
These bounds were somewhat improved by J.-J. Sylvester and others,
but nearly a half a century passed before Hadamard and de la Vallée
Poussin independently succeeded in proving that 7r (x) / {x/log x} -* I as
x -> oc. This is the famous prime number theorem (P.N.T .) . Interesting
accounts of the foregoing may be found in the books of Ingham [2],
Landau [3], and Mathews [4] .

Here we consider the following hypothetical question . Could Chebyshev
in principle have achieved sharper bounds? We answer this question in the
affirmative in the following

THEOREM . Let s > 0 be given . There exists a positive integer T = T (c)
such that knowledge of the values of the Mobius u function on the interval
[1, T) yields the estimate

lim sup 17r (x)/(XIlog x) - 1 I < c .(1)
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1 . INTRODUCTION

The first estimates of the true magnitude of the prime counting function
7r (x) = # {p < x : p prime} were made by Chebyshev [1] in the mid
nineteenth century. By an ingenious argument he proved that as x --+ co
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The main step in the proof is to reduce the estimate in (1) for a given
value of c to an inequality of the form

I GT (y) I GT/K

	

(1Cy<KT),

where T and K depend only on a and GT is an auxiliary function defined
in §2, depending only on the Möbius function u (n) for n < T. Our proof
of this inequality for general T and K (Lemma 2) uses results known to be
equivalent to the P.N.T ., and so our method does not lead to a new proof
of the P.N.T. However, one can in principle verify the estimate of GT (y)
numerically, which leads to an explicit estimate of the type (1) . We use such
numerical estimates in §3 to obtain bounds for n (x) which are sharper than
those of Chebyshev .

Our theorem has a long and curious history . It was first found in 1937
by Erdös and László Kalmár and independently, and at about the same time,
by J. Barkley Rosser. Erdös and Kalmár decided not to publish it when
they learned that Rosser had a version of the theorem for primes in arith-
metic progression and had already submitted a manuscript for publication .
However, because of various difficulties, Rosser's article never got into
print, and the theorem lived only by word of mouth . We have reconstructed
a proof which we give below .

2 . PROOF OF THE THEOREM . We denote by l, ,U, L, ek , and A the following
arithmetic functions

1 (n) = l ,
p (n) = Möbius' function,
L (n) = log n,

Also, let

1,n=k,

0, n # k,

log p, n = p"

0, otherwise

(here k is a fixed positive integer)

(von Mangoldt's function)

A (n) _

	

1] log p .
P a -x



It suffices to establish

(2) lim sup 10(X)/X-1l< e
x-o

instead of (1) because of the familiar inequalities

(x)
= I Clog x,

log p < 1] log x = 7r (x) log x ,
PGx log P

	

Pox

A (n) __ 0 (x) + f
x 0(t) dt < 0 (x) + Bx

log n

	

log x

	

I t logz t

	

log x

	

log,x
n (x) < Y

n -X

(The last inequality uses the Chebyshev bound ~ (x) = O (x)) .
For f and g arithmetic functions define the multiplicative convolution

of f and g by

Convolution is an associative operation, and e l is the identity element .
Familiar relations conveniently expressed in convolution terms are the
Möbius identity 1 * y = e l and the Chebyshev identity A * 1 = L .

One can determine A from the last identity by convolving both sides
because of theby u ; however, it is then difficult to handle L *,u effectively

irregularity of it . For T a positive integer set

1

	

p ( n),

PT (n) = S - T

1

	

0,

We shall take UT as a "finite approximation" to p .
We first note a few properties of FLT . By construction, E PT (n) / n = 0 .

