Lagrange's Theorem and Thin Subsequences of Squares

Paul Erdös and Melvyn B. Nathanson*

Abstract

Probabilistic methods are used to prove that for every $\varepsilon>0$ there exists a sequence A_{ε} of squares such that every positive integer is the sum of at most four squares in A_{ε} and $A_{\varepsilon}(x)=O\left(x^{3 / 8+\varepsilon}\right)$.

Key words and phrases: Sums of squares, additive bases, probabilistic methods in additive number theory.

The set A of positive integers is a basis of order h if every positive integer is the sum of at most h elements of A. Lagrange proved in 1770 that the set of squares is a basis of order 4 . Let $A(x)$ denote the number of elements of

[^0]the set A not exceeding x. The number of choices with repetitions of at most h elements in A not exceeding x is the binomial coefficient $(A(x)+h, h)$. If A is a basis of order h, then for x sufficiently large and $h \geq 2$
$$
x<\binom{A(x)+h}{h}<A(x)^{h}
$$
and so $A(x)>x^{1 / h}$. In particular if $h=4$, then $A(x)>x^{1 / 4}$. But the sequence of squares $A=\left\{n^{2}\right\}_{n=1}^{\infty}$ satisfies $A(x) \sim x^{1 / 2}$. It is a natural problem [7] to look for "thin" subsequences of the squares that are still bases of order 4. We shall prove (Theorem 1) that for every $\varepsilon>0$ there exists a set A_{ε} of squares such that A_{ε} is a basis of order 4 and $A_{\varepsilon}(x)=O\left(x^{3 / 8+\varepsilon}\right)$. We conjecture that for every $\varepsilon>0$ there is a sequence A^{*} of squares such that A^{*} is a basis of order 4 and $A^{*}(x)=O\left(x^{1 / 4+\varepsilon}\right)$.

Choi et al. [3] have improved Theorem 1 in the following finite case: For every $N>1$ there is a finite set A of squares such that $|A|<(4 / \log 2) N^{1 / 3} \log N$ and every nonnegative integer $n \leq N$ is the sum of four squares in A.

The proof of Theorem 1 uses the probabilistic method of Erdös and Rényi [4]. (The Halberstam-Roth book [6] contains an excellent exposition of this method.) Consider the following general situation. Let $F_{j}=$ $F_{j}\left(x_{1}, x_{2}, \ldots, x_{h(j)}\right)$ be a function in $h(j) \leq h$ variables, and let $\mathscr{F}=\left\{F_{j}\right\}_{j \in J}$. Let $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ be a strictly increasing sequence of positive integers. Let $\mathscr{F}(A)$ denote the set consisting of all numbers of the form $F_{j}\left(a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}\right)$, where $F_{j} \in \mathscr{F}$ and $a_{n_{i}} \in A$ for $i=1,2, \ldots, h(j)$. Let $s \in \mathscr{F}(A)$ and

$$
s=F_{j}\left(a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}\right)=F_{k}\left(a_{m_{1}}, a_{m_{2}}, \ldots, a_{m_{h(k)}}\right)
$$

be two representations of s. These representations are disjoint if

$$
\left\{a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}\right\} \cap\left\{a_{m_{1}}, a_{m_{2}}, \ldots, a_{m_{h(k)}}\right\}=\varnothing
$$

In Lemma 1 we apply probabilistic methods to show that if $S \subseteq \mathscr{F}(A)$ and each $s \in S$ has sufficiently many pairwise disjoint representations, then there is a "thin" subsequence A^{*} of A such that $S \subseteq \mathscr{F}\left(A^{*}\right)$. We also use this Lemma to obtain a best possible result for sums of three squares (Theorem 2) and to obtain a "thin" version of Chen's result on Goldbach's problem (Theorem 3).

