ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS
 IN SHORT INTERVALS AND ON SOME RELATED QUESTIONS

By
P. ERDÕS, member of the Academy and I. KÁTAI (Budapest), corresponding member of the Academy

1. Let (a, b) and $[a, b]$ be the greatest common divisor and the least common multiple of a and b, respectively. p_{n} denotes the nth prime; $p, q, q_{1}, q_{2}, \ldots$ are prime numbers. A sum \sum_{p} and a product \prod_{p} denote a summation and a multiplication, respectively, over primes indicated. The symbol \#\{..\} denotes the number of elements indicated in the bracket $\left\} . P_{\mu}\right.$ is the product of the first μ primes.

The aim of this paper is to continue our investigation on the distribution of the maximal value of additive functions in small intervals.

In the sequel let $g(n)$ be a non-negative strongly additive function,

$$
\begin{equation*}
f_{k}(n)=\max _{j=1, \ldots, k} g(n+j) . \tag{1.1}
\end{equation*}
$$

Let

$$
\begin{gather*}
\varrho(k, \varepsilon)=\sup _{x \geqq 1} \frac{1}{x} \#\left\{n \leqq x \mid f_{k}(n)>(1+\varepsilon) f_{k}(0)\right\}, \tag{1.2}\\
\delta\left(k_{0}, \delta\right)=\sup _{x \geqq 1} \frac{1}{x} \#\left\{n \leqq x \mid \exists k, k>k_{0}, f_{k}(n)>(1+\varepsilon) f_{k}(0)\right\}, \tag{1.3}\\
\theta(k, \varepsilon)=\lim _{x=\infty} \sup _{x} \frac{1}{x} \#\left\{n \leqq x \mid f_{k}(n)>f_{k}(0)(1+\varepsilon)\right\} .
\end{gather*}
$$

It is obvious that

$$
\begin{equation*}
\theta(k, z) \leqq \varrho(k, \varepsilon) \text {, } \tag{1.4}
\end{equation*}
$$

and that

$$
\begin{equation*}
\delta\left(k_{0}, \varepsilon\right) \geqq \sup _{k \geqq k_{0}} \varrho(k, z) . \tag{1.5}
\end{equation*}
$$

In [1] we tried to determine those additive $g(n)$ for which the relation

$$
\begin{equation*}
\delta\left(k_{0}, \varepsilon\right) \rightarrow 0 \quad\left(k_{0} \rightarrow \infty\right), \quad \forall \varepsilon>0 \tag{1.6}
\end{equation*}
$$

holds. There we noticed that (1.6) implies

$$
\begin{equation*}
\sum_{p} \frac{\min (1, g(p))}{p}<\infty \tag{1.7}
\end{equation*}
$$

but we could not decide if the condition

$$
\begin{equation*}
\sum_{p} \frac{g(p)}{p}<\infty \tag{1.8}
\end{equation*}
$$

were necessary. Now we shall prove this. More exactly, we shall prove the following assertion.

Theorem 1. If

$$
\begin{equation*}
\theta(k, \varepsilon) \rightarrow 0 \quad(k \rightarrow \infty) \tag{1.9}
\end{equation*}
$$

for all $\varepsilon>0$, then

$$
\begin{equation*}
\sum_{p} \frac{g(p)^{r}}{p}<\infty \tag{1.10}
\end{equation*}
$$

for every $r \geqq 1$.
Let $F(x)$ be the limit distribution function of $g(n)$, the existence of which is guaranteed by (1.7).

Theorem 1'. Assume that

$$
\begin{equation*}
k\left(1-F\left(f_{k}(0)(1+\varepsilon)\right)\right) \rightarrow 0 \tag{1.11}
\end{equation*}
$$

holds for every $\varepsilon>0$. Then (1.10) holds for every $r \geqq 1$.
Theorem 1 is an immediate consequence of Theorem 1^{\prime}. Indeed, (1.11) implies that the density of integers n, satisfying $g(n)>(1+\varepsilon) f_{k}(0)$ is $o(1 / k)$, consequently (1.9) holds.

Perhaps (1.11) implies that

$$
\begin{equation*}
\sum_{p} \frac{e^{u /(p)}-1}{p}<\infty \tag{1.12}
\end{equation*}
$$

for every $u>0$. We could not give a counter example.
Theorem 2. If for some constant $A>0$

$$
\begin{equation*}
k\left(1-F\left(f_{k}(0)+A\right)\right) \rightarrow 0 \quad(k \rightarrow \infty), \tag{1.13}
\end{equation*}
$$

thne (1.12) holds for every $u>0$.
On the other hand, we shall prove that (1.6) does not imply $g(p)=O(1)$. This will follow easily from the following

Theorem 3. Let $L(k)$ be a function on $[1, \infty)$ tending to infinity arbitrary slowly. Then there exists a strongly additive non-negative $g(n)$ with $\lim g(p)=\infty$, so that

$$
\begin{equation*}
\sup _{x=1} \frac{1}{x} \#\left\{n \leqq x \mid \exists k \geqq k_{0}, f_{k}(n)>L(k)\right\} \rightarrow 0 \quad\left(k_{0} \rightarrow \infty\right) . \tag{1.14}
\end{equation*}
$$

We are interested in the conditions that imply

$$
\begin{equation*}
\sup _{x \geqq 1} \frac{1}{x} \#\left\{n \leqq x \mid \exists k>k_{0}, f_{k}(n)>f_{k}(0)+A\right\} \rightarrow 0 \quad\left(k_{0} \rightarrow \infty\right) \text {, } \tag{1.15}
\end{equation*}
$$

with some suitable constant A.
ThEOREM 4. If $g(p)=\frac{1}{p}$, then

$$
\begin{equation*}
\sup _{x \geqslant 1} \frac{1}{x} \#\left\{n \leqq x \mid \exists k>k_{0}, f_{k}(n)>f_{k}(0)+\lambda_{k}\right\} \rightarrow 0 \quad\left(k_{0} \rightarrow \infty\right), \tag{1.16}
\end{equation*}
$$

where $\lambda_{k}=3 /(\log \log k)$.

Theorem 5. If $g(p)=1 / p^{s}, 0<\delta<1, \varrho>0$ being an arbitrary constant, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \varliminf_{x=\infty} \frac{1}{x} \#\left\{n \leqq x \mid f_{k}(n)>f_{k}(0)+(\log k)^{1-s-e}\right\}=1 \tag{1.17}
\end{equation*}
$$

By somewhat more trouble we could prove that

$$
\begin{equation*}
\sup _{x \geqq 1} \frac{1}{x} \#\left\{n \leqq x \mid \exists k>k_{0}, f_{k}(n)<f_{k}(0)+(\log k)^{1-\delta-e}\right\} \rightarrow 0, \tag{1.18}
\end{equation*}
$$

as $k_{0} \rightarrow \infty$.
Let $F_{\delta}(x), F_{y}(x)$ denote the limit distribution functions corresponding to $g(p)=1 / p^{\delta}, g(p)=(\log p)^{-\gamma}$, respectively; $G_{\delta}(x)=1-F_{\delta}(x), G_{\gamma}(x)=1-F_{\gamma}(x)$.

We shall consider $G(x)$ for large $x(>0)$.
Theorem 6. We have for $\delta=1$:

$$
\begin{equation*}
\log \log \frac{1}{G_{1}(\tau)} \geqq e^{\tau-a}-c \tau^{2} e^{-\tau} \tag{1.19}
\end{equation*}
$$

where $a=\gamma-\sum_{k \times \mathbb{2}} \sum_{p} \frac{1}{k p^{k}} ; \gamma$ being Euler's constant, c denotes a suitable constant.
Furthermore, if $0<\delta<1$,

$$
\begin{equation*}
\log \frac{1}{G_{\partial}(\tau)} \equiv(\tau \log \tau)^{1 /(1-\delta)}\left(1+O(\log \tau)^{-1}\right) \quad(\tau>1) \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \frac{1}{G_{\gamma}(\tau)} \geqq \tau(\log \tau)^{\gamma+1}-c_{1} \tau(\log \tau)^{\gamma}, \tag{1.21}
\end{equation*}
$$

c_{1} being a positive constant depending on γ.
Remark. It is easy to see that the previous inequalities are quite sharp. Indeed, if g is monotonically decreasing on the set of primes p, then for $P_{\mu} \leqq k<P_{\mu+1}$ we have

$$
1-F\left(g\left(P_{\mu}\right)\right) \geqq \frac{1}{P_{\mu}} \geqq \frac{1}{k}
$$

Hence, after some simple computation, we have the following inequalities for $\tau>1$;
(i) $\log \log \frac{1}{G_{\delta=1}(\tau)} \leqq e^{\tau-a}+O\left(e^{-B \tau}\right), \quad B$ being an arbitrary but fixed number;
(ii) $\log \frac{1}{G_{\delta}(\tau)} \leqq(\tau \log \tau)^{1 /(1-\delta)}\left(1+O\left((\log \tau)^{-1}\right)\right)$, if $\quad 0<\delta<1$;
(iii) $\log \frac{1}{G_{\gamma}(\tau)} \leqq \tau(\log \tau)^{\gamma+1}\left(1+O\left((\log \tau)^{-1}\right)\right)$.

