FINITE ABELIAN GROUP COHESION

BY
P. ERDÖS AND B. SMITH

ABSTRACT

This paper studies the evenness of set arithmetic in a finite abelian group.

Let G be a finite abelian group. We use \# to denote cardinality. Let $\# G=p$. For $A, B \subset G$ let $m(x, A, B)=\#\{(a, b): a+b=x, a \in A, b \in B\}$. For $E \subset G$ let E^{\prime} denote its complement.

Theorem. (Cohesion Equation).

$$
\begin{aligned}
& \sum_{x \in \mathcal{G}}\left|m(x, E, E)+m\left(x, E^{\prime}, E^{\prime}\right)-m\left(x, E, E^{\prime}\right)-m\left(x, E^{\prime}, E\right)\right|^{2} \\
= & \sum_{x \in \mathcal{G}}\left|m(x, E,-E)+m\left(x, E^{\prime},-E^{\prime}\right)-m\left(x, E,-E^{\prime}\right)-m\left(x, E^{\prime},-E\right)\right|^{2} .
\end{aligned}
$$

Proof. Let Γ denote the dual group of G. Let

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } x \in E \\
-1 & \text { if } x \in E^{\prime}
\end{aligned}\right.
$$

Let $\tilde{f}(x)=f(-x)$. The Cohesion Equation states

$$
\sum_{x \in G}|f * f(x)|^{2}=\sum_{x \in G}|f * \tilde{f}(x)|^{2} .
$$

Let $\hat{f}(\gamma)=\sum_{x \in G} f(x) \gamma(-x)$ for $\gamma \in \Gamma$. Then

$$
\sum_{x \in G}|f * f(x)|^{2}=\frac{1}{p} \sum_{\gamma \in \mathrm{I}}\left|\hat{f}^{2}(\gamma)\right|^{2}=\frac{1}{p} \sum_{\gamma \in \mathrm{I}}|\hat{f}(\gamma) \overline{\hat{f}}(\gamma)|^{2}=\sum_{x \in G}|f * \tilde{f}(x)|^{2} .
$$

Theorem 1.

$$
\min _{E \subset G} \max _{x \in G}\left|m(x, E, E)+m\left(x, E^{\prime}, E^{\prime}\right)-2 m\left(x, E, E^{\prime}\right)\right| \geqq p^{1 / 2}
$$

Proof. Consider the right hand side of the Cohesion Equation.

$$
\begin{aligned}
& \sum\left|m(x, E,-E)+m\left(x, E^{\prime},-E^{\prime}\right)-m\left(x, E,-E^{\prime}\right)-m\left(x, E^{\prime},-E\right)\right|^{2} \\
\geqq & \left|m(0, E,-E)+m\left(0, E^{\prime},-E^{\prime}\right)-m\left(0, E,-E^{\prime}\right)-m\left(0, E^{\prime},-E\right)\right|^{2}=p^{2}
\end{aligned}
$$

Theorem II. Let $\lambda>\frac{1}{2}$. Let G be a finite group with no elements of order 2. Then

$$
\min _{E \subset G} \max _{x \in G}\left|m(x, E, E)+m\left(x, E^{\prime}, E^{\prime}\right)-2 m\left(x, E, E^{\prime}\right)\right| \leqq K p^{\lambda}
$$

(K depends only on λ).
The proof of Theorem II requires 3 Lemmas.
For the remainder of the argument let $\# G=n+1$, and let there be no elements of order 2 in G. We consider all ways of writing $G \backslash\{0\}=E \cup F$ with $\# E=\# F=n / 2$. Let $\alpha=(n-1) / n$. For $x \in G \backslash\{0\}$ we see that $\alpha n / 4$ is the expected value of $m(x, E, F)$, since $(G \backslash\{0\}) \times(G \backslash\{0\})$ has cardinality n^{2} and $(G \backslash\{0\})+(G \backslash\{0\})$ represents $x(\neq 0) n-1$ times. When E is understood we use $m(x)$ for $m(x, E, F)$. Let