Lemma 1. Let $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ be a strictly increasing sequence of positive integers such that

$$
\begin{equation*}
a_{n} \geq c_{1} n^{\alpha} \tag{1}
\end{equation*}
$$

for constants $c_{1}>0, \alpha \geq 1$, and all $n \geq 1$. Let $F_{j}=F_{j}\left(x_{1}, x_{2}, \ldots, x_{h(j)}\right)$ be a function in $h(j) \leq h$ variables, and let $\mathscr{F}=\left\{F_{j}\right\}_{j \in J}$. Suppose there exist con-
stants $c_{2}>0$ and $\beta>0$ such that, if $F_{j} \in \mathscr{F}$ and $F_{j}\left(x_{1}, x_{2}, \ldots, x_{h(j)}\right)=s$, then

$$
\begin{equation*}
x_{i} \leq c_{2} s^{\beta} \tag{2}
\end{equation*}
$$

for $i=1,2, \ldots, h(j)$. Let $\mathscr{F}(A)$ be the set consisting of all numbers of the form $F_{j}\left(a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}\right)$ with $F_{j} \in \mathscr{F}, a_{n_{i}} \in A$. For $s \in \mathscr{F}(A)$, let $R(s)$ denote the maximum number of pairwise disjoint representations of s in the form $s=F_{j}\left(a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}\right)$ Let $S \subseteq \mathscr{F}(A)$. Suppose there exist constants $c_{3}>0$, $\gamma>0$, and γ^{\prime} such that

$$
\begin{equation*}
R(s) \geq c_{3} s^{\gamma} / \log ^{\gamma^{\prime}} s \tag{3}
\end{equation*}
$$

for all $s \in S, s>1$. Then for every $\varepsilon>0$ there exist a constant $c=c(\varepsilon)>0$ and a subsequence A^{*} of A such that $S \subseteq \mathscr{F}\left(A^{*}\right)$ and

$$
\begin{equation*}
A^{*}(x) \leq c x^{(1 / \alpha-\gamma / \beta h+\varepsilon)} \tag{4}
\end{equation*}
$$

Proof. By the method of Erdös and Rényi [4, 6], every sequence of real numbers $p(1), p(2), \ldots$ satisfying $0 \leq p(n) \leq 1$ determines a probability measure μ on the space Ω of all strictly increasing sequences of positive integers. The measure μ has the property that, if $B^{(n)}$ denotes the set of all sequences containing n, then $B^{(n)}$ is measurable and $\mu\left(B^{(n)}\right)=p(n)$. Moreover, the events $B^{(1)}, B^{(2)}, \ldots$ are independent. Let $0<\varepsilon<\gamma / \beta h$. Then $\delta=$ $(\alpha \gamma / \beta h)-\alpha \varepsilon>0$. We consider the measure μ on Ω determined by the sequence of probabilities

$$
\begin{equation*}
p(n)=1 / n^{\delta}=1 / n^{(\alpha \nu / \beta h)-\alpha \varepsilon} . \tag{5}
\end{equation*}
$$

Each sequence $U=\{u(k)\}_{k=1}^{\infty} \in \Omega$ determines the subsequence $A^{U}=\left\{a_{u(k)}\right\}_{k=1}^{\infty}$ of A. This establishes a one-to-one correspondence between subsequences of A and sequences U in Ω. The probability that $a_{n} \in A^{U}$ is the same as the probability that $n \in U$, which is precisely $p(n)=n^{-\delta}$.

Let $s=F_{j}\left(a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}\right) \in S$. Inequalities (1) and (2) imply that

$$
c_{1} n_{i}^{\alpha} \leq a_{n_{i}} \leq c_{2} s^{\beta}
$$

for $i=1,2, \ldots, h(j)$, and so

$$
n_{i} \leq\left(c_{2} s^{\beta} / c_{1}\right)^{1 / \alpha}=c_{4} s^{\beta / \alpha}
$$