Let now

$$
\begin{equation*}
\sum_{p} \frac{g(p)}{p}=\infty ; \quad \sum_{p} \frac{g^{2}(p)}{p}<\infty \tag{1.22}
\end{equation*}
$$

$$
\begin{gather*}
A_{x}=\sum_{p=x} \frac{g(p)}{p} ; \tag{1.23}\\
\psi(y)=\sum_{p \leqq y} g(p), \tag{1.24}\\
F_{k}(n)=\max _{1 \geqq j \leq k}\left\{g(n+j)-A_{n+j}\right\} . \tag{1.25}
\end{gather*}
$$

Theorem 7. Let $0<t(x)$ monotonically tend to zero in $[1, \infty)$, let $g(n)$ be strongly additive defined for primes p by $g(p)=t(p)$. If (1.22) holds, then for every fixed k, $P_{\mu} \leqq k<P_{\mu+1}$, we have

$$
\begin{equation*}
F_{k}(n) \geqq \psi\left(P_{\mu}\right)+A_{\log k}-\varepsilon_{k} \tag{1.26}
\end{equation*}
$$

for every but $O\left(\delta_{k} x\right)$ of $n \leqq x ; \varepsilon_{k} \rightarrow 0, \delta_{k} \rightarrow 0$ as $k \rightarrow \infty$.
Suppose, in addition, that

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\psi(y)}{y t\left(e^{e^{y^{2}}}\right)}=\infty \tag{1.27}
\end{equation*}
$$

for every $\delta>0$, and that

$$
\begin{equation*}
\sum_{p>y} \frac{t^{2}(p)}{p}<t^{2}(y)(\log \log y)^{\gamma} \quad(y \rightarrow \infty) \tag{1.28}
\end{equation*}
$$

for a suitable $\gamma>0$. Then

$$
\begin{equation*}
\lim _{k_{0} \rightarrow \infty} \sup _{x \geqslant 1} \frac{1}{x} \#\left\{n \leqq x\left|\exists k>k_{0},\left|\frac{F_{k}(n)}{\psi(\log k)}-1\right| \equiv \varepsilon\right\}=0,\right. \tag{1.29}
\end{equation*}
$$

for every $\varepsilon>0$.
2. Asymptotic of distribution functions for large values. Let $g(n) \geqq 0$ be strongly additive. Then for every $u \geqq 0$

$$
\begin{equation*}
\sum_{n \geq x} e^{u_{j}(n)} \leqq x \prod_{p \leq x}\left(1+\frac{e^{\operatorname{mg}(p)}-1}{p}\right) \tag{2.1}
\end{equation*}
$$

As it is well known

$$
\begin{equation*}
\frac{1}{x} \sum_{n \geqq x} e^{n g(n)} \rightarrow K(u)=\prod_{p}\left(1+\frac{e^{u g(p)}-1}{p}\right) \tag{2.2}
\end{equation*}
$$

if the infinite product on the right hand side converges. Let $F(\tau)$ be the distribution function of $g(n)$. Then

$$
\begin{equation*}
1-F(\tau) \leqq K(u) e^{-u \tau} \quad(0<u<\infty) \tag{2.3}
\end{equation*}
$$

By choosing u appropriately, we shall use (2.3) to give an upper estimate for $G(\tau)=$ $=1-F(\tau)$ for some special additive functions.

Let $t(x), x \in[1, \infty)$, tend to zero monotonically, $g(p)=t(p)$ for primes p, $\psi(y)=\sum_{p \leq y} t(p)$. Suppose that $t(x)$ is differentiable.

Let the values t_{0}, t_{1} be defined by the relations

$$
\begin{equation*}
u t\left(t_{0}\right)=\log t_{0}+H ; \quad u t\left(t_{1}\right)=\log t_{1}-H \tag{2.4}
\end{equation*}
$$

where $H>1$. Let

$$
K(u)=K_{1}(u) K_{2}(u) K_{3}(u),
$$

where in $K_{i}(u)(i=1,2,3)$ the product is extended over the primes in the intervals $\left(1, t_{0}\right],\left(t_{0}, t_{1}\right],\left(t_{1}, \infty\right)$, respectively.

For $p \in\left(1, t_{0}\right)$ we use the inequality

$$
\log \left(1+\frac{e^{u g(p)}-1}{p}\right)<\log \frac{e^{u g(p)}}{p}+e^{-u g(p)} p \leqq u g(p)-\log p+e^{-H}
$$

and deduce

$$
\begin{equation*}
\log K_{1}(u)<u \psi\left(t_{0}\right)-\sum_{p \geq t_{0}} \log p+\sum_{p \geqq t_{0}} p e^{-\mu_{p}(p)} . \tag{2.5}
\end{equation*}
$$

Since

$$
1+\frac{e^{\pi g(p)}-1}{p} \leqq 1-\frac{1}{p}+e^{H}<e^{H+1}
$$

in $p \in\left(t_{0}, t_{1}\right]$, therefore

$$
\begin{equation*}
\log K_{2}(u)<(H+1)\left(\pi\left(t_{1}\right)-\pi\left(t_{0}\right)\right) \tag{2.6}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\log K_{3}(u)<\sum_{p>1_{1}} \frac{e^{u_{\beta}(p)}-1}{p} \tag{2.7}
\end{equation*}
$$

We shall give an upper estimate for the right hand side of the last inequality when $t(x)=x^{-\delta}(0<\delta \leqq 1) ; t(x)=(\log x)^{-\gamma}$. For this we use the prime number theorem in the form

$$
\pi(x)=\operatorname{li} x+R(x), \quad|R(x)| \leqq c_{2} x(\log x)^{-c_{3}}
$$

where c_{3} is a large constant. Let

$$
\begin{equation*}
f(x)=\frac{e^{\operatorname{art}(x)}-1}{x} \tag{2.8}
\end{equation*}
$$

Then

$$
\sum_{p>I_{1}} \frac{e^{u g(p)}-1}{p}=I_{1}+I_{2}, \quad I_{1}=\int_{I_{1}}^{\infty} \frac{f(x)}{\log x} d x, \quad I_{2}=\int_{I_{1}}^{\infty} f(x) d R(x)
$$

For the estimation of I_{2} we integrate by parts:

$$
\begin{equation*}
I_{2}=\left.R(x) f(x)\right|_{t_{1}} ^{\infty}-\int_{t_{1}}^{\infty} R(x) f^{\prime}(x) d x \tag{2.9}
\end{equation*}
$$

Suppose that

$$
f^{\prime}(x)=\frac{e^{u u(x)}\left(u t^{\prime}(x) x-1\right)+1}{x^{2}}
$$

changes its sign in $\left[t_{1}, \infty\right)$ at most once, for example at z_{0}. Then, by integrating by parts, we have

$$
\begin{aligned}
\int_{t_{1}}^{\infty}|R(x)|\left|f^{\prime}(x)\right| d x & \leqq c_{2}\left|\int_{t_{1}}^{z_{0}} \frac{x}{(\log x)^{c_{3}}} f^{\prime}(x) d x\right|+c_{2}\left|\int_{z_{0}}^{\infty} \frac{x}{(\log x)^{c_{2}}} f^{\prime}(x) d x\right| \ll \\
& \ll f\left(t_{1}\right) \frac{t_{1}}{\left(\log t_{1}\right)^{c_{3}}}+\int_{t_{1}}^{\infty} \frac{f(x)}{(\log x)^{c_{1}}} d x .
\end{aligned}
$$

So, observing that

$$
f\left(t_{1}\right)=\frac{e^{-H} t_{1}-1}{t_{1}} \leqq e^{-H},
$$

we get

$$
\begin{equation*}
I_{2} \ll e^{-B} \frac{t_{1}}{\left(\log t_{1}\right)^{c_{3}}}+\frac{1}{\left(\log t_{1}\right)^{c_{3}-1}} \cdot I_{1} . \tag{2.10}
\end{equation*}
$$

To estimate I_{1}, we write

$$
\begin{equation*}
I_{1}=\int_{\log t_{1}}^{\infty} \frac{e^{\operatorname{att}\left(e^{\lambda}\right)}-1}{\lambda} d \lambda=\sum_{k=1}^{\infty} \frac{u^{k}}{k!} \int_{\log t_{1}}^{\infty} \frac{t\left(e^{\lambda}\right)^{k}}{\lambda} d \lambda=\mathscr{H}\left(\mathrm{g} ; \log t_{1}\right) . \tag{2.11}
\end{equation*}
$$

For the integral

$$
J(y, h)=\int_{j}^{\infty} \lambda^{h} e^{-\lambda} d \lambda
$$

we have

$$
J(y, h)=y^{h} e^{-y}+h J(y, h-1) .
$$

Let now $t(p)=p^{-\delta}(0<\delta \leqq 1)$. Then
and so

$$
\int_{\log t_{1}}^{\infty} \frac{t\left(e^{\lambda}\right)^{k}}{\lambda} d \lambda=\int_{\log t_{1}}^{\infty} \frac{e^{-\lambda \delta k}}{\lambda} d \lambda=J\left(\delta k \log t_{1},-1\right)<\frac{e^{-\delta k \log t_{1}}}{\delta k \log t_{1}},
$$

$$
\mathscr{H}\left(\frac{1}{p^{\delta}} ; \log t_{1}\right) \leqq \sum_{k=1}^{\infty} \frac{\left(u t_{1}^{-\delta}\right)^{k}}{k!k \delta \log t_{1}} .
$$

Since $u t_{1}^{-d}=\log t_{1}-H$, we have

$$
\begin{equation*}
I_{1} \leqq \frac{4 e^{-H} t_{1}}{\delta\left(\log t_{1}\right)^{2}}, \tag{2.12}
\end{equation*}
$$

if $H<\frac{1}{2} \log t_{1}$.
Let now $t(p)=(\log p)^{-\gamma},(\gamma>0)$. Then, from (2.11),

$$
\begin{aligned}
& \mathscr{H}\left((\log p)^{-\gamma} ; \log t_{1}\right)=\sum_{k=1}^{\infty} \frac{u^{k}}{k!} \int_{\log _{1}}^{\infty} \lambda^{-k \gamma-1} d \lambda= \\
= & \sum_{k=1} \frac{\left(u\left(\log t_{1}\right)^{-\gamma}\right)^{k}}{k!(k \gamma+1)}=\sum_{k \neq 1} \frac{\left(\log t_{1}-H\right)^{k}}{k!(k \gamma+1)} \leqq \frac{4 e^{-H} t_{1}}{\gamma \log t_{1}},
\end{aligned}
$$

if $H<\frac{1}{2} \log t_{1}$.