$$
A(r, s)=\sum\binom{k_{1}+\cdots+k_{s}}{k_{1}}\binom{k_{2}+\cdots+k_{s}}{k_{2}} \cdots\binom{k_{s}}{k_{s}} \frac{1}{j_{1}!} \frac{1}{j_{2}!} \cdots \frac{1}{j_{1}!}
$$

where the summation is over s-tuples of integers, $\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{s}$, satisfying: $\boldsymbol{k}_{1}+$ $\cdots+k_{s}=r . \quad k_{1} \geqq k_{2} \geqq \cdots \geqq k_{s} \geqq 1 . \quad k_{1}=\cdots=k_{j_{1}} ; \quad k_{j_{1}+1}=\cdots=k_{j_{1}+\dot{h}_{2}} ; \cdots$; $k_{j_{1}+\cdots+j_{t-1}+1}=\cdots=k_{j_{1}+\cdots+j_{t}}$.

Lemma 1.

$$
\begin{aligned}
& \text { Expectation }\left(\sum_{\substack{x \in G \\
x \neq 0}}(m(x)-\alpha n / 4)^{p}\right)= \\
& =E\left(\sum _ { \substack { x \in G \\
x \neq 0 } } \left\{\binom{p}{p}(m(x))^{p}+\binom{p}{p-1}(-1)\left(\frac{\alpha n}{4}\right)(m(x))^{p-1}\right.\right. \\
& \left.\left.\quad+\cdots+\binom{p}{0}(-1)^{p}\left(\frac{\alpha n}{4}\right)^{p}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\binom{p}{p}\left\{\left(\frac{\alpha}{4}\right)^{p} n^{2}(n-2(1))(n-2(2)) \cdots(n-2(p-1))\right. \\
&+\left(\frac{\alpha}{4}\right)^{p-1} A(p, p-1) n^{2}(n-2(1)) \cdots(n-2(p-2)) \\
&+\left(\frac{\alpha}{4}\right)^{p-2} A(p, p-2) n^{2}(n-2(1)) \cdots(n-2(p-3)) \\
&\left.+\cdots+\left(\frac{\alpha}{4}\right) A(p, 1) n^{2}\right\} \\
&+(-1)^{1}\binom{p}{p-1}\left\{\left(\frac{\alpha}{4}\right)^{p} n n^{2}(n-2(1)) \cdots(n-2(p-2))\right. \\
&+\left(\frac{\alpha}{4}\right)^{p-1} A(p-1, p-2) n n^{2}(n-2(1)) \cdots(n-2(p-3)) \\
&\left.+\cdots+\left(\frac{\alpha}{4}\right)^{2} A(p-1,1) n n^{2}\right\} \\
&+(-1)^{2}\binom{p}{p-2}\left\{\left(\frac{\alpha}{4}\right)^{p} n^{2} n^{2}(n-2(1)) \cdots(n-2(p-3))\right. \\
&+\left(\frac{\alpha}{4}\right)^{p-1} A(p-2, p-3) n^{2} n^{2}(n-2(1)) \cdots(n-2(p-4)) \\
&\left.+\cdots+\left(\frac{\alpha}{4}\right)^{3} A(p-2,1) n^{2} n^{2}\right\}
\end{aligned}
$$

Proof. The proof of this lemma is done in analogy to the proof of the lemma on page 130 of [1]. The $p=2$ argument is completely general.

