# ON THE ALMOST EVERYWHERE DIVERGENCE OF LAGRANGE INTERPOLATION** 

P. Erdös and P. Vértesi<br>Mathematical Institute of the Hungarian A cademy of Sciences. Budapest. Hungary

1. INTRODUCTION

In the previous paper P.Erdös stated without proot that if $Z=\left\{x_{i n}\right\}, \quad n=1,2, \ldots, \quad 1 \leqslant i \leqslant n$,
(1.1) $-1 \leqslant x_{n n}<x_{n-1, n}<\ldots<x_{1 n} \leqslant 1 \quad(n=1,2, \ldots)$
is a triangular matrix, then there exists a continuoua unction $F(x)$, $-1 \leqslant x \leqslant 1$, such that the sequence of Lagrange interpoiation peynomials

$$
L_{n}(D, Z, x)=L_{n}(F, x)=\sum_{k=1}^{n} F\left(x_{k n} ; i_{k n}(x)\right.
$$

diverges almost everywhere in $[-1,1]$, and in fact

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}(F, Z, x)\right|=\infty
$$

for almost all $x$ (see [1]). (Here, as usual
(2.2)

$$
\begin{aligned}
& 1_{k n}(x)=\frac{\omega_{n}(x)}{\omega_{n}^{\prime}\left(x_{k n}\right)\left(x-x_{k n}\right)} \\
& \left(k=1,2, \ldots, r ; \omega_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k n}\right)\right)
\end{aligned}
$$

* The detailed version will appear in Acta Math. Acad. Sci. Hungs
the corresponding fundamental polynomials,
(1.3) $\lambda_{n}(x)=\sum_{k=1}^{n}\left|1_{k n}(x)\right|, \quad \lambda_{n}=\max _{-1 \leqslant x \leqslant 1} \lambda_{n}(x) \quad(n=1,2, \ldots)$,
the Lebesgue functions and the Lebesgue constants of the interpolation.)
Here is the sketch of the proof. The detailed proof (about 30 pages) turned out to be quite complicated and several unsuspected diffficulties had to be overcome

2. PRELIMINARY RESULTS

In his classical paper [2] G. Fiber proved that for any matrix $Z$

$$
\varlimsup_{n \rightarrow \infty} \lambda_{n}=\infty
$$

from where if follows directly that for every point group there exists a continuous function $f_{1}(x),-1 \leqslant x \leqslant 1$ (shortly $f_{1} \in C$ ), such that

$$
\varlimsup_{n \rightarrow \infty}\left\|L_{n}\left(f_{1}, x\right)\right\|=\infty
$$

(Hence $\|g(x)\|=\|g\|=\max \quad|g(x)|$ for $g \in C$.) Almost twenty $-1 \leqslant x \leqslant 1$
years later, in 1931,5 . Bernstein showed that for every $Z$ for which (i. 1) hoids there exists an ${ }^{f} 2 \in C$ and $x_{0},-1 \leqslant x_{0} \leqslant 1$, such that
(2.1)

$$
\lim _{n \rightarrow \infty}\left|L_{n}\left(f_{2}, x_{0}\right)\right|=\infty
$$

(see [3]).
$E=\{-1+2(k-1) /(n-1)\}$ and the function $|x|$

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}(|t|, E, x)\right|=\infty \quad \text { if } \quad x \in(-1,1), x \neq 0 .
$$

Then, using the "good" Chebyshev matrix

$$
T=\left\{x_{k n}=\cos \frac{2 k-1}{2 n} \pi ; k=1,2, \ldots, n ; n=1,2, \ldots\right\},
$$

G. Grlinwald [4] obtained that there exists a function $f_{3} \in C$ for which

$$
\begin{equation*}
\varlimsup \lim _{n}\left(f_{3}, T, x\right)=\infty \tag{2.2}
\end{equation*}
$$

for almost all $x$ in $[-1,1]$. Later he and (independently) J. Marcinkiewicz proved that for a suitable $f_{4} \in C,(2.2)$ is true for every $x$ from $[-1,1]$ (see [5] and [6]).