For x > 1, the relation

Y- x- µ (s) _
s--x S

f * g (n) _ Y- f (i) g (J)
ij=n

P(i),

i<T

	

1

[X-S] 11(S) +
s~x

	

s~x

X -~

	

(S)
s~x

	

s
= 1 +

- 31 5 -

x
s

nLx

	

n--x

	

nGx

_ XI) 1`
(S)

implies that y, (T) = O (T) . Also, for x < T we have

E 1 * PT (n) _ E I * p (n) _ Y e l (n) = 1 .
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(Chebyshev used f = e l - e 2 - e3 - e5 + e30 as an approximation
to y in his argument . This function has the properties that Z f (n) / n = 0,

(3)

0<F(x)def

	

1* f(n)y1
n c x

and F (x) = 1 for l C x< 6 .)
Our starting point is the identity

(x>1) ,

A * 1 * ,u, (n) _

	

L* p, (n) .
n x

	

n--x

We shall show that the left side of (3) is nearly' (x) and right side is nearly x.
We begin by estimating the right side of (3) unconditionally .

LEMMA 1 . Given e > 0 there exists an unbounded sequence of integers
T such that

L * PT (n) - x
n-- x

Proof. Summation by parts shows that

< Ex (x›x (T» .

log n = y log y - y + O (log ey)
n G Y

Thus

L * PT (n) _

	

Y- log i PT (1) _

	

Y~ log i PT (i)
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log i) 1 1T (j)
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_

	

Y
~

x
(log x - log j - 1) + O (log ex1j) } 11T 0)

jcx i

_ (x log x -x) Y- PT (j)/j - x I log j
PT 0)

jGx

	

jGx

+ 0 1 (log ex)

	

PT 0)
j _x

M (u) _

	

u (01 i,
1 Gü

Suppose that x > T. Then the first sum is zero by the construction of
YT . The third term is O (T log ex) .

To evaluate the second term set

ni , (y) = f i m (u) dufu .



The definition of µT and integration by parts give

log j

	

T µ (j)
PT (j) _ Y, log -

jGT

	

j

	

jGT

	

.Í

T

	

?,

=
J

- log dm (u) = m, (T)
T

.
1

We claim that m, (T) -). 1 for a sequence of T's tending to infinity .
Indeed, since s f 10 u - s -1 du = 1, an average of m, is provided by

j

Thus

(4)

	

G (Y)

	

Y/j } u (j) + T { y fT }

	

1: It (j)lj
j < T

	

J < T

The last sum is bounded, as we noted earlier, and so G (y) = O (T) for
all y > T.

- 317 -

s f l ti -'-' ní, (ti) du

G (Y) _

	

~ 9 (n) _
n~ y

1
sC(s + 1)

(two integrations by parts), and the last expression approaches 1 as s --> 0+ .
Also, m, (T+ a) - m, (T) -> 0 as T --> oo, 0 G a G 1 . Thus it is impossible
that m, (n) be ultimately bounded away from 1 for integral values of n . El

To evaluate the left side of (3), set

9 = 9T = 1 * JUT,

	

G (x) = G T (Y) _ I 9 (n)
nix

Then we have (by the "hyperbola method")

A * 9(n) _
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ixcx
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G (x/i)11(i) - G (T -1) ~
jGT-1

	

icx/(T-1)

	

(

x

T -
=I+II-III, say .

Since µT (n) = u (n) for all n < T we have g (j) = 1 * u (j) for all
< T. Thus I = ~ (x) and III = ~ (x / (T-1)) = o (x/T) .
We study G to estimate II . For y > T we have

ij GY
I (i) uT ( .1)

_ Y- Cvljl ~~T (j) _ Y
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PT (.1)

jGV
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Thus, if T is large enough we have

The remaining sum in (4) is
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For K a large positive number, write

G
(X
-
)
A (i) _

	

+

	

G
\x~

d (i) .
i-xf(T-1)

	

i

	

i-~xITK

	

x/TK<i--x/(T-1)

	

~-

The first sum is O (x/K) by the preceding estimate and Chebyshev's bound
V (y) = O (y) . We shall use the prime number theorem to estimate the
size of G (.x/i) in the last sum .

LEMMA 2 . Let K > 0. There exists a number To = Ta (K) such that
if T > To then I GT (y) I < T/K holds for all y < TK.