$$
\begin{aligned}
& E\left(\sum_{\substack{x \in G \\
x \neq 0}}\left(m(x)-\frac{\alpha n}{4}\right)^{2}\right)= \\
& E\left(\sum_{\substack{x \in G \\
x \neq 0}}\left\{\binom{2}{2}(m(x))^{2}-\binom{2}{1} m(x)\left(\frac{\alpha n}{4}\right)+\binom{2}{0}\left(\frac{\alpha n}{4}\right)^{2}\right\}\right) \\
& m(x)=\sum_{\varepsilon_{1} a_{1}+\varepsilon_{2} a_{2}+\cdots+\varepsilon_{n / 2} a_{n / 2}+\delta_{1} b_{1}+\cdots+\delta_{n / 2} b_{n / 2}=x} 1
\end{aligned}
$$

where $\left(a_{1}, a_{2}, \cdots, a_{n / 2}\right),\left(b_{1}, b_{2}, \cdots, b_{n / 2}\right)$ represent choices of E, F and where $\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n / 2}\right),\left(\delta_{1}, \cdots, \delta_{n / 2}\right)$ represent $n / 2$-tuples consisting of one 1 and ($n / 2-1$) zeroes. So,

$$
\begin{aligned}
\sum_{\substack{x \in G \\
x \neq 0}} E\left((m(x))^{2}\right) & =\sum P\left(0 \neq \varepsilon_{1} a_{1}+\cdots+\varepsilon_{n / 2} a_{n / 2}+\delta_{1} b_{1}+\cdots+\delta_{n / 2} b_{n / 2}\right. \\
& =\varepsilon_{1}^{\prime} a_{1}+\cdots+\varepsilon_{n / 2}^{\prime} a_{n / 2}+\delta_{1}^{\prime} b_{1}+\cdots+\delta_{n / 2}^{\prime} b_{n / 2}
\end{aligned}
$$

where $\left(\varepsilon_{1}, \cdots, \varepsilon_{n / 2}\right),\left(\delta_{1}, \cdots, \delta_{n / 2}\right),\left(\varepsilon_{1}^{\prime}, \cdots, \varepsilon_{n / 2}^{\prime}\right),\left(\delta_{1}^{\prime}, \cdots, \delta_{n / 2}^{\prime}\right)$ are allowed to run independently.

We abbreviate $\quad\left(\varepsilon_{1}, \cdots, \varepsilon_{n / 2}\right)=\varepsilon, \quad\left(\delta_{1}, \cdots, \delta_{n / 2}\right)=\delta, \quad\left(a_{1}, \cdots, a_{n / 2}\right)=a$, $\left(b_{1}, \cdots, b_{n / 2}\right)=b, \quad \varepsilon_{1} a_{1}+\cdots+\varepsilon_{n / 2} a_{n / 2}=(\varepsilon, a)$ and $\delta_{1} b_{1}+\cdots+\delta_{n / 2} b_{n / 2}=(\delta, b)$. We use $P(A \mid B)$ to denote the conditional probability of A given B.

If $\quad \varepsilon=\varepsilon^{\prime}, \quad \delta=\delta^{\prime}, \quad$ then $\quad P\left((\varepsilon, a)+(\delta, b)=\left(\varepsilon^{\prime}, a\right)+\left(\delta^{\prime}, b\right)\right)=1 \quad$ and $P(0 \neq(\varepsilon, a)+(\delta, b))=\alpha$. So

$$
\sum_{\substack{\varepsilon=\varepsilon^{\prime} \\ \delta=\delta^{\prime}}} P\left(0 \neq(\varepsilon, a)+(\delta, b)=\left(\varepsilon^{\prime}, a\right)+\left(\delta^{\prime}, b\right)\right)=\left(\frac{n}{2}\right)^{2} \alpha .
$$

If $\varepsilon=\varepsilon^{\prime}$ and $\delta \neq \delta^{\prime}$ or $\varepsilon \neq \varepsilon^{\prime}$ and $\delta=\delta^{\prime}$, then $P\left((\varepsilon, a)+(\delta, b)=\left(\varepsilon^{\prime}, a\right)+\left(\delta^{\prime}, b\right)\right)=0$. So

$$
\sum_{\substack{\left(\varepsilon-\varepsilon^{\prime} \text { and } \delta \neq \delta^{\prime}\right) \\\left(\varepsilon \neq \varepsilon^{\prime} \text { and } \delta=\delta^{\prime}\right)}} P\left(0 \neq(\varepsilon, a)+(\delta, b)=\left(\varepsilon^{\prime}, a\right)+\left(\delta^{\prime}, b\right)\right)=0 .
$$