The integers $n_{1}, n_{2}, \ldots, n_{h(j)}$ are not necessarily distinct. Let $m_{1}, m_{2}, \ldots, m_{t}$ be pairwise distinct integers such that $\left\{n_{1}, n_{2}, \ldots, n_{h(j)}\right\}=\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$. The probability that a subsequence $A^{U}=\left\{a_{u(k)}\right\}_{k=1}^{\infty}$ of A contains each of the numbers $a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{n(j)}}$ is the same probability that the sequence
$U=\{u(k)\}_{k=1}^{\infty} \in \Omega$ contains each of the numbers $n_{i} \in\left\{n_{1}, n_{2}, \ldots, n_{h(j)}\right\}=$ $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$. This probability is

$$
\begin{aligned}
p\left(m_{1}\right) p\left(m_{2}\right) \cdots p\left(m_{t}\right) & =\frac{1}{\left(m_{1} m_{2} \cdots m_{t}\right)^{\delta}} \\
& \geq \frac{1}{\left(n_{1} n_{2} \cdots n_{h(j)}\right)^{\delta}} \\
& \geq \frac{1}{\left(c_{4} s^{\beta / \alpha) \delta h(j)}\right.} \\
& \geq \frac{c_{5}}{s^{\beta \delta h / \alpha}} \\
& =\frac{c_{5}}{s^{\gamma-\beta h \varepsilon}} .
\end{aligned}
$$

Therefore, the probability that the subsequence A^{U} does not contain at least one of the numbers $a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{h(j)}}$ is at most

$$
1-\frac{c_{5}}{s^{y-\beta h \varepsilon}}
$$

There are $R(s)$ disjoint representations of $s \in S$. By (3), the probability that A^{U} does not contain at least one term from each of these $R(s)$ representations of s is at most

$$
\left(1-c_{5} / s^{\gamma-\beta h \varepsilon}\right)^{R(s)} \leq\left(1-\left(c_{5} / s^{y-\beta h \varepsilon}\right)^{c_{33^{\gamma} / \log \gamma^{\prime} s}^{s} .}\right.
$$

The corresponding series of probabilities converges:

$$
\sum_{s=2}^{\infty}\left(1-c_{5} / s^{\gamma-\beta h \varepsilon}\right)^{c_{3} s^{\gamma} / \log y^{\prime} s}<\infty
$$

The Borel-Cantelli lemma implies that for almost all sequences $U \in \Omega$, the subsequence A^{U} of A represents all but finitely many $s \in S$. Adjoining a finite set to A^{U}, we obtain a subsequence A^{*} of A such that $S \subseteq F\left(A^{*}\right)$. The law of large numbers implies that for almost all $U \in \Omega$,

$$
U(x) \sim c_{6} x^{1-\delta}=c_{6} x^{1-\alpha \gamma / \beta h+\alpha \varepsilon}
$$

Since $a_{n} \geq c_{1} n^{\alpha}$ by (1), it follows that

$$
A^{U}(x) \leq U\left(\left(x / c_{1}\right)^{1 / \alpha}\right) \leq c x^{1 / \alpha-\gamma / \beta h+\varepsilon}
$$

This completes the proof of Lemma 1.
Lemma 2. Let $S=\{n \geq 1 \mid n \not \equiv 0(\bmod 4)\}$. Let $R(s)$ denote the maximum number of pairwise disjoint representations of s as the sum of at most four
squares. Then for every $\varepsilon>0$ there is a constant $c=c(\varepsilon)>0$ such that

$$
R(s)>c s^{1 / 2-\varepsilon}
$$

for all $s \in S$.
Proof. Let $r_{k}(s)$ denote the number of representations of s as the sum of at most k squares. It is well known that $r_{2}(s) \leq c_{1} s^{\varepsilon}$ for every $\varepsilon>0$. This implies that $r_{3}(s) \leq c_{2} s^{1 / 2+\varepsilon}$, since if $s=a^{2}+b^{2}+c^{2}$, there are at most $s^{1 / 2}$ choices for a and, for each a, we have $r_{2}\left(s-a^{2}\right) \leq c_{1} s^{\varepsilon}$ choices of b and c.