So for $t(p)=p^{-\delta}(0<\delta \leqq 1)$

$$
\begin{equation*}
\log K_{3}(u) \leqq B e^{-H} \frac{t_{1}}{\left(\log t_{1}\right)^{2}}, \tag{2.13}
\end{equation*}
$$

while for $t(p)=(\log p)^{-\gamma} \quad(\gamma>0)$

$$
\log K_{3}(u) \leqq B e^{-H} \frac{t_{1}}{\log t_{1}},
$$

B being a constant.
For the sake of brevity we shall write $u_{1}=\log u, u_{2}=\log u_{1}, u_{3}=\log u_{2}$.
Let us first consider the case $t(p)=p^{-1}$. By choosing $H=1$, and collecting our inequalities we have

$$
\log K(u)<u \sum_{p \not t_{0}} \frac{1}{p}-t_{0}+O\left(\frac{t_{0}}{\log t_{0}}\right)
$$

where

$$
t_{0}=\frac{u}{\log t_{0}+1}, \quad t_{1}=\frac{u}{\log t_{2}-1}
$$

Since, from the prime number theorem

$$
\sum_{p \equiv t_{0}} \frac{1}{p}=\log \log t_{0}+a+O\left(u_{1}^{-2}\right)
$$

where

$$
a=\gamma-\sum_{k \leq y} \sum_{p} \frac{1}{k p^{k}}
$$

(γ being Euler's constant), and observing that

$$
\log \log t_{0}=u_{2}-\frac{u_{2}}{u_{1}}+O\left(u_{2} u_{1}^{-2}\right), \quad t_{0}=\frac{u}{u_{1}}+O\left(u u_{2} u_{1}^{-2}\right),
$$

we get

$$
\log K(u)<u\left[u_{2}+a-\frac{u_{2}+1}{u_{1}}\right]+O\left(u u_{2}^{2} u_{1}^{-2}\right)
$$

So, from (2.3),

$$
\log (1-F(\tau)) \leqq u\left[u_{2}+a-\tau-\frac{u_{2}+1}{u_{1}}\right]+O\left(u u_{2}^{2} u_{1}^{-2}\right) .
$$

Let u be chosen according to the equation

$$
\tau=u_{2}+a-u_{2} u_{1}^{-1}
$$

Then, by an easy calculation, we get

$$
\begin{gathered}
\log (1-F(\tau)) \leqq-\frac{u}{u_{1}}+O\left(u u_{2}^{2} u_{1}^{-2}\right), \\
\mathscr{L} \stackrel{\text { def }}{=} \log \log \frac{1}{1-F(\tau)} \geqq u_{1}-u_{2}+O\left(u_{2}^{2} u_{1}^{-1}\right) .
\end{gathered}
$$

Since

$$
u_{1}=e^{\tau-a}+\frac{u_{2}}{u_{1}}=e^{\tau-a}\left(1+\frac{u_{2}}{u_{1}}+O\left(\frac{u_{2}^{2}}{u_{1}^{2}}\right)\right)=e^{\tau-a}+u_{2}+O\left(\frac{u_{2}^{2}}{u_{1}}\right)
$$

we have $\mathscr{L} \geqq e^{\tau-a}-c \tau^{2} e^{-t}$, that is (1.19) holds.
Now we consider the case $t(p)=p^{-s}, 0<\delta<1$. By choosing $H=1$, we have

$$
t_{0}^{\delta}=\frac{u}{\log t_{0}+1}<\frac{u}{\log t_{1}-1}=t_{1}^{3},
$$

and so $t_{1} / t_{0} \leqq e^{2}$. Consequently, by (2.3)

$$
\log \frac{1}{1-F(\tau)} \geqq \tau u-u \psi\left(t_{0}\right)+t_{0}+O\left(t_{0} /\left(\log t_{0}\right)\right) .
$$

Since

$$
\psi\left(t_{0}\right)=\sum_{p \leq r_{0}} 1 / p^{\delta}=\frac{t_{0}^{1-\delta}}{(1-\delta) \log t_{0}}\left(1+O\left(\frac{1}{\log t_{0}}\right)\right),
$$

and $u=t_{0}^{3}\left(\log t_{0}+1\right)$, we have

$$
w \psi\left(t_{0}\right)=\frac{t_{0}}{1-\delta}\left(1+O\left(\frac{1}{\log t_{0}}\right)\right)
$$

and so

$$
\log \frac{1}{1-F(\tau)} \geqq \tau u-\frac{\delta}{1-\delta} t_{0}+O\left(t_{0} /\left(\log t_{0}\right)\right) .
$$

By choosing t_{0} to satisfy

$$
\tau=\frac{t_{0}^{1-\delta}}{(1-\delta) \log t_{0}}
$$

we have

$$
\log \frac{1}{1-F(\tau)} \geqq t_{0}+O\left(\frac{t_{0}}{\log t_{0}}\right)=(\tau \log \tau)^{1 /(1-\sigma)}\left(1+O\left(\frac{1}{\log \tau}\right)\right)
$$

and so (1.20) holds.
To prove (1.21), we observe that

$$
\log \frac{1}{1-F(\tau)} \geqq \tau u-\log K(u) \geqq u \tau+t_{0}-\frac{u t_{0}}{\left(\log t_{0}\right)^{\gamma+1}}-\frac{c_{4} t_{0}}{\log t_{0}} .
$$

By choosing $u=(\log \tau)^{\gamma+1}$, we have

$$
\log \frac{1}{1-F(\tau)} \equiv \tau(\log \tau)^{\gamma+1}-c_{3} \tau(\log \tau)^{\gamma}
$$

and this proves (1.21).
Now we shall prove Theorem 4. Let $g(p)=1 / p$,

$$
g_{y}(n)=\sum_{\substack{p, n \\ p<y}} g(p) ; \quad g(y ; n)=g(n)-g_{y}(n) .
$$

Then

$$
\mathscr{S}_{A} \stackrel{\text { def }}{=} \frac{1}{x} \#\left\{n \leqq x \mid g_{t_{0}}(n) \geqq \psi\left(t_{0}\right)+\Delta\right\} \leqq e^{-u\left(\psi\left(t_{0}\right)+\Delta\right)} \prod_{p \leqq r_{0}}\left(1+\frac{e^{u g(p)}-1}{p}\right),
$$

where $u=u_{t_{0}}$ is defined according to (2.4), i.e. $u_{t_{0}}=t_{0}\left(\log t_{0}+H\right)$. By using (2.5), we get

$$
\log \mathscr{S}_{A}<-\Delta u-t_{0}+O\left(\frac{t_{0}}{\left(\log t_{0}\right)^{c}}\right)+\sum_{p \geqq t_{0}} p e^{-u / p}
$$

where c is an arbitrary large constant. Since

$$
\sum_{\frac{y}{2}<p<y} p e^{-u / y}<y \pi(y) e^{-u / y} \ll \frac{y^{2}}{\log y} e^{-w / y},
$$

by choosing $y=y_{k}=\frac{t_{0}}{2^{k}}(k=0,1,2, \ldots)$, we have

$$
\sum_{p \geq t_{0}} p e^{-u / p} \leqslant \frac{t_{0}^{2} e^{-u / t_{0}}}{\log t_{0}}=\frac{e^{-H} t_{0}}{\log t_{0}}
$$

By choosing $H=c \log \log t_{0}$, with a fixed c,

$$
\begin{equation*}
\log \mathscr{S}_{A}<-\Delta u_{t_{0}}-t_{0}+B \frac{t_{0}}{\left(\log t_{0}\right)^{c}} \tag{2,14}
\end{equation*}
$$

B being a constant.
Let $u_{t_{1}}=t_{1}\left(\log t_{1}-H\right)$. Then, by choosing $H=c \log \log t_{1}$,

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leqq x \mid g\left(t_{1}, n\right) \geqq R\right\} \leqq \exp \left(-R u_{t_{1}}+B \frac{t_{1}}{\left(\log t_{1}\right)^{c+2}}\right) . \tag{2.15}
\end{equation*}
$$

Let

$$
\begin{gathered}
t_{0}=t_{1}=(\log k)^{1+\varepsilon_{k}}, \quad \varepsilon_{k}=\frac{\log \log \log k}{\log \log k} ; \\
f_{k}^{(1)}(n)=\max _{j=1, \ldots, k} g_{t_{0}}(n+j) ; \quad f_{k}^{(2)}(n)=\max _{j=1, \ldots, k} g\left(t_{0} ; n+j\right) .
\end{gathered}
$$