Quite recently A. A. Privalov [7] considered the Jacobi matrices

$$
z^{(\alpha, \beta)}=\left\{x_{k n}^{(\alpha, \beta)}, \quad k=1,2, \ldots, n ; n=1,2, \ldots\right\}, \quad \alpha, \beta>-1
$$

(see e. g. [8], Part 2), and showed that for a certain $f_{5} \in C$

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(f_{5}, z^{(\alpha, \beta)}, x\right)\right|=\infty \quad \text { a. e. on }[-1,1], \tag{2.3}
\end{equation*}
$$

where "a. e." stands for "almost everywhere". (He considered some further point groups, too .) His proof strongly depends on the properties of the Jacobi roots $x_{k n}{ }^{(\alpha, \beta)}$.

Finally, he proved (2.3) for the whole ( $-1,1$ ) (see [13]).

## 3. RESLLT

As indicated above, we are going to prove (2.2) for any fixed point group $Z$, i.e. we state

THEOREM. For any matrix $Z$ for which (1.1) holds one can find a function $F \in C$ such that
(3.1) $\varlimsup_{n \rightarrow \infty}\left|L_{n}(F, Z, x)\right|=\infty$ for almost all $x$ in $[-1,1]$.

On the other hand, considering the special matrix

$$
\begin{array}{lll}
x_{1} & \\
x_{1}, & x_{2} \\
x_{1}, & x_{2}, & x_{3}
\end{array}
$$

I can say that ( 3,1 ) generally is not true for all $x \in[-1,1]$ (see $P$. urán [9], Problem III; [1], p. 384).
Finally, let us note that the " 1 im " cannot be replaced by "him" '"him". Indeed, as P. Erd"'s showed, one can construct a point wop so that for every $f \in C$ and every $x_{0} \in[-1,1]$ there would exist sequence $n_{k}$ (depending on $f$ and $x_{0}$ ) such that

$$
\lim _{k \rightarrow \infty} L_{n_{k}}\left(f, x_{0}\right)=f\left(x_{0}\right)
$$

fee [1], p. 384 ).

## ON THE PROOF

As we mentioned above, the proof is rather long and quite complited although it uses only elementary techniques. Our aim here is sketch it, stressing some characteristic considerations and lemmas.
4.1 The quoted result (2.1) of S. Bernstein can be obtained from $e$ fact that for any matrix $Z$ one can choose the point $x_{0} \in[-1,1]$ q which

$$
\lambda_{n}\left(x_{0}\right)=\sum_{k=1}^{n}\left|1_{k n}\left(x_{0}\right)\right|>\left(\frac{2}{\pi}+o(1) \ln n,\right.
$$

$r$ infinitely many $n$ (sse the same paper, [:3]).
succeed if

then obviously

$$
L_{n}\left(g_{n}, x_{0}\right)=\sum_{k=1}^{n} g_{n}\left(x_{k}\right) 1_{k}\left(x_{0}\right)=\sum_{k=1}^{n}\left|1_{k}\left(x_{0}\right)\right|=\lambda_{n}\left(x_{0}\right) .
$$

I. e. , if

$$
f(x)=\sum_{k=n_{1}, n_{2}, \ldots .} \frac{1}{\varphi_{k}} g_{k}(x),
$$

then $f(x) \in C$, moreover

$$
L_{n_{i}}\left(f, x_{0}\right)=\sum_{k<i} \cdots+\frac{L_{n_{i}}\left(q_{n_{i}}, x_{0}\right)}{\varphi_{n_{i}}}+\sum_{k>i} \ldots,
$$

from where we obtain (2.1) with suitably chosen $\left\{\varphi_{n}\right\}, \varphi_{n} \rightarrow \infty$.
4. 2. In 1958 P. Erdds proved, that for any given $A>0$ and $\varepsilon>0$ the measure of the set in $x \quad(-\infty<x<\infty)$ for which $\lambda_{n}(x) \leqslant A$, $n \geqslant n_{0}(A, \varepsilon)$, holds, is less than $\varepsilon$, whatever is the matrix $Z$. From this we immediately obtain, that
(4.1) $\varlimsup_{n \rightarrow \infty} \sum_{k=1}^{n}\left|1_{k}(y)\right|=\infty$ for almost all $y$ in $[-1,1]$.

