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A familiar class of symmetric Cantor sets is obtained as follows : Let a c (0, 1] ; from [0, 1]
remove a segment of length a/3 to leave two intervals of equal length: from each of these
intervals remove a segment of length a/3 2 to leave 22 intervals of equal length ; iterate this process
and denote the Cantor set that remains by C a . This class of Cantor sets is a very fruitful source of
examples. An introduction to these Cantor sets and their corresponding Cantor functions can be
found in [1] ; however, this note does not depend on [1] . This note shows that, except for a first
category set of a's in [0,1], (0, 1) fl Ca contains only irrational numbers . ..Actually, we show that if
x E (0, 1) then the set [x] of a's in [0, 1] for which x E Ca is a closed, nowhere dense subset of
[0,1 ] ; consequently, U , EA [ x ] is a first category subset of [0,1 ] whenever A is a countable subset of
(0, 1) . Letting A be the set of rationals in (0, 1) produces irrational Cantor sets .

Focus on the construction of Ca and observe that a point x E Ca is the intersection of a nested
sequence of intervals. Thus x is determined (uniquely) by specifying whether a left or a right
subinterval contains x at each step : for 0 < a - 1 there is a one-to-one correspondence between
the elements x c Ca and the elements S E 5, where c denotes the set of subsets of the set N of
positive integers ; x E Ca corresponds to the set S,, of positive integers n such that x is in a right
subinterval at step n . For 0 < a ' 1, let 0. denote the map that takes S, E 5 to x E Ca . For
future reference, notice that if x„ denotes the left endpoint of the nth step interval that contains x
then x, '_ x2 < • • • ---> x. For a = 0, there may be two subsets of N corresponding to x E Co =
[0, 1] ; for example, ' corresponds to both the one-element set { 1 } and its complement . Neverthe-
less, we can define 00 : 5 -4 Co as we did for 0 < a -< 1 .

For S C N, let X(S) = 22" Es 3 - " and µ(S) = E"Es2-" ; in particular, X((A) = f1(0) = 0 .
Then X(S) = C, and tt(S) = Co ; these are the extreme cases a = 1 and a = 0 . Notice that
(3 - z) = 2, <"<~(2 " - 2 . 3 - ") ; so X(S) < µ(S) if 1 S 0 and ft(S) < X(S) if I E S N.

Continue to focus on the construction of Ca . After step one, two intervals of length l, _
2 -1(1 - a/3) remain; after step two, four intervals of length 12 = 2 - '(1, - a/3 2 ) remain .
Continuing, one sees that, after each step n, 2" intervals of length 1,, remain, where

1„ = 2- '(1,,

	

- a/3")

= 2-"(1 - (a/3)[1 + (2/3) + . + (2/3)" '])

= 2-"(1 - a) + 3 -"(a) .

Next notice that if an integer n E S E 5 and if x E Ca corresponds to S then x„+ , - x" = l" +
a/3" = 2 - "(1 - a) + 2 . 3`(a); so x = 0a(S), where 0, = (I - a)µ + aX . Thus the map 0.
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takes 5 onto C., and it possesses nice properties . For instance, Il J)a - fip II ~ _ I a - Q 1/6 ; so the
set [ x ] of a's in [0,1] for which x E Ca is a closed subset of [0,1 ] . (If d = d(x, Q > 0 then
x a Ca for Ia - aI < 6d .) Another relevant property of (P. is that if a

	

Q and 0

	

E

	

N
then 4%(E) - (pR(E) _ (fá - a)[µ(E) - X(E)l

	

0.
Define a linear ordering < on 5 as follows : E < F if there exists a positive integer n such that

E„ _,=F„ ,andE„CF,,,where HF.=Hnf0,1, . . .,k),HC5,k :0(i.e.,E<F~~~(E)<
OJF),0<a< 1) .

Now we are ready to show that if 0 < x < I then [x] is a nowhere dense subset of [0, 1] .
Suppose a,# E (0, 1), 0 < x < 1 and (%(E) = x = 0R(F) . Also, without loss of generality,
suppose that E < F . Let n be the smallest positive integer in F - E. Let

G=E„ U (n+ 1,n+2, . . .) .

Then, for 0 < y < 1, U Y = (~Y(G),(~Y(F„)) is a component of [0,1] - CY . Moreover, OR(G) <
4),q (F,,) < x < 4)(G) < 0,(F„ ) . Thus, since UY deforms continuously from U. to U. as y moves
from a to a, there are y's between a and Q for which x V CY (e.g., x (Z CY when 0 < OY(F,,) - x
< inf{(p,(F,,) - ¢A(G) ; X between a and f3)) .

One of the referees of this note suggested using a nice subset K of the unit square to display the
setting. To obtain K, draw line segments between points (X(E),1) and (µ(E),0), E E S, and let K
denote the union of these intervals . One sees quickly that K is closed, that Cn is the intersection of
K with the horizontal line y = a, and that [ a ] is the intersection of K with the vertical line x = a .
Because the linear measure of Ca . is 1 - a, some of those irrational Cantor sets are fat .
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ON THE MONOTONICITY OF A CLASS OF EXPONENTIAL SEQUENCES

THOMAS P. DENCE

Mathematics Department, Bowling Green State University, Firelands Campus, Huron, OH 44839

It is well known that the sequence (1 + 1 /n )n increases to e, whereas it is somewhat less
familiar that the sequence (1 + 1/n)` decreases to e [3] . This note concerns the monotoncity of
the sequence

an = ( 1 + I/n) n+a for 0 < a < 1 .

To this end, a sequence {#,) is defined by

[k~k+12)k(k+2)
k+
'~k+l~

[(k+1)2~

	

k

for k = 1,2, . . . . The value of fák is precisely the value of a required for ak = ak+1 . Several
properties of {fák ) will be essential .

LEMMA 1 . The sequence f 9k) increases .

Proof. Since

kln((k2 - 1)/k2) + ln(k/ (k - 1»
,8k-t =

	

ln(k2/ (k2 - 1))

we are led to consider the function y = F(x) with
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