Let

$$
H_{k} \stackrel{\text { def }}{=} \psi\left(t_{0}\right)-\log k=\log \left(1+\varepsilon_{k}\right)+O\left(\frac{1}{\log \log k}\right)=\frac{\log \log \log k}{\log \log k}+O\left(\frac{1}{\log \log k}\right)
$$

Let k be so large that $H_{k}<2 \varepsilon_{k}$. Then, by (2.14),

$$
\begin{gather*}
a\left(x, k, 2 \varepsilon_{k}\right) \stackrel{\text { def }}{=} \frac{1}{x} \#\left\{n \leqq x \mid f_{k}^{(1)}(n) \geqq \psi(\log k)+2 \varepsilon_{k}\right\} \leqq \tag{2.16}\\
\cong\left(1+\frac{k}{x}\right) \frac{k}{x+k} \#\left\{n \leqq x+k \mid g_{t_{0}}(n) \geqq \psi\left(t_{0}\right)\right\} \leqq \\
\leqq\left(1+\frac{k}{x}\right) k \exp \left(-t_{0}+B \frac{t_{0}}{\left(\log t_{0}\right)^{c}}\right) \leqq\left(1+\frac{k}{x}\right) k^{-\log \log k+c},
\end{gather*}
$$

c being a constant. Similarly, from (2.15),

$$
\begin{gather*}
b\left(x, k, \varepsilon_{k}\right)=\frac{1}{x} \#\left\{n \leqq x \mid f_{k}^{(2)}(n) \leqq \varepsilon_{k}\right\} \leqq \tag{2.17}\\
\leqq\left(1+\frac{k}{x}\right) k \exp \left(-\varepsilon_{k} u_{t_{1}}+O\left(\frac{t_{1}}{\left(\log t_{1}\right)^{c}}\right)\right) \leqq\left(1+\frac{k}{x}\right) k^{-\log \log k}
\end{gather*}
$$

So for $k \leqq x$ we have

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leqq x \mid f_{k}(n)>\psi(\log k)+3 \varepsilon_{k}\right\}<1 / k^{3} \tag{2.18}
\end{equation*}
$$

if k is large. For $k>x, n \leqq x$ we have

$$
f_{k}(0) \leqq f_{k}(n) \leqq f_{k+x}(0)=\psi(\log k)+O\left(\frac{1}{\log k}\right)
$$

Hence it follows immediately that

$$
\frac{1}{x} \#\left\{n \leqq x \mid \exists k>k_{0}, f_{k}(n) \geqq \psi(\log k)+3 \varepsilon_{k}\right\}<\frac{1}{k_{0}^{\dot{2}}} .
$$

By this, Theorem 4 has been proved.
3. Proof of Theorem 7. Suppose that the conditions of Theorem 7 are satisfied. Let $\tilde{g}(n)$ be strongly additive defined for primes by

$$
\tilde{g}(p)=\left\{\begin{array}{cll}
g(p) & \text { if } & p>p_{\mu} \\
0 & \text { if } & p \leqq p_{\mu}
\end{array}\right.
$$

It is obvious that $g\left(P_{\mu} m\right)=g\left(P_{j}\right)+\tilde{g}(m)$. From the Turán-Kubilius inequality

$$
\sum_{m \leq x / P_{\mu}}\left\{\tilde{g}(m)-A^{\prime}\right\}^{2} \ll \frac{x}{P_{R}} \sum_{p>p_{\mu}} \frac{g^{2}(p)}{p}
$$

if $P_{\mu}<x ; A^{\prime}=A_{x / P_{\mu}}-A_{p_{\mu}}$. Hence we get immediately

$$
\begin{equation*}
\left.\left.M_{B} \stackrel{\text { def }}{=} \# m \leqq \frac{x}{P_{\mu}}| | \tilde{g}(m)-A^{\prime} \right\rvert\, \geqq B\right\} \ll \frac{x}{P_{\mu} B^{2}} \sum_{p>p_{\mu}} \frac{g^{2}(p)}{p} \tag{3.1}
\end{equation*}
$$

If $\tilde{g}(m)-A^{\prime} \cong-B$, then

$$
g\left(P_{\mu} m\right)=\psi\left(p_{\mu}\right)+\tilde{g}(m) \geqq \psi\left(p_{\mu}\right)+A^{\prime}-B
$$

So for $P_{\mu}(m-1)<n<P_{\mu} m$ we get

$$
\begin{equation*}
F_{P_{\mu}}(n) \geqq g\left(P_{\mu} m\right)-A_{(m+1) P_{\mu}} \geqq \psi\left(p_{\mu}\right)+A_{x / P_{\mu}}-A_{(m+1) P_{\mu}}-A_{P_{\mu}}-B . \tag{3.2}
\end{equation*}
$$

Let now $x \rightarrow \infty$. For $m \geqq \sqrt{x}$ we have

$$
A_{x / P_{\mu}}-A_{(m+1) p_{\mu}} \ll\left(\sum \frac{1}{p}\right)^{1 / 2}\left(\sum \frac{g^{2}(p)}{p}\right)^{1 / 2} \rightarrow 0 \quad(x \rightarrow \infty),
$$

where the summation is over the primes in $\left[(m+1) p_{\mu}, \frac{x}{P_{p}}\right]$. By choosing

$$
B_{\mu}=B=\left(\sum_{p \geqslant p_{\mu}} \frac{g^{2}(p)}{p}\right)^{1 / 4}
$$

we obtain (1.26) immediately for $k=P_{\mu}$.
Let now $P_{\mu}<k<P_{\mu+1}$. To prove (1.26) it is enough to observe that $F_{k}(n) \geqq$ $\geqq F_{P_{\mu}}(n)$, and that $A_{\log k}-A_{p_{\mu}} \rightarrow 0(k \rightarrow \infty)$.

Now we assume that $(1.27),(1.28)$ hold. If $P_{\mu} \leqq k<P_{\mu+1}$ then, $\psi(\log k)=$ $=\psi(p \mu)(1+o(1))=\psi\left(p_{\mu+1}\right)(1+o(1))$ and $F_{P_{\mu+1}}(n) \geqq F_{k}(n) \geqq F_{P_{\mu}}(n)$, and so it is enough to prove (1.29) for $k=P_{\mu}$. From (1.28) we have

$$
M_{B} \ll \frac{x}{P_{\mu} B^{2}} t^{2}\left(p_{\mu}\right)\left(\log \log p_{\mu}\right)^{y}
$$

From the monotonicity of t we have

$$
\frac{t^{2}\left(p_{\mu}\right)}{\psi^{2}\left(p_{\mu}\right)} \leqq 1 / \mu^{2}
$$

so by choosing $B=\lambda_{\mu} \psi\left(p_{\mu}\right), 0<\lambda_{\mu}<1$, we have

$$
M_{B} \ll \frac{x}{P_{\mu} \lambda_{\mu}^{2}} \frac{(\log \log \mu)^{\gamma}}{\mu^{2}}
$$

Let $x>P_{\mu}^{3}$. In the interval $n \in[1, x]$ we drop the n 's for which $n \leqq x^{1 / 2}$. Observing that $A_{p_{\mu}}=o\left(\psi\left(p_{\mu}\right)\right)$, and that $A_{y}-A_{y^{*}}=O(1)(0<\alpha<1)$, from (3.2) we get that

$$
F_{P_{\mu}}(n) \geqq\left(1-2 \lambda_{\mu}\right) \psi\left(p_{\mu}\right)
$$

for all but $\frac{x(\log \log \mu)^{y}}{\mu^{2} \lambda_{\mu}^{2}}$ of $n \leqq x$, if λ_{μ} tends to zero sufficiently slowly. Let $x<P_{\mu}^{3}$. Then, for every $n \leqq x$,

$$
F_{P_{\mu}}(n)=\max _{j=1, \ldots, p_{\mu}}\left(g(n+j)-A_{n+j}\right) \geqq \psi\left(p_{\mu}\right)-A_{x+P_{\mu}}
$$

Since

$$
A_{x+P_{\mu}}-A_{P_{\mu}} \ll\left(\sum_{p_{\mu}<p<P_{\mu}+x} \frac{1}{p}\right)^{1 / 2}\left(\sum_{p>p_{\mu}} \frac{t^{2}(p)}{p}\right)^{1 / 2} \ll
$$

$$
\ll t\left(p_{\mu}\right)\left(\log \log p_{\mu}\right)^{y}\left(\log p_{\mu}\right)^{1 / 2} \ll \frac{\psi\left(p_{\mu}\right)}{\mu}\left(\log \log p_{\mu}\right)^{\gamma}\left(\log p_{\mu}\right)^{1 / 2}=o\left(\psi\left(p_{\mu}\right)\right)
$$

therefore

$$
F_{P_{\mu}}(n) \geqq\left(1-2 \lambda_{\mu}\right) \psi\left(p_{\mu}\right)
$$

holds for every n if μ is large. Applying this argument for the sequence $x=2^{v}$, we get the relation:

$$
\forall \varepsilon>0: \lim _{k_{0} \rightarrow \infty} \sup _{x \geqq 1} \frac{1}{x} \#\left\{n \leqq x \mid \exists k>k_{0}, F_{k}(n)<(1-\varepsilon) \psi(\log k)\right\}=0 .
$$