If $\varepsilon \neq \varepsilon^{\prime}$ and $\delta \neq \delta^{\prime}$, then

$$
\begin{gathered}
P\left(0 \neq(\varepsilon, a)+(\delta, b)=\left(\varepsilon^{\prime}, a\right)+\left(\delta^{\prime}, b\right)\right)= \\
=P(0 \neq(\varepsilon, a)+(\delta, b)) \cdot P\left((\varepsilon, a)+(\delta, b) \neq 2\left(\varepsilon^{\prime}, a\right) \mid 0 \neq(\varepsilon, a)+(\delta, b)\right) \\
\cdot P\left(0 \neq(\varepsilon, a)+(\delta, b)-\left(\varepsilon^{\prime}, a\right) \mid 0 \neq(\varepsilon, a)+(\delta, b),(\varepsilon, a)+(\delta, b) \neq 2\left(\varepsilon^{\prime}, a\right)\right) \\
\cdot P\left(\left(\delta^{\prime}, b\right)=(\varepsilon, a)+(\delta, b)-\left(\varepsilon^{\prime}, a\right) \mid 0 \neq(\varepsilon, a)+(\delta, b),\right. \\
\left.(\varepsilon, a)+(\delta, b) \neq 2\left(\varepsilon^{\prime}, a\right), 0 \neq(\varepsilon, a)+(\delta, b)-\left(\varepsilon^{\prime}, a\right)\right)=\alpha \cdot \frac{n-3}{n-2} \cdot \alpha \cdot \frac{1}{n-3} \\
\sum_{\substack{\varepsilon \neq \varepsilon^{\prime} \\
\delta \neq \delta^{\prime}}} P\left(0 \neq(\varepsilon, a)+(\delta, b)=\left(\varepsilon^{\prime}, a\right)+\left(\delta^{\prime}, b\right)\right)=\left(\frac{n}{2}\right)^{2}\left(\frac{n}{2}-1\right)^{2} \alpha^{2} \frac{1}{n-2} .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
E\left(\sum\left(m(x)-\frac{\alpha n}{4}\right)^{2}\right)= & \binom{2}{2}\left\{\left(\frac{\alpha}{4}\right)^{2} n^{2}(n-2(1))+\frac{\alpha}{4} n^{2}\right\}-\binom{2}{1}\left\{\left(\frac{\alpha}{4}\right)^{2} n \cdot n^{2}\right\} \\
& +\binom{2}{0}\left\{\left(\frac{\alpha}{4}\right)^{2} n^{2} \cdot n\right\} .
\end{aligned}
$$

Let $f_{r}(s)=\sum_{1 \Xi j_{1}<j_{2}<\cdots<j_{r} \leq s}\left(j_{1} j_{2} \cdots j_{r}\right)$ where j_{1}, \cdots, j_{r} are integers.
Lemma 2. (Cohesion Identities). The $1 / 4^{2 k}$ identities are true.

$$
\begin{gathered}
\sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j)=0, \\
\sum_{j=2}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j) f_{1}(j-1)=0, \\
\vdots \\
\sum_{j=k}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j) f_{k-1}(j-1)=0 .
\end{gathered}
$$

The $1 / 4^{2 k-1}$ identities are true.

$$
\begin{gathered}
\sum_{j=2}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j-1)=0, \\
\sum_{j=3}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j-1) f_{1}(j-2)=0, \\
\vdots \\
\sum_{j=k}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j-1) f_{k-2}(j-2)=0 .
\end{gathered}
$$

The $1 / 4^{2 k-2}$ identities are true.

