously that Theorem 1 is a consequence of Theorem 1'. In fact, the converse implication is true: Theorem 1 implies Theorem 1'. Now we prove Theorem 1. From (1.9) it follows that

(1)
$$\sum_{p} \frac{\min(1, g(p))}{p} < \infty,$$

Indeed, if (1) does not hold, then $g(n) \to \infty$ $(n \to \infty)$ for the set of n having asymptotic density 1, that contradicts (19). Let $\varepsilon' > 0$, v a fixed integer. We shall prove that

(2)
$$f_{vk}(0) \leq (1+\epsilon') f_k(0)$$

holds for all $k \ge k_0(v, \varepsilon')$. Observing that

$$f_{vk}(0) \le f_{vk}(n) = \max\{f_k(n), f_k(n+k), ..., f_k(n+(v-1)k)\},\$$

we have (2) from (1.9) immediately. From (2) we get that $f_k(0) = O(k^s)$, ε being an arbitrary positive number.

The further part of the proof is the same as that of Theorem 1' in [1].

Reference

 P Erdős and I. KATAI, On the maximal value of additive functions in short intervals and on some related questions, Acta Math. Acad. Sci. Hungar., 35 (1980), 257—278.

(Received January 6, 1981)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, REALTANODA U, 13—15 1043

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE BUDAPEST, MÜZEUM KRT. 6—8 1088