To prove the second half of (1.29) we choose $\log \log t_{0}=p_{\mu}^{\delta}$, where $0<\delta<\gamma$ (see $(1.27),(1.28))$, and define $g\left(t_{0}, n\right), g_{t_{0}}(n)$ to be strongly additive satisfying

$$
\begin{gathered}
g\left(t_{0} ; p\right)=\left\{\begin{array}{ccc}
0 & \text { if } p \leqq t_{0}, \\
g(p), & \text { if } & p>t_{0},
\end{array}\right. \\
g_{t_{0}}(n)=g(n)-g\left(t_{0} ; n\right)
\end{gathered}
$$

Let $A_{x}^{t_{0}}=A_{x}-A_{t_{0}}$. For every $u \geqq 0$ we have

$$
D(x, u) \stackrel{\text { def }}{=} \sum_{n \leqq x} e^{u\left(\rho(t, n)-A_{x}^{t_{0}}\right)} \leqq x \prod_{t_{0}<p \geqq x}\left(1+\frac{e^{u g(p)}-1}{p}\right) e^{-\mu g(p) / p},
$$

whence it follows that

$$
\frac{1}{x} \#\left\{n \leqq x \mid g\left(t_{0}, n\right) \leqq \Delta\right\} \leqq \exp \left(-\Delta u+u^{2} \sum_{p>r_{0}} \frac{g^{2}(p)}{p}\right),
$$

if $u=\frac{1}{2 t\left(t_{0}\right)}$. Let $\Delta=\eta_{\mu} \psi\left(p_{\mu}\right), \eta_{\mu} \rightarrow 0$ slowly. Then, from (1.27)

$$
\Delta u=u \frac{\psi\left(p_{\mu}\right)}{2 t\left(t_{0}\right)}>4 p_{\mu}
$$

if μ is large. Furthermore, from (1.28)

$$
\frac{1}{4 t^{2}\left(t_{0}\right)} \sum_{p>t_{0}} \frac{g^{2}(p)}{p} \ll\left(\log \log t_{0}\right)^{y}=p_{\mu}^{\delta \gamma}=o\left(p_{p}\right)
$$

since $\delta y<1$. Consequently

$$
\begin{equation*}
\#\left\{n \leqq x \mid g(t ; n) \geqq \eta_{\mu} \psi\left(p_{\mu}\right)\right\} \ll x / P_{\mu}^{3} . \tag{3.3}
\end{equation*}
$$

Let $C_{r}(x)$ be the number of those $n \leqq x$, that have at least r prime factors in $\left[1, t_{0}\right]$. We have by Stirling's formula,

$$
C_{r}(x) \leqq x \cdot \frac{1}{r!}\left(\sum_{p<x_{0}} \frac{1}{p}\right)^{r} \leqq x \exp \left(-r \log \frac{r}{e\left(p_{\mu}^{\delta}+O(1)\right)}+O(\log r)\right) .
$$

Let $r=[(1+4 \varrho) \mu], \varrho$ being a small positive constant. Then,

$$
r \log \frac{r}{e\left(p_{\mu}^{s}+O(1)\right)} \geqq(1+4 \varrho)(1-2 \delta) p_{\mu} \geqq(1+2 \varrho) p_{\mu}
$$

if δ is small enough. Consequently

$$
C_{r}(x) \ll \frac{x}{P_{\mu}^{1+e}}
$$

Let n be a such number that has $s(>\mu)$ prime factors in $\left[1, t_{0}\right]$. From the monotonicity of $t(y)$ we get

$$
g_{t_{0}}(n) \leqq g\left(p_{1} \ldots p_{s}\right) \leqq \psi\left(p_{\mu}\right)+(s-\mu) t\left(p_{\mu}\right) \leqq\left(\frac{s}{\mu}-1\right) \psi\left(p_{\mu}\right)
$$

So, if $g_{t_{0}}(n) \geqq(1+4 \varrho) \psi\left(p_{\mu}\right)$, then $s \geqq r$. Consequently

$$
\begin{equation*}
\#\left\{n \leqq x \mid g_{r_{0}}(n)>(1+4 \varrho) \psi\left(p_{\mu}\right)\right\} \ll \frac{x}{P_{\mu}^{1+\varphi}} . \tag{3,4}
\end{equation*}
$$

From (3.3) and (3.4) we get immediately that

$$
\#\left\{n \leqq\left. x\right|_{j=1, \ldots, k} g(n+j)>(1+5 \varrho) \psi\left(p_{\mu}\right)\right\} \ll \frac{x}{P_{\mu}^{g}},
$$

if $P_{\mu}<x$.
For $P_{\mu}>x$ we have

$$
F_{P_{\mu}}(n) \leqq \max _{n \leqq x+P_{\mu}} g(n) \leqq \psi\left(p_{\mu+1}\right)=\psi\left(p_{\mu}\right)+o(1) .
$$

Applying this estimation for $x=2^{y}(y=1,2, \ldots)$ and summing up for $\mu \geqq \mu_{0}$, we have

$$
\sup _{x \equiv 1} \frac{1}{x}\left\{n \leqq x \mid \exists \mu>\mu_{0}, F_{P_{\mu}}(n)>(1+5 Q) \psi\left(p_{\mu}\right)\right\} \ll \frac{1}{P_{p_{0}}^{\epsilon}} .
$$

By this we proved (1.29).
4. Proof of Theorem $\mathbf{1}^{\prime}$ and Theorem 2. To prove Theorem 1^{\prime} we suppose that (1.11) holds. From the existence of the distribution function $F(x)$,

$$
\sum_{p} \frac{\min (1, g(p))}{p}<\infty .
$$

Let $\delta>0$ be fixed, \mathscr{P}_{k} be the set of those primes p, for which

$$
(1+\delta) f_{k}(0) \leqq g(p)<(1+\delta) f_{z k}(0)
$$

holds. Then

$$
\sum_{p \in P_{k}} 1 / p<\infty,
$$

if $f_{k}(0) \neq 0$. Let $b(n)=(n+1) \ldots(n+k) ; R_{k}=\prod_{p \in \mathcal{F}_{k}} p$.
From (1.11),

$$
\sum_{\substack{\sum_{x} \\\left(0(0), R_{k}\right)=1}} 1 \geqq(1-\varepsilon) x,
$$

if $k>k_{0}(\delta, z)$. Since $1-F\left(f_{k}(0)\right) \geqq 1 / k$ for every k, from (1.11) it follows that

$$
f_{v k}(0) \leqq(1+\varepsilon) f_{k}(0)
$$

for every fixed v, if k is large. So $f_{k}(0)=O\left(k^{c}\right)$ and for $p \in \mathscr{P}_{k}$ we have $p l k \rightarrow \infty$ ($k \rightarrow \infty$). Consequently

$$
\prod_{p \in \bigoplus_{k}}\left(1-\frac{k}{p}\right)>1-\varepsilon,
$$

and

$$
\sum_{p \in P_{k}} \frac{k}{p}<2 \varepsilon,
$$

if k is sufficiently large.

So we have

$$
\sum_{\theta(p)=(1+\delta) f_{k}(0)} \frac{g(p)^{r}}{p}<\sum_{2 v=k_{0}} \frac{\varepsilon(1+\delta)^{r} f_{2 v}^{\prime}(0)}{2^{v}} \ll \sum \frac{2^{e^{v}}}{2^{v}}<\infty,
$$

and Theorem 1^{\prime} has been proved.
The proof of Theorem 2 is almost the same. We need to observe only that from (1.13)

$$
\begin{equation*}
f_{k}(0)=o(\log k) \tag{4.1}
\end{equation*}
$$

follows. Since for fixed v

$$
v k\left(1-F\left(f_{v k}(0)\right)\right) \geqq 1,
$$

and

$$
v k\left(1-F\left(f_{k}(0)+A\right)\right) \rightarrow 0 \quad(k \rightarrow \infty),
$$

therefore $f_{\mathrm{vk}}(0)<f_{k}(0)+A$ if k is large, that implies (4.1).
5. Proof of Theorem 3. Let $L(k) / \infty$ be given. We can give $L_{1}(k) / \infty$, so that $L_{1}(k) \leqq L(k), L_{1}\left(k+k^{2}\right) \leqq 2 L_{1}(k), L_{1}(k)$ has integer values with jump 1 . It is enough to prove our theorem for $L_{1}(k)$ instead of $L(k)$.

Let $\mathscr{P}=\left\{q_{1}<q_{2}<\ldots\right\}$ be a rare sequence of primes. We shall define $g(n)$ so that $g\left(q_{i}\right) / \infty$, and $g(p)=0$ for $p \notin \mathscr{P}$.