$$
\begin{gathered}
\sum_{j=3}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j-2)=0 \\
\sum_{j=4}^{2 k}(-1)^{(}\binom{2 k}{j} A(j, j-2) f_{1}(j-3)=0 \\
\vdots \\
\sum_{j=k}^{2 k}(-1)^{j}\binom{2 k}{j} A(j, j-2) f_{k-3}(j-3)=0
\end{gathered}
$$

The $1 / 4^{k+1}$ identity is true.

$$
\sum_{j=k}^{2 k}(-1)^{(}\binom{2 k}{j} A(j, j-(k-1))=0 .
$$

Proof. The proof depends on the following Prelemma.
Prelemma. Let $k \in\{1,2,3, \cdots\}$. In the following it is understood that the x in $f_{k}(x+l)$ satisfies x is an integer and $x \geqq k-l$. $a_{0}, a_{1}, a_{2}, \cdots$ are constants but are allowed to change as we go from one identity to the next. For each $l \in$ $\{-1,0,1,2, \cdots\}$ we have the following list of identities. (We are only interested in these identities for $x \in\{0,1,2, \cdots\}$.)

$$
\begin{gathered}
f_{1}(x+l)=a_{0} \cdot 1+a_{1} x+a_{2} x(x-1), \\
\vdots \\
f_{l}(x+l)=a_{0} \cdot 1+a_{1} x+a_{2} x(x-1)+\cdots+a_{2 l} x(x-1) \cdots(x-(2 l-1)), \\
f_{l+1}(x+l)=a_{1} x+a_{2} x(x-1)+\cdots+a_{2(l+1)} x(x-1) \cdots(x-(2(l+1)-1)), \\
\vdots \\
f_{l+j}(x+l)=a_{j} x(x-1) \cdots(x-(j-1))+\cdots \\
\\
\quad+a_{2(l+j)} x(x-1) \cdots(x-(2(l+j)-1)) .
\end{gathered}
$$

Proof of the Prelemma. The $l=-1$ identities are proved by induction using the equation $f_{k}(x)=x f_{k-1}(x-1)+f_{k}(x-1)$. The others follow from the -1 identities and substitution.

We return to the proof of the Cohesion Identities
The 1st identity in each $1 / 4^{i}$ list can be gotten directly from multinomial expansions.

We are left the problem of showing

$$
\begin{equation*}
\sum_{j=r}^{2 k}(-1)^{(}\binom{2 k}{j} A(j, j-t) f_{s}(j-t-1)=0 \tag{1}
\end{equation*}
$$

where $0 \leqq t ; t+2 \leqq r \leqq k ; s=r-(t+1)$. We must use multinomial expansions, differentiation and the Prelemma to see this.

Given $t \geqq 0$ we call an expression of the form $u=h_{1}+\cdots+h_{u-t} ; h_{1} \geqq \cdots \geqq$ $h_{u-1} \geqq 1 ; h_{1}, \cdots, h_{u-t} \in Z$ a t-partition. We say that the t partitions

$$
u=h_{1}+\cdots+h_{u-t}, \quad v=i_{1}+\cdots+i_{v-t}
$$

are similar if (let us suppose $u-t<v-t$) $h_{1}=i_{1}, h_{2}=i_{2}, \cdots, h_{u-t}=i_{u-t}, i_{u-t+1}=$ $\cdots=i_{v-t}=1$.
Fix a t-decomposition and let u be the smallest number $\geqq r$ with a similar decomposition.

$$
u=h_{1}+\cdots+h_{u-t} .
$$

If $h_{u-t}>1$, let $q=0$. Otherwise let q be the largest number satisfying $h_{u-t-q-1}=$ $\cdots=h_{u-t}=1$. Let $u-t-q-2=p$. Our objective is to prove
(2) $\sum_{j=u}^{2 k}(-1)^{\prime}\binom{2 k}{j}\binom{j}{h_{1}}\binom{j-h_{1}}{h_{2}} \cdots\binom{j-h_{1}-\cdots-h_{p-1}}{h_{p}} f_{s}(j-t-1)=0$.