So, as above, we can obtain an uncountable family of functions $f_{y}(x) \in C$ such that

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(f_{y}, y\right)\right|=\infty \quad \text { for almost all } y \text { in }[-1,1] \text {. }
$$

To prove the original statement (3.1), we shall have to construct the continuous $F(x)$ using the uncountable family of functions $f^{f} y$. But
is approach does not seem passable. So we choose another method, where we shall have to unite at most countable family of functions.
4.3. At first let us suppose that (with $x_{0 n}=1$, and $x_{n+1, n}=-1$ )

$$
\Delta x_{k n} \stackrel{\text { def }}{=} x_{k n}-x_{k+1, n} \leqslant \delta_{n} \stackrel{\text { def }}{=} 1 / \ln n \quad(k=0,1, \ldots, n ; n=1,2, \ldots) .
$$

Divide the interval [-1, 1] by equidistant points as follows.


Now, if we conciser, e.g. the expression
(4.2) $\left|\sum_{x_{k}<a_{2}}(-1)^{k} 1_{k}(x)+\sum_{x_{k}>b_{2}}(-1)^{k+1} 1_{k}(x)\right| \quad$ if $\quad x \in I_{2}$
it is a simple, but a very important remark that all the terms in $(4,2)$ have the same sign for any fixed $x \in I_{2}$. (Indeed if, e. g. $x_{k}<a_{2}$, then

$\operatorname{sign}\left[(-1)^{k} \omega^{\prime}\left(x_{k}\right)\right]=S$ where $S= \pm 1$ for any $k, 1 \leqslant k \leqslant n$, moreover $x-x_{k}>0$, which means that

We vall expert that we h, $F(x)$ where the intervals $1_{j}$ are of positive measure.
'Ihis phenomenon in expressed by the following statement.
LEMMA 4.1. Let $A>0$ be an arbitrary fixed number. Then considering the arbitrary integer $m \geqslant m_{0}(A)$, for any $n \geqslant n_{0}(m)$ there exists the set $H_{n}=[-1,1]$ for which $\mu\left(H_{n}\right) \leqslant 1 / \ln \ln m$, moreover, whenever $x \epsilon[-1,1] \backslash H_{n}$


Here $I_{j(x), m}$ is the interval containing $x ; \mu(\ldots)$ stands for the Lebesgue measure.

This lemma proved to be a very important part of the proof. It is a rather deep generalization $n$ of the statement by P. Erdbs (quoted in 4.1) because in the sum $\sum_{k=1}^{n}\left|l_{k}(x)\right|$ generally even the terms for which $\left|x-x_{k n}\right|$ is "small" are "large". In the proof of (4.3) we use only some basic notions of interpolation theory and combinatorial considerations.
4.4. Using Lemma 4.1, we obtain the finite number of continuous functions $f_{i}(x)$ whose Lagrange interpolatory polynomials are big on the sets $B_{i}$. More exactly we get that

$$
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(f_{i}, x\right)\right|=\infty \quad \text { on } \quad B_{i} \quad(1 \leqslant i \leqslant s)
$$

where $\sum_{i=1}^{s} \mu\left(B_{i}\right)=2-\rho, \rho>0$ is arbitrary. To combine these $f_{i}$ we use LEMMA 4.2. If $r_{1}(x), r_{2}(x) \in C$, moreover

$$
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(r_{1}, x\right)\right|=\infty \quad \text { if } \quad x \in B_{1}, \quad \mu\left(B_{1}\right)<\infty,
$$