Let B_{k} be a sequence tending to infinity monotonically, \mathscr{P} be so rare and the increase of $g\left(q_{i}\right)$ so slow that

$$
\begin{equation*}
\sum_{q_{i}>k} \frac{g\left(q_{i}\right)}{q_{i}}<\frac{B_{k}}{k} \tag{i}
\end{equation*}
$$

(ii)

$$
g\left(\prod_{q_{t} \leqslant k} q_{k}\right) \supseteqq \frac{1}{4} L_{1}(k)
$$

hold for every $k \geqq 1$.
So $f_{k}(0) \leqq \frac{1}{4} L_{1}(k)$ for every $k \geqq 1$. Let $g_{1}(n), g_{2}(n)$ be strongly additive defined for primes as

$$
\begin{gathered}
g_{1}(p)=\left\{\begin{array}{cl}
0, & p>k, \\
g(p), & p \leqq k,
\end{array}\right. \\
g_{2}(p)=g(p)-g_{1}(p), \quad f_{k}^{(n)}(n)=\max _{j=1, \ldots, k} g_{i}(n+j)
\end{gathered}
$$

It is obvious that

$$
f_{k}^{(1)}(n) \leqq g\left(\prod_{q_{i} \geqq k} q_{i}\right) \leqq \frac{1}{4} L_{1}(k) .
$$

Furthermore

$$
\sum_{n \leqq x} f_{k}^{(2)}(n) \leqq k \sum_{n \leqq x+k} g_{2}(n) \leqq k \sum_{q_{i}>k} g\left(q_{i}\right) \frac{x+k}{q_{i}}
$$

and so for $x>k$,

$$
\frac{1}{x} \sum_{\substack{n=x \\ f_{k}^{(2)}(n) \gg C_{k}}} 1 \leqq \frac{1}{C_{k}} \sum_{n=x} f_{k}^{(2)}(n) \leqq 2 \frac{k}{C_{k}} \sum_{q_{i}>k} \frac{g\left(q_{i}\right)}{q_{t}}<\frac{2 B_{k}}{C_{k}}\left(=Q_{k}\right) .
$$

Let $C_{k}=\frac{1}{4} L_{1}(k), B_{k}=\frac{1}{8} \cdot \sqrt{L_{1}(k)}$. Then $e_{k}=\left(\sqrt{L_{1}(k)}\right)^{-1}$.
Since, for $k \geqq x, n \leqq x$,

$$
f_{k}(n) \leqq f_{k+x}(0) \leqq \frac{1}{4} L_{1}(k+x) \leqq \frac{1}{4} L_{1}(2 k) \leqq \frac{1}{2} L_{1}(k) .
$$

Since $f_{k}(n) \equiv f_{k}^{(1)}(n)+f_{k}^{(2)}(n)$, therefore

$$
\sup _{x \equiv 1} \frac{1}{x} \#\left\{n \leqq x \left\lvert\, f_{k}(n)>\frac{1}{2} L_{n}(k)\right.\right\} \leqq e_{k} .
$$

Let now k_{0} be fixed, the sequence $k_{1}<k_{2}<\ldots$ be defined by

It is clear that

$$
k_{v}=\min _{L_{2}(k) m L_{1}\left(k_{v-1}\right)} k .
$$

$$
\lambda\left(k_{0}\right)=\sum_{v=0}^{\infty} \rho_{k_{v}}<\frac{c}{\sqrt{L_{1}\left(k_{0}\right)}},
$$

$\lambda\left(k_{0}\right) \rightarrow 0\left(k_{0} \rightarrow \infty\right)$.
Applying this argument for $x=2^{\mu}(\mu=0,1,2, \ldots)$ we deduce that

$$
\sup _{x \equiv 1} \frac{1}{x} \#\left\{n \leqq x \mid \exists v: f_{k_{v}}(n)>\frac{1}{2} L_{1}(k)\right\} \leqq \lambda\left(k_{0}\right) .
$$

Let now n be such a number for which $f_{k_{v}}(n)<\frac{1}{2} L_{1}\left(k_{v}\right)(v=0,1,2, \ldots)$ holds. Then for every $k \in\left(k_{v-1}, k_{v}\right)$,

$$
f_{k}(n) \leqq f_{k v}(n) \leqq \frac{1}{2} L_{1}\left(k_{v}\right)=L_{1}\left(k_{v-1}\right) \leqq L_{1}(k) .
$$

This finishes the proof of Theorem 3.
6. Proof of Theorem 5. Let $\varepsilon>0$ and t be given, $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{P}_{3}$ be the set of primes in the intervals $[1,(1-\varepsilon) t],((1-\varepsilon) t, t],(t,(1+\varepsilon) t,] P_{i}$ be the product of the elements $\mathscr{\mathscr { F }}_{i}$, i.e.

$$
P_{i}=\prod_{p \in \otimes_{i}} p
$$

Let r, s be natural numbers. In this section $b_{r}, b_{r}^{(j)}, j=1,2, \ldots$, denote a number that is a product of r distinct elements of \mathscr{P}_{2}. Similarily $c_{s}, c_{s}^{(1)}, c_{s}^{(2)}, \ldots$ denote such numbers that are the product of s distinct primes from \mathscr{P}_{3}. Let H and K be the number of elements in \mathscr{P}_{2}, and in \mathscr{P}_{3}, respectively.

Then the number of $b_{r}^{\prime} s$ is $\binom{H}{r}$, and the number of c_{s}^{\prime} 's is $\binom{K}{s}$.
From the prime number theorem

$$
\begin{equation*}
H=\frac{\varepsilon t}{\log t}+O\left(\frac{t}{(\log t)^{2}}\right), \quad K=\frac{\varepsilon t}{\log t}+O\left(\frac{t}{(\log t)^{2}}\right) . \tag{6.1}
\end{equation*}
$$

Let $₫$ be the set of those integers that have the form $n=\frac{P_{2}}{b_{r}} m$, where $\left(m, P_{z}\right)=1$, and that contains at least s prime factors from \mathscr{P}_{3}. Let

$$
F(n)=\sum_{c_{x} \mid m} 1,
$$

if $n \in \mathscr{A}$, and $F(n)=0$ otherwise.
Let $0<\delta<1, r=\left[t^{\delta}\right], s=[c r], c>1$ being a constant.
To prove our theorem we shall deduce a Turán-Kubilius' type inequality for the sum

$$
\begin{equation*}
\mathscr{E}(y) \stackrel{\text { def }}{=} \sum_{n \leq y}\left[\sum_{i=1}^{P_{0}} F(n+i)-A\right]^{2} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\left(\sum b_{r}\right)\left(\sum 1 / c_{s}\right) \tag{6.2}
\end{equation*}
$$

For the sake of simplicity we shall assume that r, s, t are large but temporarily fixed numbers, $y \rightarrow \infty$.

Let

$$
\begin{equation*}
S(y, i)=\sum_{n=y} F(n) F(n+i) . \tag{6.3}
\end{equation*}
$$

Squaring out (6.1) we get easily that

$$
\begin{align*}
\mathscr{E}(y)= & \sum_{i=1}^{P_{2}} 2\left(P_{2}-i\right) S(y, i)+P_{2} \sum_{n=y} F^{2}(n)-2 A P_{2} \sum_{n \leqslant y} F(n)+ \tag{6.4}\\
& +A^{2} y+O\left(P_{2}^{3} y^{1 / 10}\right)= \\
= & \sum^{(1)}+P_{2} \sum^{(2)}-2 A P_{2} \Sigma^{(3)}+A^{2} y+O\left(P_{2}^{3} y^{1 / 10}\right)
\end{align*}
$$

We shall use Eratosthenian sieve for some primes in \mathscr{P}_{2}. We note that

$$
\prod_{p \in \oiint_{2}}\left(1-\frac{\gamma(p)}{p}\right)=1+O\left(\frac{\varepsilon}{\log t}\right) \quad(t \rightarrow \infty)
$$

if $\gamma(p)$ is bounded by an absolute constant.
Then

$$
H(z)=\sum_{\substack{n \leq z=1 \\\left(n, P_{2}\right)=1}} 1=z \prod_{p \in \mathbb{Q}_{2}}(1-1 / p)+O\left(2^{H}\right)
$$

Consequently

$$
\begin{equation*}
\Sigma^{(3)}=\sum_{b_{r}} \sum_{\substack{m=\frac{b_{r} y}{P_{2}} \\\left(m, P_{2}\right)=1}} \sum_{c_{s} \mid m} 1=\sum_{b_{r} c_{s}} H\left(\frac{b_{r} y}{P_{2} c_{s}}\right)=\frac{1}{P_{2}}\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right) A y+O_{t}(1) \tag{6.5}
\end{equation*}
$$

where t in the order term denotes that the constant involved may depend on t.
We shall give an upper estimate for $\Sigma^{(2)}$. We have

$$
\begin{equation*}
\Sigma^{(2)}=\sum_{b_{r}} \sum_{c^{(2)} \cdot c_{s}^{(2)}} \sum_{n \equiv \frac{b_{r} y}{P_{2}\left[c_{z}^{(1)} \cdot c_{a}^{(2)}\right]}} 1 \leqq B \frac{y}{P_{2}}\left(\sum b_{r}\right) \tag{6.6}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\Sigma \frac{1}{\left[c_{s}^{(1)}, c_{s}^{(2)}\right]} \tag{6.7}
\end{equation*}
$$

Let ε_{μ} be a fixed product of μ prime factors from \mathscr{P}_{3}. The equation $\varepsilon_{\mu}=$ $=\left(c_{s}^{(1)}, c_{s}^{(2)}\right)$ has

$$
\binom{K-\mu}{2(s-\mu)}\binom{2(s-\mu)}{s-\mu}
$$

solutions. For all of them $\left[c_{s}^{(1)}, c_{s}^{(2)}\right] \geqq t^{2 s-\mu}$ holds. ε_{μ} can be chosen $\binom{K}{\mu}$ times Consequently

$$
\begin{equation*}
B \leqq \sum_{\mu=0}^{s} t^{\mu-2 s}\binom{K}{\mu}\binom{K-\mu}{2(s-\mu)}\binom{2(s-\mu)}{s-\mu} . \tag{6.8}
\end{equation*}
$$