We know:

$$
\begin{gathered}
\left(y+x_{1}+\cdots+x_{p}-1\right)^{2 k}=\cdots+\left\{(-1)^{u-q}\binom{2 k}{u-q}\binom{u-q}{h_{1}} \cdots\binom{h_{p}}{h_{p}}\right. \\
+(-1)^{u-q+1}\binom{2 k}{u-q} \cdots\binom{h_{p}+1}{h_{p}} y+\cdots+(-1)^{u}\binom{2 k}{u}\binom{u}{h_{1}} \cdots\binom{h_{p}+q}{h_{p}} y^{q} \\
\left.+(-1)^{u+1}\binom{2 k}{u+1} \cdots\binom{h_{p}+q+1}{h_{p}} y^{q+1}+\cdots\right\} x_{1}^{h_{1}} x_{2}^{h_{2}} \cdots x_{p}^{h_{p}}+\cdots .
\end{gathered}
$$

We apply $D_{y}^{j}\left(D_{y}^{j}\right.$ denotes the operator that takes the j-th derivative with respect to y) to this equation for $j=q, \cdots, 2 s$. Let $h_{1}+\cdots+h_{p}=H$. We arrive at the equations

$$
\begin{gathered}
(2 k)(2 k-1) \cdots(2 k-(q-1))\left(y+x_{1}+\cdots+x_{p}-1\right)^{2 k-q} \\
=\cdots+\left\{(-1)^{u}\binom{2 k}{u} \cdots\binom{h_{p}+q}{h_{p}} q \cdot(q-1) \cdots 1\right. \\
\left.+(-1)^{u+1}\binom{2 k}{u+1} \cdots\binom{h_{p}+q+1}{h_{p}}(q+1) q \cdots 2 y+\cdots\right\} x_{1}^{h_{1}} \cdots x_{p}^{h_{p}}+\cdots, \\
(2 k)(2 k-1) \cdots(2 k-q)\left(y+x_{1}+\cdots+x_{p}-1\right)^{2 k-q-1} \\
=\cdots+\left\{(-1)^{u+1}\binom{2 k}{u+1} \cdots\binom{h_{p}+q+1}{h_{p}}(q+1) q \cdots 1\right. \\
\left.+(-1)^{u+2}\binom{2 k}{u+2} \cdots\binom{h_{p}+q+2}{h_{p}}(q+2)(q+1) \cdots 2 \cdot y+\cdots\right\} x_{1}^{h_{1}} \cdots x_{p}^{h_{p}}
\end{gathered}
$$

$$
\begin{gathered}
(2 k) \cdots(2 k-(2 s-1))\left(y+x_{1}+\cdots+x_{p}-1\right)^{2 k-2 s} \\
=\cdots+\left\{(-1)^{H+2 s}\binom{2 k}{H+2 s} \cdots\binom{h_{p}+2 s}{h_{p}}(2 s) \cdots(1)\right. \\
\left.+(-1)^{H+2 s+1}\binom{2 k}{H+2 s+1} \cdots\binom{h_{p}+2 s+1}{h_{p}}(2 s+1) \cdots 2 \cdot y+\cdots\right\} x_{1}^{h_{1}} \cdots x_{p}^{h_{p}}
\end{gathered}
$$

$$
+\cdots
$$

We need to note that $h_{1}+\cdots+h_{p} \leqq 2 k-2 s-2$. Among all t partitions the largest value $h_{1}+\cdots+h_{p}$ obtains is when $p=t$ and $h_{1}=\cdots=h_{t}=2$. Hence $h_{1}+\cdots+h_{p} \leqq 2 t$. For a fixed t the largest value s can have is $k-(t+1)$. So $2(k-s) \geqq 2 t+2$.