Let $s=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$. The number of representations of s as a sum of at most four squares that include the number a_{i} is $r_{3}\left(s-a_{i}^{2}\right)$. It follows that the number of representations of s that include at least one of the numbers $a_{1}, a_{2}, a_{3}, a_{4}$ is at most

$$
\sum_{i=1}^{4} r_{3}\left(s-a_{i}^{2}\right) \leq c_{3} s^{1 / 2+\varepsilon}
$$

There are $R(s)$ disjoint representations of s as the sum of four squares, and so there are at most

$$
c_{3} s^{1 / 2+\varepsilon} R(s)
$$

representations of s as a sum of four squares. But Jacobi's theorem on the number of representations of an integer as the sum of four squares implies that each $s \in S$ has at least $c_{4} s$ such representations. Therefore,

$$
c_{4} s \leq c_{3} s^{1 / 2+\varepsilon} R(s)
$$

This completes the proof of Lemma 2.
Theorem 1. For every $\varepsilon>0$ there exists a sequence A_{ε} of squares such that every positive integer is the sum of at most four squares in A_{ε} and $A_{\varepsilon}(x) \leq$ $c x^{3 / 8+\varepsilon}$ for some $c=c(\varepsilon)>0$.

Proof. Let $A=\left\{n^{2}\right\}_{n=1}^{\infty}$. Let $F_{j}=F_{j}\left(x_{1}, \ldots, x_{j}\right)=x_{1}+\cdots+x_{j}$, let $J=\{1,2,3,4\}$, and let $\mathscr{\mathscr { F }}=\left\{F_{j}\right\}_{j \in J}$. Lagrange's theorem asserts that $\mathscr{F}(A)=$ $\{1,2,3, \ldots\}$. Let $S=\{s \geq 1 \mid s \not \equiv 0(\bmod 4)\}$. We apply Lemma 1 with $\alpha=2$, $\beta=1, h=4$, and, by Lemma 2, with $\gamma=\frac{1}{2}-\varepsilon$. Then there is a sequence A^{*} of squares such that each $s \in S$ is a sum of four squares in A^{*} and

$$
A^{*}(x) \leq c x^{1 / 2-[1 / 2-\varepsilon] / 4+\varepsilon}=c x^{3 / 8+5 \varepsilon / 4}
$$

Let $A_{\varepsilon}=\left\{2^{k} a \mid a \in A^{*}, k \geq 0\right\}$. Let $n \geq 1$. Then $n=4^{k} s$ for some $s \in S$. There exist $j \in J$ and $a_{1}, \ldots, a_{j} \in A^{*}$ such that $s=\sum_{i=1}^{j} a_{i}^{2}$. Then $2^{k} a_{i} \in A_{\varepsilon}$ and $\sum_{i=1}^{j}\left(2^{k} a_{i}\right)^{2}=4^{k} \sum_{i=1}^{j} a_{i}^{2}=4^{k} S=n$. Therefore, each $n \geq 1$ is a sum of at
most four squares in A_{ε}. Moreover, if $2^{k} a \leq x$, then $k \leq \log x / \log 2$ and so

$$
\begin{aligned}
A_{\varepsilon}(x) & \leq\left(1+\frac{\log x}{\log 2}\right) A^{*}(x) \leq\left(1+\frac{\log x}{\log 2}\right) c x^{3 / 8+5 \varepsilon / 4} \\
& \leq c x^{3 / 8+2 \varepsilon}
\end{aligned}
$$

Replacing ε by $\varepsilon / 2$ completes the proof of Theorem 1 .
Theorem 2. For every $\varepsilon>0$ there exists a sequence B_{ε} of squares such that every positive integer $n \neq 4^{k}(8 m+7)$ is the sum of at most three squares in B_{ε} and

$$
B_{\varepsilon}(x) \leq c x^{1 / 3+\varepsilon} \quad \text { for some } \quad c=c(\varepsilon)>0
$$