Furthermore it is obvious that

$$
\sum b_{r} \leqq t^{r}\binom{H}{r}
$$

So by the Stirling formula

$$
\sum b_{r}<\frac{(t H)^{r}}{r!}<\exp (2 r \log t-r \delta \log t+O(r))=\exp ((2-\delta) r \log t+O(r))
$$

Similarly, from (6.8),

$$
B<\sum_{\mu=0}^{s} \frac{K^{2 s-\mu}}{t^{2 s-\mu} \mu!(s-\mu)!^{2}}<\sum_{\mu=0}^{s} \frac{1}{\mu!(s-\mu)!^{2}}<\exp (-s \delta \log t+O(r))
$$

Consequently

$$
\begin{equation*}
\Sigma^{(2)} \leqq \frac{y}{P_{2}} \exp ([(2-\delta) r-\delta s] \log t+O(r)) . \tag{6.9}
\end{equation*}
$$

Now we estimate A. Counting the b_{r} 's and c_{3} 's we have

$$
t^{r-s}\binom{H}{r}\binom{K}{s} \geqq A \geqq \frac{(1-\varepsilon)^{r}}{(1+\varepsilon)^{s}} \cdot r^{r-s}\binom{H}{r}\binom{K}{s} .
$$

Since

$$
\frac{(H-r)^{r}}{r!}<\binom{H}{r}<\frac{H^{r}}{r!},
$$

from the Stirling formula we deduce easily that

$$
\log A=(r-s) \log t+r \log H+O\left(\frac{r^{2}}{H}\right)+s \log K+O\left(\frac{s^{2}}{K}\right)-r \log r-s \log s+O(r)
$$

and so by (6.1) that

$$
\begin{equation*}
\log A=[2 r-(r+s) \delta] \log t+O(r \log \log t) \tag{6,10}
\end{equation*}
$$

We choose $c(s=[c r])$ so that

$$
\begin{equation*}
\alpha=2-(1+c) c>0 . \tag{6.11}
\end{equation*}
$$

This guarantees that $A \gg 1$.
Let now consider the sum

$$
\begin{equation*}
\sum_{B}=\sum_{\Delta>P_{z}} \frac{b_{r}^{(1)} b_{r}^{(2)}}{c_{s}^{(1)} c_{\Delta}^{(2)}} \tag{6.12}
\end{equation*}
$$

where

$$
\Delta=\frac{P_{2}\left(c_{s}^{(1)}, c_{r}^{(2)}\right)}{\left[b_{r}^{(2)}, b_{r}^{(2)}\right]}
$$

The condition $\Delta>P_{2}$ implies that $\left(c_{*}^{(1)}, c_{\delta}^{(2)}\right) \geqq\left[b_{r}^{(1)}, b_{r}^{(2)}\right]$.
Let $\delta_{l}, \varepsilon_{\mu}$ be fixed, where the index denotes the number of its prime divisors, and consider those $b_{r}^{(1)}, b_{r}^{(2)}, c_{s}^{(1)}, c_{s}^{(2)}$ for which $\delta_{l}=\left(b_{r}^{(1)}, b_{r}^{(2)}\right), \varepsilon_{\mu}=\left(c_{s}^{(1)}, c_{s}^{(2)}\right)$. If $\Delta>P_{2}$, then

$$
\{(1+\varepsilon) t\}^{\mu} \geqq\{(1-\varepsilon) t\}^{2 r-1}
$$

i.e.

$$
\frac{1}{(1-\varepsilon)^{2 r-(l+\mu)}} \geqq \frac{(1+\varepsilon)^{\mu}}{(1-\varepsilon)^{3 r-i}} \geqq t^{z-(a+\mu)},
$$

whence

$$
1 \geqq[(1-\varepsilon) t]^{3 r-(t+\mu)}
$$

i.e. $l+\mu \geqq 2 r$.

For fixed l and μ the number of $b_{r}^{(1)}, b_{r}^{(2)}, c_{\pi}^{(1)}, c_{s}^{(2)}$ that satisfy $\omega\left(\left(b_{r}^{(1)}, b_{r}^{(2)}\right)\right)=l$, $\omega\left(\left[c_{s}^{(1)}, c_{s}^{(2)}\right]\right)=\mu$ is

$$
\binom{H}{l}\binom{H-l}{2(r-l)}\binom{2(r-l)}{r-l}\binom{K}{\mu}\binom{K-\mu}{2(s-\mu)}\binom{2(s-\mu)}{s-\mu} \leqq \frac{H^{r-l}}{\mu!(r-l)!^{2}} \cdot \frac{K^{s-\mu}}{\mu!(s-\mu)!^{2}} .
$$

Since $\frac{b_{r}^{(1)} b_{r}^{(2)}}{c_{s}^{(1)} c_{s}^{(2)}} \leqq t^{(2(r-s)}$ and $H<t, K<t$, therefore

$$
\begin{equation*}
\sum_{B} \ll t^{2(r-s)} \sum_{l+\mu \in 2 r} \frac{t^{r+s-1-A}}{\Pi!(r-l)!^{2} \mu!(s-\mu)!^{2}} \ll t^{r-\alpha+1} \tag{6.13}
\end{equation*}
$$

Consider now

$$
\begin{equation*}
\sum_{c}=\left(\sum\left(b_{r}^{(1)}, b_{r}^{(2)}\right)\right)\left(\sum \frac{1}{\left[c_{s}^{(1)}, c_{s}^{(2)}\right]}\right) \tag{6.14}
\end{equation*}
$$

Arguing as before, we have

$$
\Sigma_{c} \equiv\left\{H^{r} \sum_{i=0}^{r} \frac{(t / H)^{t}}{l!(r-l)!^{2}}\right\}\left\{\sum_{\mu=0}^{s} \frac{(K / t)^{2 s-\mu}}{\mu!(s-\mu)!^{2}}\right\}=\Sigma^{(b)} \cdot \Sigma^{(c)}
$$

By Stirling's formula

$$
\frac{1}{l!(r-l)!^{2}}<\exp (-g(l)+O(\log r))
$$

where

$$
g(l)=l \log l+2(r-l) \log (r-l)-2 r+l
$$

By differentiating, we see that the smallest value is achieved at $l=I_{0}$, where I_{0} is the solution of $l_{0}=\left(r-l_{0}\right)^{2}$. We have easily that

$$
g\left(l_{0}\right)=r \log l_{0}-r+O(\sqrt{r})=r \delta \log t-r+O(\sqrt{r}) .
$$

Since $H^{\prime}(t / H)^{t} \leqq t^{r}$,

$$
\Sigma^{(b)}<\exp (r(1-\delta) \log t-r+O(\sqrt{r}))
$$

We have similarly that

Consequently

$$
\Sigma^{(c)}<\exp (-s \delta \log t+O(s \log \log t)) .
$$

$$
\begin{equation*}
\sum_{c}<\exp ([r-\delta(r+s)] \log t+O(s \log \log t)) . \tag{6.15}
\end{equation*}
$$

Let now consider the sum $S(y, i)$. This is equal to the number of solutions of the equation

$$
\begin{equation*}
\frac{P_{2}}{b_{r}^{(2)}} c_{s}^{(2)} v-\frac{P_{2}}{b_{r}^{(1)}} c_{s}^{(1)} u=i, \quad \frac{P_{2}}{b_{r}^{(1)}} c_{s}^{(1)} u \leqq y, \tag{6.16}
\end{equation*}
$$

(uv, P_{2}) $=1$; in variable $b_{r}^{(1)}, b_{r}^{(2)}, c_{s}^{(1)}, c_{s}^{(2)}, u, v$. Let $b_{r}^{(j)}, c_{s}^{(h)}(j=1,2)$ be fixed; $\delta=\left(b_{r}^{(1)}, b_{r}^{(2)}\right) ; \varepsilon=\left(c_{s}^{(2)}, c_{s}^{(2)}\right) ; \xi^{(1)}, f^{(1)}, \Delta(j=1,2)$ be defined by

$$
c_{s}^{(j)}=\xi^{(0)} \varepsilon, \quad \delta f^{(i)}=b_{r}^{(j)} ; \quad \Delta=\frac{P_{2}}{\left[b_{r}^{(1)}, b_{r}^{(2)}\right]}\left(c_{s}^{(1)}, c_{s}^{(2)}\right) .
$$

If (6.16) has a solution, then $\Delta \mid i$. Let $i=\Delta i_{1}$. Dividing by Δ we reduce (6.16) to

$$
\begin{equation*}
\xi^{(2)} f^{(1)} v-\xi^{(1)} f^{(2)} u=i_{1}, \quad\left(u v, P_{2}\right)=1 . \tag{6.17}
\end{equation*}
$$

It has a solution if and only if $\left(i_{1}, \xi^{(2)} \xi^{\prime 1}\right)=1$. The solutions u, v are of the forms

$$
u=u_{0}+l \xi^{(2)} f^{(1)}, \quad v=v_{0}+l \xi^{(1)} f^{(2)} \quad(l=0,1,2, \ldots) .
$$

To enumerate the l 's for which $\left(u v, P_{\mathrm{o}}\right)=1$, we sieve for primes $p \in \mathscr{P}_{2}$. Since the number $\gamma(p)$ of the solution of $w v=0(\bmod p)$ is 1 or 2 , we get

$$
\prod_{p \mid P_{2}}\left(1-\frac{\gamma(p)}{p}\right)=1+O\left(\frac{\varepsilon}{\log t}\right) .
$$