So upon setting $y=1$ in the above list of equations and equating coefficients we can conclude that the following expressions are 0 :
e_{q})

$$
(-1)^{u}\binom{2 k}{u} \cdots\binom{h_{p}+q}{u} q(q-1) \cdots 1
$$

$$
+(-1)^{u+1}\binom{2 k}{u+1} \cdots\binom{h_{p}+q+1}{h_{p}}(q+1) q \cdots 2+\cdots
$$

$$
(-1)^{u+1}\binom{2 k}{u+1} \cdots\binom{h_{p}+q+1}{h_{p}}(q+1) q \cdots 1
$$

e_{q+1})

$$
\begin{gathered}
+(-1)^{u+2}\binom{2 k}{u+2} \cdots\binom{h_{p}+q+2}{h_{p}}(q+2) \cdots 2+\cdots \\
\cdots \\
(-1)^{H+2 s}\binom{2 k}{H+2 s} \cdots\binom{h_{p}+2 s}{h_{p}}(2 s)(2 s-1) \cdots 1
\end{gathered}
$$

$\mathrm{e}_{2 s}$)

$$
\dot{+}(-1)^{H+2 s+1}\binom{2 k}{H+2 s+1} \cdots\binom{h_{p}+2 s+1}{h_{p}}(2 s+1) \cdots 2+\cdots
$$

We need to see that there are constants $a_{q}, \cdots, a_{2 s}$ such that:
$f_{s}(x+(s-q)+(u-r))=a_{q} x(x-1) \cdots(x-(q-1))+\cdots$

$$
+a_{2 s} x(x-1) \cdots(x-(2 s-1))
$$

If $q=0$, there is no problem since we are allowed $1, x, \cdots, x(x-1), \cdots$, $(x-(2 s-1))$ in our expansion of f_{s}. If $q>0$, then $u=r$. We will be able to find
$a_{q}, \cdots, a_{2 s}$ from the Prelemma if we establish $s-q \geqq-1$. The largest value of q will occur when our partition is

$$
r=\underbrace{r_{0}+1+\cdots+1}_{r-t}
$$

where $r_{0}=1$ if $t=0$ and $r_{0}>1$ if $t>0$. So $q=r$ for $t=0$ and $q=r-t-1$ for $t>0$. Now $s-q=r-(t+1)-q$. For $t=0, s-q \geqq r-1-r=-1$. For $t>0$, $s-q \geqq r-(t+1)-(r-t-1)=0$.

This finishes the proof of Lemma 2 since the left hand side of (2) is

$$
a_{q} e_{q}+\cdots+a_{2 s} e_{2 s}=0+0+\cdots+0
$$

and (1) is a linear combination of expressions of the form (2).
Lemma 3.

$$
E\left(\sum_{\substack{x \in G \\ x \neq 0}}\left(m(x)-\frac{\alpha n}{4}\right)^{2 k}\right) \leqq K n^{k+1}
$$

(K depends only on k).
Proof. This is a calculation using Lemmas 1,2 .
Proof of Theorem II. We must make a computation. Let $\beta=1 / n$. Using the argument of Lemma 1 we have

$$
E\left(\left(m(0)-\beta \frac{n^{2}}{4}\right)^{2}\right)=\beta\left(\frac{n}{2}\right)^{2}\left(\frac{n}{2}-1\right)^{2} \frac{1}{n-3}+\beta\left(\frac{n}{2}\right)^{2}-\beta^{2}\left(\frac{n^{2}}{4}\right)^{2}=O(n)
$$

The Theorem now follows from this computation and Lemma 3.

Reference

1. P. Erdös and A. Rényi, Probabilistic methods in group theory, J. Analyse Math. 14 (1965), 127-138.

Mathematics Institute
Realtanoda U. 13-15
Budapest, Hungary
Department of Mathematics
University of Kentucky
Lexington, KY 40506 USA