Proof. We may suppose that y > T, for G (y) = 1 for 1 < y < T.
We estimate G using (4) . A result "equivalent" to the P .N.T. is the estimate

u (j)/j -> o
j<T

p (j)/j

(T -> oo) .

< TJ3K .

{y}
6i(j) _

	

+

	

Y

	

}Y} u(j)
j<T

	

i

	

jGT/3K

	

T/3K<j<T

The first sum on the right is bounded by T/3K in modulus .
We estimate the last sum by breaking its summation range into sub-

intervals a < j < b on which [y/j] is constant. The number of such ranges
cannot exceed the maximal value of [y/j], i .e . TK/ (T/3K) = 3K 2 . On each
interval we sum by parts and use the monotonicity of {y/j} and the estimate

M (z) _

	

u (n) = o (z)

	

(z -+ co) ,

which follows from the P .N.T. We obtain

Y-

	

Y
a <JGb

} j} u (j) _ {-Y b
} M (b) - } a + l } M (a)

+

	

~~
j } - { j +

1}} M (j) = o (b) < T/9K3
a<j<b



provided that T is sufficiently large . Thus

and I G (y) I< T/K for all y C TK.

Returning to the estimate of 11 we have

Y

	

G -x d (i)
i~--x/(T-1)

	

t

provided that T is sufficiently large .
Combining all estimates involving (3) we obtain finally

T

m l (T)-1
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I

	

2T
Y { y ~ P(j) <
j<T 3K '

GO(X)+

	

O
(x)K

	

x/TK<i x;(T-1) K

	

K

~ (x) + o TX)
+ O

xK
= x + O (ex) ,

where s, 1/T and 1/K can all be taken as small as we wish .

3 . CALCULATIONS . We conclude by applying our method to obtain
bounds for ~ (x)lx sharper than those of Chebyshev (though not as good
as the bounds of Sylvester) .

Returning to (3), we have

Y L* µT (IT) = xrn l (T) + O (T log ex) ,
n<x

and direct calculation shows that m 1 (T) is close to 1 for a sequence of T's .
For example, we have

3

	

5

	

7

	

11

	

32

	

152

- .104 - .019 - .0045 - .00072 - .000030 - .00000037

We write the left side of (3) as

ÚP (x) ~~Tx l} + Y- +

	

Y-

	

GT (x)
x

	

x

	

x

	

\ /i
i -'~

TK

	

TK
<i-

T-1

0

0



In the first sum we use the bound I GT (x/i) I < 3T/2, which is easily deduced
from (4) ; for the second sum we calculate GT (y) directly for T - 1 < y
< TK, and let U = U (T, K) and L = L (T, K) denote the upper and lower
bounds for GT on this interval .

Combining the estimates we obtain

(5) ~ (x) -

(6)

[1]

K x) - ~

- 320 -

(Tx 1) 2 T~(TK) +
L
}~(Tx 1) -~( x )}

xmi (T) + 0 (T log ex),

(Tx 1) + 2 T (TK) + U } O (Tx ) -O (TK)}

xm t (T) + 0 (T log ex) .

We give an upper estimate of 0 (x)/x using (5) with T = 100,
TK = 8911, L > - 4.9054, m l (100) < 1 .00104, and Chebyshev's bound
lim sup ~ (x)lx < 1 .1056 . We find that lim sup 0 (x)/x < 1 .085 . We
estimate 0 (x)lx from below by using (6) with T = 101, TK = 17749,
U < 7.2930, m l (101) > 1 .00134 and the preceding upper estimate of
0 (x)/x. We find that lim inf ~ (x)lx > .924 .

Might Chebyshev have improved his bounds for ~ (x)/x if he had used
this method? We must report that that is quite unlikely, because considerable
calculation was needed to obtain the modest improvement we have achieved .

NOTE ADDED IN PROOF . Diamond and Kevin Me Curley have found
another sharp elementary estimation method . Their article "Constructive
elementary estimates for M (x)" will appear in Number Theory - Procee-
dings of a conference held at Temple University, May 1980, Lectures Notes
in Math ., Springer-Verlag, Berlin .
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