On the previous assumptions (6.16) has

$$
\frac{y\left(b_{r}^{(2)}, b_{x}^{(2)}\right)}{P_{2}\left[c_{3}^{(1)}, c_{x}^{(2)}\right]}\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right)+O_{t}(1)
$$

solutions. O_{t} denotes that the constant involved by the order term may depend on t. Hence we have

Since

$$
\sum_{\substack{t_{1} \leq P_{1} / \Delta \\
\left(G_{1}, \xi^{(1)} \xi^{(2)}\right)=1}} 1=\left\{\begin{array}{cl}
\frac{P_{2}}{\Delta}\left(1+O\left(\frac{r}{t}\right)\right)+O(1), & \text { if } \Delta \leqq P_{2} \\
0, & \text { if } \Delta>P_{2}
\end{array}\right.
$$

and $\frac{r}{t}<\frac{\varepsilon}{\log t}$ as $t \rightarrow \infty$, we have

$$
\Sigma^{*}=\frac{y}{P_{2}}\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right)\left(A^{2}-\Sigma_{B}\right)+O\left(\frac{y}{P_{2}} \Sigma_{C}\right)+O_{t}(1)
$$

i.e.

$$
\begin{equation*}
\Sigma^{*}=\frac{y}{P_{2}}\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right) A^{2}+O\left(\frac{y}{P_{2}}\left(\sum_{B}+\sum_{c}\right)\right)+O_{t}(1) \tag{6.19}
\end{equation*}
$$

Similarly, for the sum

$$
\begin{equation*}
\Sigma^{* *} \xlongequal{\text { def }} \sum_{i=1}^{P_{n}} i S(y, i) \tag{6.20}
\end{equation*}
$$

we have

$$
\Sigma^{* *}=\frac{y}{P_{2}}\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right) \sum \frac{\left(b_{r}^{(1)}, b_{r}^{(2)}\right)}{\left[c_{s}^{(1)}, c_{s}^{(2)}\right]} \cdot \Delta\left\{\sum_{\substack{i_{1}=P^{2} / d \\\left(i_{1}, \xi^{(1)} \xi^{(2)}\right)=1}}\right\}
$$

Since

$$
\sum_{\substack{t_{1} \pm P_{2} / A \\\left(S_{2}, \xi^{(1)} \xi^{(2)}\right)=1}} i_{1}=\frac{P_{2}^{2}}{2 \Delta^{2}}\left(1+O\left(\frac{r}{t}\right)\right)+O\left(\frac{P_{2}}{\Delta}\right)
$$

for $\Delta \leqq P_{2}$, we have, as earlier

$$
\Sigma^{* *}=\frac{y}{2}\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right) A^{2}+O\left(y\left(\Sigma_{B}+\Sigma_{c}\right)\right)+O_{t}(1)
$$

Consequently for $\Sigma^{(1)}$ defined in (6.4) we have

$$
\begin{equation*}
\Sigma^{(1)}=2\left(P_{2} \Sigma^{*}-\Sigma^{* *}\right)=y\left(1+O\left(\frac{\varepsilon}{\log t}\right)\right) A^{2}+O\left(y\left(\Sigma_{B}+\Sigma_{c}\right)\right)+O_{t}(1) \tag{6.21}
\end{equation*}
$$

So, by (6.21) and (6.5) we have

$$
\mathscr{E}(y) \leqq B_{1} \frac{\varepsilon}{\log t} A^{2} y+B_{2} y\left(\Sigma_{B}+\Sigma_{c}\right)+O\left(P_{2} \Sigma_{2}\right)+O_{r}(1)
$$

where B_{1}, B_{2} are absolute constants. Now by (6.10), (6.13), (6.15) we get

$$
\Sigma_{C}<t^{-r / 2} A, \quad \Sigma_{B}<1 .
$$

From (6.9) $P_{2} \sum_{2} \& A e^{o(t)}$, and so from (6.10), (6.11),

$$
A e^{O(r)} \ll \frac{\varepsilon}{\log t} A^{2} .
$$

Consequently

$$
\begin{equation*}
\mathcal{E}(y) \leqq B \frac{\varepsilon}{\log t} A^{2} y+O_{t}(1) . \tag{6.22}
\end{equation*}
$$

Let $M(y)$ be the number of $n \leqq y$, for which no one of $n+1, \ldots, n+P_{2}$ is belonging to s. Then, from (6.22)

$$
\begin{equation*}
M(y) \leqq B \frac{\varepsilon}{\log t} y+O_{t}(1) . \tag{6.23}
\end{equation*}
$$

Since

$$
\left\{P_{1}(n+1), \ldots, P_{1}\left(n+P_{2}\right)\right\} \cong\left\{P_{1} n+1, \ldots, P_{1} n+P_{1} P_{3}\right\},
$$

we have immediately the following assertion.
Theorem 8. Let $\varepsilon>0,0<\delta<1$, c be fixed so that

$$
\alpha \stackrel{\text { def }}{=} 2-(1+c) \delta>0,
$$

t a large constant; $r=\left[t^{s}\right], s=\left[c t^{s}\right]$. Let > be the set of those integers n for which there exist b_{r} and c_{s} so that

$$
n \equiv 0\left(\bmod \frac{P_{1} P_{2}}{b_{r}} c_{3}\right) .
$$

Let

$$
N(x)=\#\left\{n \leqq x \mid\left\{n+1, \ldots, n+P_{1} P_{2}\right\} \cap \mathscr{B}=\varnothing\right\} .
$$

Then

$$
\lim _{x} \frac{N(x)}{x} \leqq B \frac{\varepsilon}{\log t},
$$

where B is an absolute constant.
Hence we deduce easily Theorem 5. Indeed, if $n \equiv 0\left(\frac{P_{1} P_{2}}{b_{r}} c_{s}\right)$, then

$$
g(n) \geqq g\left(P_{1} P_{2}\right)+g\left(c_{s}\right)-g\left(b_{r}\right) .
$$

Let $g(p)=p^{-s}$. By choosing $r=\left[t^{\eta}\right], s=\left[c t^{\eta}\right], \gamma<1$,

$$
g\left(c_{s}\right)-g\left(b_{r}\right) \geqq \frac{s}{[(1+\varepsilon) t]^{s}}-\frac{r}{[(1-\varepsilon) t)^{\delta}} \geqq t^{\gamma-\delta}\left\{\frac{c}{1+\varepsilon}-\frac{1}{1-\varepsilon}\right\}=c_{1} t^{\gamma^{-\delta}}
$$

$$
\left(c_{1}>0 \text { constant }\right)
$$

if ε is sufficiently small.
Let $P_{1} P_{2}=p_{1} \ldots p_{\mu} \cong k<P_{1} P_{2} p_{\mu+1}$. Then $f_{k}(0)=g\left(P_{1} P_{2}\right)$. If we put $t=p_{\mu}$, we get immediately Theorem 5 .

Reference

[1] P. Erdós and I. KÁtat, On the growth of some additive functions on small intervals, Acta Math. Acad. Sci. Huntrar. (in print).
(Recelved September 12, 1978)

[^0]
A CORRECTION TO OUR PAPER

"ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS..."

By
P. ERDÓS, member of the Academy and I. KÁTAI, corresponding member of the Academy (Budapest)

In our paper [1] we stated erroneously that Theorem 1 - is a consequence of Theorem 1^{\prime}. In fact, the converse implication is true: Theorem 1 implies Theorem 1^{\prime}.

Now we prove Theorem 1. From (1.9) it follows that

$$
\begin{equation*}
\sum_{p} \frac{\min (1, g(p))}{p}<\infty . \tag{1}
\end{equation*}
$$

Indeed, if (1) does not hold, then $g(n) \rightarrow \infty(n \rightarrow \infty)$ for the set of n having asymptotic density 1 , that contradicts (19). Let $\varepsilon^{\prime}>0, v$ a fixed integer. We shall prove that

$$
\begin{equation*}
f_{v k}(0) \leqq\left(1+\varepsilon^{\prime}\right) f_{k}(0) \tag{2}
\end{equation*}
$$

holds for all $k \geqq k_{0}\left(v, s^{\prime}\right)$. Observing that

$$
f_{v k}(0) \leqq f_{v k}(n)=\max \left\{f_{k}(n), f_{k}(n+k), \ldots, f_{k}(n+(v-1) k)\right\},
$$

we have (2) from (1.9) immediately. From (2) we get that $f_{k}(0)=O\left(k^{*}\right), \varepsilon$ being an arbitrary positive number.

The further part of the proof is the same as that of Theorem 1^{\prime} in [1].

Reference

[1] P Erdös and I. Katar, On the maximal value of additive functions in short intervals and on some related questions, Acta Math. Acad. Sci. Hungar., 35 (1980), 257-278.
(Received January 6, 1981)

[^1]
[^0]: MATHEMATICAL INSTITUTE
 OF THE HUNGARIAN ACADEMY OF SCIENCES
 1053 BUDAPEST, REALTANODA U. $13-15$.
 EÖTVOS LORAND UNIVERSITY
 DEPARTMENT OF COMPUTER SCIENCE
 1088 BUDAPEST, MUZEUM KRT. 6-8.

[^1]: MATHEMATICAL INSTITUTE
 OF THE HUNGARIAN ACADEMY OF SCIENCES
 BUDAPEST, REALTANODA U, $13-15$ 1053

 EOTVOS LORAND UNIVERSITY
 DEPARTMENT OF COMPUTER SCIENCE
 BUDAPEST, MUZEUM KRT. $6-8$
 1088