Proof. Let $A=\left\{n^{2}\right\}_{n=1}^{\infty}$. Let $F_{j}=x_{1}+\cdots+x_{j}$ for $j \in J=\{1,2,3\}$, and let $\mathscr{F}=\left\{F_{j}\right\}_{j \in J}$. Gauss showed that $\mathscr{F}(A)$ consists of all positive integers not of the form $4^{k}(8 m+7)$. Let $S=\{s \geq 1 \mid s \neq 0,4,7(\bmod 8)\}$. Then $S \subseteq$ $\mathscr{F}(A)$. Siegel [8] and Bateman [1] showed that for every $\varepsilon>0$ and $s \in S$ there are at least $c_{1} s^{1 / 2-\varepsilon}$ representations of s as a sum of three squares. The argument used to prove Lemma 2 shows that if $s \in S$, then s has at least $c_{2} s^{1 / 2-\varepsilon}$ pairwise disjoint representations as a sum of three squares. We apply Lemma 1 with $\alpha=2, \beta=1, h=3$, and $\gamma=\frac{1}{2}-\varepsilon$. This yields a subsequence $A^{*} \subseteq A$ such that $S \subseteq \mathscr{F}\left(A^{*}\right)$ and

$$
A^{*}(x) \leq c x^{1 / 2-[1 / 2-\varepsilon] / 3+\varepsilon}=c x^{1 / 3+4 \varepsilon / 3}
$$

If $n \in \mathscr{F}(A)$, then $n=4^{k} s$ for some $k \geq 0$ and $s \in S$. Let $B_{\varepsilon}=\left\{2^{k} a \mid k \geq 0\right.$, $\left.a \in A^{*}\right\}$. Then $\mathscr{F}\left(B_{\varepsilon}\right)=\mathscr{F}(A)=\left\{a^{2}+b^{2}+c^{2} \mid a, b, c, \geq 0\right\} \quad$ and $B_{\varepsilon}(x) \leq$ $c^{\prime}(\log x) A^{*}(x) \leq c x^{(1 / 3)+2 \varepsilon}$. This completes the proof of Theorem 2.

Theorem 3. Let C consist of all numbers of the form p or $p q$, where p, q are odd primes. Then for every $\varepsilon>0$ there is a set $C_{\varepsilon} \subseteq C$ such that every sufficiently large even integer is the sum of two elements of C_{ε} and

$$
C_{\varepsilon}(x) \leq c x^{1 / 2+\varepsilon}
$$

Proof. Chen [2,5] proved that every even number $n \geq n_{0}$ has at least $c_{1} n / \log ^{2} n$ representations as the sum of two elements of C. These representations are pairwise disjoint. Apply Lemma 1 with $\alpha=1, \beta=1, h=2$, and $\gamma=1$. This yields a sequence $C_{\varepsilon} \subseteq C$ such that every even number $n \geq n_{0}$ is the sum of two elements of C_{ε} and $C_{\varepsilon}(x) \leq c x^{1 / 2+\varepsilon}$. This completes the proof of Theorem 3.

References

[1] P. T. Bateman, On the representations of a number as the sum of three squares. Trans. Amer. Math. Soc. 71 70-101, (1951).
[2] J. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 157-176, (1973).
[3] S. L. G. Choi, P. Erdös, and M. B. Nathanson, Lagrange's theorem with $\mathrm{N}^{1 / 3}$ squares. Proc. Amer. Math. Soc. 79 203-205 (1980).
[4] P. Erdös and A. Rényi, Additive properties of random sequences of positive integers. Acta Arith. 683-110, (1960).
[5] H. Halberstam and H. -E. Richert, "Sieve Methods". Academic Press, New York, 1974.
[6] H. Halberstam and K. F. Roth, "Sequences", Vol. I. Oxford Univ. Press (Clarendon), London and New York, 1966.
[7] E. Härtter and J. Zöllner, Darstellungen natürlichen Zahlen als Summe und als Differenz von Quadraten. K. Norske Vidensk. Selk. Skr. no. 1, 1-8, (1977).
[8] C. L. Siegel, Uber die Klassenzahl quadratischer Zahlkörper. Acta. Arith. 183-86, (1935).

Paul Erdös
Mathematical Institute of the Hungarian Academy of Sciences
Budapest V., Realtanoda
Hungary

Melvyn B. Nathanson
Department of Mathematics
Southern Illinois University
Carbondale, Illinois

[^0]: * The research of Melvyn B. Nathanson was supported in part by the National Science Foundation under Grant No. MCS78-07908.

