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ABSTRACT

The bandwidth b(G) of a graph G is defined by

b(G) = min max

	

1A(-)-X(y)1
A e={x,y}

where e ranges over all edges of G and A ranges over all

1 - 1 functions A :V(G) -> Z , the positive integers . In this

note we show for any graph G on n vertices (with G denot-

ing its complement),

b(G) + b(G) > n - 2

Furthermore, for all n > 3 there exist graphs which achieve

this bound .

We also prove :

(i) b(G) + b(G) < 2n

	

c 1 log n, for all graphs G on n

vertices ;

(ii) b(G) + b(G) > 2n

	

c 2 log n, for almost all graphs G on

n vertices .

1 .

	

Introduction .

For undefined graph theory terminology see [1] or [8] . The

bandwidth b(G) of a graph C is defined to be the least inte-

ger b such that for some labelling A of the vertices of G
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with distinct integers,

Ja(x)-X(y)j < b for all edges {x,y) of G .

	

(1)

If a satisfies (1) and a(v1 ). < a(v2 ) < . . . < a(vn ) where n

is the number of vertices of G then the labelling a(vk) = k,

1 < k < n, also satisfies (1) . Hence, we need only consider

1 - 1 mappings A :V(G) - {1,2, . . .,n)

	

[n] for determining b(G) .

A number of papers have appeared (e .g ., [2], [3], [5], [9],

[10], [11]) recently which deal with the bandwidth of a graph,

both from the graph theoretic as well as the algorithmic point of

view . For example, it has been shown [5] that the problem of de-

termining the bandwidth of a tree is already NP-complete . (For a

discussion of this concept, see [6] .) For a survey of many of

these and related results, the reader can consult [2] or [3] .

In this paper we investigate the relationship between b(G)

and b(G) where G denotes the complement of G, i .e ., V(G) _

V(G) and {x,y) E E(G) iff {x,y) Ey E(G) . It is clear that if

G has a small bandwidth then it must have "relatively few edges .

Consequently G has many edges and thus, b(G) is large . Our

purpose is to make this rough notion precise .

2 .

	

The Lower Bound .

For a graph G, the kth power Gk of G is defined to

be the graph which has the same vertex set as G and in which

{x,y) is an edge iff x and y are connected in G by a path

of length at most k . Let P k denote a path with k vertices .

It follows at once from the definition of bandwidth that :

Fact . If G has n vertices then b(G) < b iff G c_ P n .

In particular, it follows that

b(Pb ) = b .

	

(2)n
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Theorem 1 . If G has n vertices then

b(G) + b(G) > n - 2 .

	

(3)

Proof . To simplify the notation we restrict our attention

to the case that n = 2m . The case in which n is odd follows

in exactly the same way . We claim that (3) is an immediate con-

sequence of the following result . (In the remaining part of this

paper, we use P2m1 to denote the complement of P2m1 .)

Le=a .
b(Pmml) =m - 1 .

Proof . Suppose (4) holds . If b(.G) = b < m - 2

the Fact,

Thus,

and by (4),

G C Pb c Pm-1
2m

	

2m

G ~ pm-1
2m

b(G) > b(P 2ml ) = m - 1

Hence, at least one of G, G has bandwidth > m - 1 . Assume

b(G) = b > m - 1 .

	

(5)

Therefore,

But (5) implies

and
p2m-b-2
4m-2b-2

G P2G z P2m ,

	

m .

	

(6)

2m - b - 1 < b + 2 . Since in the case P
2m

are isomorphic then

b(G) ? b(p2m-b-2 )
4m-2b-2 2m-b- 2

(4)
then by

and (3) holds as required .

The remainder of the proof of the theorem will be devoted. to

proving (4)

To fix notation,let us write the vertex set of Pm m1 as
rn-1

{Xl' .. .'Xm'Y1' .. .'Ym} with the edges of P 2m

	

as all o?ir .

{Xi ,Ya }, 1 < i j gy m .