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(r_{2}, x\right)\right|=\infty \quad \text { if } \quad x \in B_{2}, \quad \mu\left(B_{2}\right)<\infty \text {, }
$$

then any fixed interval $\left(\beta_{1}, \beta_{2}\right) \quad\left(\beta_{1}<\beta_{2}\right)$ contains an $\alpha$ such that

$$
\prod_{n \rightarrow \infty}\left|L_{n}\left(\alpha r_{1}+r_{2}, x\right)\right|=\infty \quad \text { a. e. on } \quad B_{1} \cup B_{2}
$$

(a, e. = almost everywhere).
Applying these lemmas and some other considerations we obtain the theorem.
4.5. For the intervals $\Delta x_{k}>\dot{o}_{n}$, instead of Lemma 4.1, we can use the following

LEMMA 4.3. Let $\Delta x_{k n}>\delta_{n}(k$ is fixed, $0 \leqslant k \leqslant n)$. Then for any fixed $0<q<1 / 2$ we can define the index $t=t(k, n)$ and the set $h_{k n} \subset\left[x_{k+1, n}, x_{k n}\right]$ such that $\mu\left(h_{k n}\right) \leqslant 4 q \Delta x_{k n}$, moreover

$$
\left|1_{t}(x)\right| \geqslant 3^{n \delta_{n}^{5}} \quad \text { if } \quad x \in\left[x_{k+1, n}, x_{k n}\right] \backslash h_{k n}
$$

and $n \geqslant n_{1}(q)$.
Finally, by a statement analogous to Lemma 4.2 we can complete the proof for the case of the long intervals as well.

And at last one more problem on Lagrange interpolation which seems to be quite a difficult one: There is a pointgroup $\left\{x_{k n}\right\}$ such that for every continuous $f(x), L_{n}\left(f, x_{0}\right) \rightarrow f\left(x_{0}\right)$ holds for at least one $x_{0}$ for which $\overline{\lim }_{n \rightarrow \infty} \lambda_{n}\left(x_{0}\right)=\infty$ (see [1]). This is probably true, but at this moment we cannot prove it (the original "proof" was incomplete).

## REFERENCES

1. F. Erdös, Problems and results on the theory of interpolation. I,
2. S. Bernstein, Sur la limitation des valeurs d'un polynome, Bull. Acad.Sci. de l'URSS 8 (1931), 1025-1050.
3. G. Grunwald, Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome, Acta Sci. Math. Szeged 7 (1935), 207-221.
4. U, Uber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome stetiger Funktionen, Annals of Math. 37 (1936), 908-918.
5. J. Marcinkiewicz, .Sur la divergence des polynomes d'interpolation, Acta Sci. Math. Szeged 8 (1937), 131-135.
6. A. A. Privalov, Divergence of Lagrange interpolation based on the Jacobi abscissas on the set of positive measure ( Russian ), Sibirsk. Mat. Ž. 18 (1976), 837-859.
7. I.P.Natanson, Constructive Theory of Functions ( Russian ), Gos. izdat. tech.-teor. lit., Moscow-Leningrad, 1949 .
8. P. Turán, Some open problems of approximation theory (in Hungarian), Mat. Lapok 25 (1-2), 21-75.
9. P. Erdbs and T. Grinwald, On polynomials with only real roots, Annals of Math, 40 (1939), 537-548.
10. P. Erdbs and P. Turán, On interpolation, III, ibid. 41 (1940), 510-553.
11. P. Erdb's and J.Szabados, On the integral of the Lebesgue function of interpolation, Acta Math. Acad. Sci. Hungar. 32 (1978), 191-195,
12. A. A. Privalov, Approximation of functions by interpolation polynomials, in "Fourier Analysis and Approximation Theory", I-II, North-Holland Publ. Co., Amsterdam-Oxford-New York, 1978, pp. 659-671.
13. S. N. Bernstein, Quelques remarques sur l'interpolation, Math. Ann. 79 (1918), 1-12.
