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ABSTRACT 

Probabilistic methods are used to prove that for every E > 0 there exists a sequence 
A, of squares such that every positive integer is the sum of at most four squares in A, and 
A,(x) = 0(x=8 + y. 

Key words and phrases: Sums of squares, additive bases, probabilistic methods in 
additive number theory. 

The set A of positive integers is a basis of order h if every positive integer 
is the sum of at most h elements of A. Lagrange proved in 1770 that the set 
of squares is a basis of order 4. Let A(x) denote the number of elements of 
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the set A not exceeding X. The number of choices with repetitions of at 
most h elements in A not exceeding x is the binomial coefficient (A(x) + h, h). 
If A is a basis of order h, then for x sufficiently large and h 2 2 

< Am 

and so A(x) > x’lh. In particular if h = 4, then A(x) > X1/4, But the sequence 
of squares A = (n’}~= 1 satisfies A(x) - xl/‘. It is a natural problem [7] to 
look for “thin” subsequences of the squares that are still bases of order 4. 
We shall prove (Theorem 1) that for every E > 0 there exists a set A, of 
squares such that A, is a basis of order 4 and A,(x) = 0(x3/* ‘&). We conjecture 
that for every E > 0 there is a sequence A* of squares such that A* is a basis 
of order 4 and A*(x) = O(ZX?~~+~). 

Choi et al. [3] have improved Theorem 1 in the following finite case: For 
every N > 1 there is a finite set A of squares such that IAl -=z (4/lag 2)N1’3 log N 
and every nonnegative integer n 5 N is the sum of four squares in A. 

The proof of Theorem 1 uses the probabilistic method of ErdSs and 
RCnyi [4]. (The Halberstam-Roth book [6] contains an excellent exposi- 
tion of this method.) Consider the following general situation. Let Fj = 
Fj(xl, x2, . . . 3 Xho)) be a function in h(j) 5 h variables, and let 6 = {Fj)jEr. 
Let A = (u.}~= 1 be a strictly increasing sequence of positive integers. Let 9(A) 
denote the set consisting of all numbers of the form Fj(U,l, a,,, . . . , unhu)), 
where Fj E .9 and u,,~ E A for i = 1,2,. . . , h(j). Let s E 9(A) and 

be two representations of s. These representations are disjoint if 

{%p%,, . *. ‘u”h(J)l (3 b7I,>~,,3~~~ d4nhcr)l = 0. 

In Lemma 1 we apply probabilistic methods to show that if S 5 9(A) and 
each s E ,S has sufficiently many pairwise disjoint representations, then there 
is a “thin” subsequence A* of A such that S c F(A*). We also use this 
Lemma to obtain a best possible result for sums of three squares (Theorem 2) 
and to obtain a “thin” version of Chen’s result on Goldbach’s problem 
(Theorem 3). 

LEMMA 1. Let A = {un)F=r be a strictly increasing sequence of positive 
integers such that 

a, 2 qn” (1) 

for constmts cl > 0, CC 2 1, and d n 2 1. Let Fj = Fj(X1,Xz,. . , ,Xho)) be a 
function in h(j) I h variables, and let 9 = (Fj}j,J. Suppose there exist con- 



Lagrange’s Theorem and Thin Subsequences of Squares 5 

stants ~2 > 0 and fl> 0 such that, if Fj E 9 and Fj(xl, ~2, . I . ,x,,& = S, then 

Xi ~ C2SB (2) 

for i = 1,2, . . . , h(j). Let 9(A) be the set consisting of all numbers of the 
form Fj(anl, a,, , . . b 2 a,,,,,) with Fj E F-, a,i E A. For s E 8(A), let R(S) denote 
the maximum number of pairwise disjoint representations of s in the form 
s = f+,,, a,,, . . . , anhtj,). Let S c 9(A). Suppose there exist constants cj > 0, 
y > 0, and y’ such that 

R(s) 2 c,sY/logY’ s (3) 

for all s E S, s > 1. Then for every E > 0 there exist a constant c = C(E) > 0 
and a subs’equence A* of A such that S c B(A*) and 

A*(x) 5 ~.#/-Y/fl~+~). (4) 

Proof. By the method of Erdos and Renyi [4,6], every sequence of real 
numbers p(l), p(2), . . . satisfying 0 I p(n) I 1 determines a probability 
measure p on the space Q of all strictly increasing sequences of positive 
integers. The measure fi has the property that, if BCR) denotes the set of all 
sequences containing n, then B’“’ is measurable and ,@“)) = p(n). More- 
over the events B(l) B(‘) . . are independent. Let 0 < E < y/fib. Then 6 = 
(ay/ih) - CIE > 0. We’conbder the measure p on n determined by the sequence 
of probabilities 

p(n) = l/na = l/n(ay/flh)-ac. (5) 

Each sequence U = {u(k)),“, 1 E Q determines the subsequence A” = (au&L 1 
of A. This establishes a one-to-one correspondence between subsequences 
of A and sequences U in I2. The probability that a, E A” is the same as the 
probability that n E U, which is precisely p(n) = n-‘. 