	

The following labelling n shows

b(P2ml) < m - 1 :
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a(Ym ) = 2m - 1,

	

a(Xm) = 2m .

b(P2m1 ) > m -

Suppose the contrary, i .e ., assume

by the Fact,

It remains to show

= í,

= í + m - 1, 1 < i

1 .

m-1

	

m-2
P2m

	

P2m

1 < i < m - 1,

< m - 1,

Pm-1 Pm-2
2m

	

2m

Let p : Tin-2 i Pm-1 be an embedding of Pm-2 into
2m

	

2m

	

2m
that PZml can be formed by starting with a copy

the vertex set {A
, , . .. 'Am-1'Bl' . . . 'Bm-1} = A U B,

b(P2mm-1 ) < m

	

2. Thus,-

PZml . Note

of p m-2
2

on

forming com-

plete graphs on A and B, and adjoining two additional points

A* and B*, with A* joined to all points of A and B*

joined to all points of B . For ease of notation, let us use

[2m] for the vertex set of P2m2 . For convenient future ref-

erence, we show
P2-m2

and PZm1 in Figure 1, Let X denote

{1,2, . . .,m} and let Y denote {m+1, . . .,2m} .

To begin with, suppose there exist í,j E X such that

p(i) = A*, p(j) = B* . In this case, however, in P2 2 them

vertex 2m is adjacent to every x E X (which we will occa-

sionally write as 2m ti x) . Since no vertex in PZm1 is adja-

cent to both A* and B* then we have a contradiction .

In the same way, it is impossible that for i,j E Y,

p(i) = A* and p(j) = B* .

Next, suppose p(m) = A*, p(j) = B* for some j E Y. Since

m ti 1 in P2m2 then p(1) = A i for some i . However, this is

impossible since 1 ti j in PZm2 and consequently



Proceedings-Fourth International Graph Theory Conference

	

247

2

3

x

m-1

1

m

Pm-22m

2m

m+1

m+2

u(1) =Ai tiu(j) =B* .

Figure 1

Am-1
Pm-12m

B
m-1

Similarly, we cannot have u(2m) = B

	

u(i) = A* for some i E X .

Thus, by the symmetry of P m-2 (under i- 2m+1-i) we can

assume :

The neighbors of i in PZm 2 must be mapped into A ; these are

{m+i-l,m+í, . . .,2m}

	

Y` . Similarly the neighbors of j must be

mapped into B ; these are

It is important to note that since u(i) = A* is not adja-

cent to p(j) = B* in P MM-1 then we cannot have i j in

2m2 . Thus,

u(i) = A* for some

u(j) = B* for some

{I,2, . . .,i-m+l }=-X' .

j - i

	

m - 2

i E {2,3 . . .,m},

j E {m+1, . . . . 2m-1} .
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and so, the subgraph in Tm-2 induced by X' and Y' is a

complete bipartite subgraph (i .e ., x E X', Y E Y' implies

x ti y) . Informally, the situation is shown in Figure 2 .

min u (Y')

Defíne

A

j

U = {j-m+2,j-m+3, . . .,i-1 },

V = {j+l,j+2, . . .,i+m-2 },

Pm-1
2m

B

Figure 2 .

In fact, we have little more than this . Note that

IY'I = Ip(Y')I = m - i + 2,

IX'I = II,(X')I = j - m + 1 .

Since A and B span a copy of p2m22 then in Figure 2 min u (Y')

(the element Ak of p(Y') having the largest index k) must

be at least as high as max u(X') . Therefore

u(Y')I + 1V(X 1 )1 - 1 < m - 1

so that

(7)
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Thus,

IUI = IVI=i - j+m - 2=_t>1 .

Further, define partitions of U and V by :

U = Ul U U2'

	

V - VI U V2

where

Note that the graph

to

	

P2t1 . Also U

y' E Y' implies u

Partition u(V2 )

u(U1) c A, u(U2 ) g B,

P(V 1 ) 9 A, u(V2) c_ B .

spanned by U and V in P2m2 is isomorphic
ti Y' and V ti X' in PM-2 (í .e., u E U,

ti y', etc .) .

There are two cases :

IU2I + IV2I > t .

Consider the level a of min p (Y'), i .e .,

a = max (í :u(y') = Ai for some y' E Y'} .

into two pieces :

P(V 2 ) = P(VZ) U u(VZ)

where u(V2) consists of all points in u(V 2 )

and U(V2) consists of

Note that since U ti Y'

< a .