Let s = Fj(%,, a,,, . . . , GhcJj ) E S. Inequalities (1) and (2) imply that 

c,ny I a, I c2s B 

for i = 1,2, . . . , h( j), and so 

ni < (C,S'/C,)"* = C4SBlb(. 

The integers n,, n2, . . . , nkcn are not necessarily distinct. Let ml, m2, . . . ,3 
be pairwise distinct integers such that {nl, n,, . . . , nhO) = (m,, m,, . . . , m,]. 
The probability that a subsequence AU = {a,,,)~= I of A contains each of 
the numbers a,,,a,,, . . . ,a,,,,, is the same probability that the sequence 
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U = {~(k)}km,~ E n contains each of the numbers ni E (n1,n2,. . . ,n,o?} = 

I m,,m,, . - * 3 nz,). This probability is 

cs =-. g-m 

Therefore, the probability that the subsequence Au does not contain at least 
one of the numbers a,,, a,,, . . . , u,,,~, is at most 

There are R(s) disjoint representations of s E S. By (3), the probability that 
AU does not contain at least one term from each of these R(s) representations 
of s is at most 

(1 _ C5/S-&)R(s) < (1 _ (C5/SY-3hr)c,sVW” se 

The corresponding series of probabilities converges : 

The Borel-Cantelli lemma implies that for almost all sequences U E Q, the 
subsequence A” of A represents all but finitely many s E S. Adjoining a 
finite set to AU, we obtain a subsequence A* of A such that S c F(A*). The 
law of large numbers implies that for almost all U E 0, 

(J(x) N &-6 = C&pylfih+aa. 

Since a, 2 clna by (l), it follows that 

A”(x) 5 U((x/c,)““) 5 CX1’a-y’~h+=. 

This completes the proof of Lemma 1. 

LEMMA 2. Let S = {n 2 1 In f 0 (mud 4)). Let R(s) denote the maximum 
number of pairwise disjoint representations of s as the sum of at most four 
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squares. Then for every E > 0 there is a constant c = C(E) > 0 such that 

R(s) > cs1’2-z 

for all s E S. 

Proof. Let rk(s) denote the number of representations of s as the sum 
of at most k squares. It is well known that rZ(s) I clsE for every E > 0. This 
implies that r3(s) I c~s~‘*~~, since if s = a2 + b2 + c2, there are at most 
s112 choices for a and, for each a, we have r2(s - a2) _< cl9 choices of b 
and c. 

Let s = a: + ai f ai + a:. The number of representations of s as a 
sum of at most four squares that include the number ai is r&s - a;). It 
follows that the number of representations of s that include at least one of 
the numbers al, a2, a3, a4 is at most 

jl r3(s - a;) 5 c3s1’2+E. 

There are R(s) disjoint representations of s as the sum of four squares, and 
so there are at most 

c3s112 +“R(s) 

representations of s as a sum of four squares. But Jacobi’s theorem on the 
number of representations of an integer as the sum of four squares implies 
that each s E S has at least c,s such representations. Therefore, 

c4s I c#~+‘R(s). 

This completes the proof of Lemma 2. 

THEQREM 1. For every E > 0 there exists a sequence A, of squares such 
that every positive integer is the sum of at most four squares in A, and A,(x) I 
cx3/*+’ for some c = C(E) z=- 0. 

Proof. Let A = {n2};z1. Let Fj = Fj(xl,. . . ,xj) = xi + . . * + xj, let 
J = {1,2,3,4), andlet 9 = {Fj}j,,. Lagrange’s theorem asserts that 9(A) = 
{1,2,3,...).LetS={s~l~sfO(mod4)}.WeapplyLemma1witha=2, 
/3 = 1, h = 4, and, by Lemma 2, with y = 3 - E. Then there is a sequence 
A* of squares such that each s E S is a sum of four squares in A* and 

A*(x) I cx l/2-[l/2-&]/4+& = cx3/8+5E/4 

Let A, = (2”ala E A*, k 2 O}. Let n 2 1. Then n = 4% for some s E S. There 
exist j E J and a,, . . . ,aj E A* such that s = ci= r a:. Then 2kai E: A, and 
z= 1 (2kUJ2 = 4k EC 1 a? = 4ks = n. Therefore, each n 2 1 is a sum of at 
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most four squares in A,. Moreover, if 2ka 5 x, then k < log x/log 2 and so 

< cx3P3+2E - 

Replacing E by ~/2 completes the proof of Theorem 1. 

THEOREM 2. For every E > 0 there exists a sequence B, of squares such 
that every positive integer n # 4k(8m + 7) is the sum of at most three squares 
in B, and 

B,(x) I cx”‘+ for some c = C(E) > 0. 

Proof. Let A = {n’}z= 1. Let F, = x1 + ‘ . s + xj for j E J = (1,2,3), and 
let % = {Fj)jEr. Gauss showed that B(A) consists of all positive integers 
not of the form 4k(8m + 7). Let S = (s 2 11 s f 0,4,7 (mod 8)). Then S E 
F(A). Siegel [8] and Bateman [l] showed that for every E > 0 and s E S 
there are at least cr~r’~-’ representations of s as a sum of three squares. 
The argument used to prove Lemma 2 shows that if s E S, then s has at 
least c~s~“-~ pairwise disjoint representations as a sum of three squares. 
We apply Lemma 1 with o! = 2, /3 = 1, h = 3, and y = 4 - E. This yields a 
subsequence A* c_ A such that S c_ F(A*) and 

A*(x) I cx 1/2-[1/2-&1/3+& = cx1/3+4&/3*- 

If n E B(A), then n = 4ks for some k 2 0 and s E S. Let B, = {2ka 1 k 2 0, 
a E A*). Then B(BJ = F(A) = {a’ + b2 + c2 (a, b, c, 2 O> and BE(x) I 
c’(logx)A*(x) I cx (1’3)+2E. This completes the proof of Theorem 2. 

THEOREM 3. Let C consist of all numbers of the form p or pq, where p, 
q are odd primes. Then for every E > 0 there is a set C, E C such that every 
suficiently large even integer is the sum of two elements of C, and 

C,(x) I Cx1’2+ea 

Proof. Chen [2,5] proved that every even number n 2 n, has at least 
c,n/log2 n representations as the sum of two elements of C. These represen- 
tations are pairwise disjoint, Apply Lemma 1 with o! = 1, /3 = 1, h = 2, and 
y = 1. This y ie Id s a sequence C, c C such that every even number n 2 no 
is the sum of two elements of C, and CJx) I CX~/~+‘. This completes the 
proof of Theorem 3. 

References 

[1] P. T. Bateman, On the representations of a number as the sum of three squares. Trans. 
Amer. Marh. Sot. 71 70-101, (1951). 

[Z] J. Chen, On the representation of a larger even integer as the sum of a prime and the 
product of at most two primes. Sci. Sink 16 157-176, (1973). 



Lagrange’s Theorem and Thin Subsequences of Squares 9 

[3] S. L. G. Choi, P. Erdiis, and M. B. Nathanson, Lagrange’s theorem with N”3 squares. 
Proc. Amer. Math. Sot. 79 203-205 (1980). 

[4] P. Erdiis and A. Rtnyi, Additive properties of random sequences of positive integers. 
Acta Arith. 6 83-110, (1960). 

[5] H. Halberstam and H. -E. Richert, “Sieve Methods”. Academic Press, New York, 1974. 
[6] H. Halberstam and K. F. Roth, “Sequences”, Vol. I. Oxford Univ. Press (Clarendon), 

London and New York, 1966. 
[7] E. Hartter and J. Ziillner, Darstellungen natiirlichen Zahlen als Summe und als Differenz 

von Quadraten. K. Norske Vidmsk. Selk. Skr. no. 1, l-8, (1977). 
[S] C. L. Siegel, Uber die Klassenzahl quadratischer Zahlkiirper. Acru. Arith, 183-86, (1935). 

Paul Erdijs 
Mathematical Institute of 

the Hungarian Academy of 
Sciences 

Budapest V., Realtanoda 
Hungary 

1980 Mathematics Subject 
Classification. Primary lOJO5. 

Secondary lOLO5, lOK99. 

Melvyn B. Nathanson 
Department of Mathematics 
Southern Illinois University 
Carbondale, llllnois 