(no point in

Summarizing :

all points in

then U 2 ti Y' .

Similarly, partition p(U1 ) into

with level > a

u(V2 ) with level

Hence, u(U 2 ) has level

u(Uj), those points in

< a .

u(Ul) with level > a and U(U1), those points with level < a

u(Ul) can have level a since min u(Y') does) .

level u(Ul) > a, level p(U1) < a

level u(V2) > a, level u (V2) < a

level u(Y') > a, level u(X') < a .
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CZaim . lull > I V21 1 .
Suppose not, i .e ., suppose IUII < IV2I . Then

IU-I = t - lull

so that

Iu(up I + I u (V2)I > t .

	

(8)

But we _cave already noted that the graph in P 2M-m1 between u(U)

and v(V) isomorphic to
P2-t'. Hence, by (8) some point in

u(UI) mist be adjacent to some point in u (V2) . However, this is

impossible since level p(U1) < a and level u (V2) > a . This

proves the Claim .

FinalIy,we have 'gin A at least Ip(Y')I + I u (U1)I points with

level > -a . In B there are at least

Iu(X')I + Iu(u 2)I + Iu(V2)I
point, =•Tith Level < a . Since the total number of points in A

(and also in B) is just m - 1 and

IP(Y')I + IP(U')I + Ip(X')I + Iu(U2)I + Iu(V2)I - 1 < m - 1

	

(9)

(the -1 term on the LHS coming from the possibility that both A

and B may contribute a point

1uí 1

	

> t1

	

'

these various cardinalities, we obtain,

n > y + 3 then we must have

of level a) . Substituting for

•

	

lu(Ul)I + j - m + 1 + Iu(U 2 )I + Iu(VP I < m,

•

	

Iu(v 2)I + IU(V2)I + Iu(U2)I -<m (by Claim),
•

	

Iu(V2 )I + I u (U2)I < m (since V2 = V2 U V2),
•

	

t < m (by the Case (i) assumption),

•

	

(i-j+m-2) < m (by the definitions of t),

i < 0
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which is a contradiction . This completes the analysis of~Case (í).

(ü) .

	

IU2I + IV 2 I < t .

The arguments for this case are quite parallel to those for

Case (i) and will not be given . As mentioned earlier, when m is

odd the arguments are essentially the same (in fact, slightly

easier) . This completes the proof of Theorem 1 .

CoroZZary .

b(Pr) = n - r - 2 for r > 0 .

Proof . Since b(Pr) = r then by (3)

b (Pn) > n - r - 2 .

	

∎

The labelling which achieves this bound is not difficult to

construct and is left to the reader .

Remark . We point out tnat E .C . Milner and N. Sauer [10] and

J. Kahn and D .J . Kleitman [9] have recently independently also

proved Theorem 1 .

3 .

	

Upper Bounds .

Since any graph G

then it is immediate that

on n points has bandwidth less than n

b (G) + b (G) < 2n .

The next two results improve this estimate considerably .

Theorem 2 . There is a cl > 0 such that for all

G on n vertices satisfies

b(G) + b(G) < 2n - cl log n

	

(10)

Proof. A basic result in Ramsey theory (see

n, every graph

[41 or [71) as-

serts that any 2-coloring of the edges of Kn , the complete graph

on n vertices, contains a monochromatic K Z with z > log 4g
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Since, the decomposition of Kn into G and G can be regarded

as a 2-coloring of the edges of G, then either G or G con-

tains a Kz . Assume without loss of generality it is G . Thus,

G contains z points fx l ,x2 " " Xz } which span no edge . Con-

sequently G has bandwidth at most n - [Z] (use the highest

and lowest z labels on the xk) and so

b(G) + b(G) < 2n - c log n

for an appropriate c > 0 . This proves the theorem .

The next result shows that up to the choice of c, (10) is

best possible .

Theorem 3 . There is a c 2 > 0 such that for every n there

exists a graph G on n vertices such that

b(G) + b(G) > 2n - c2 log n .

Proof. It iswell known (e .g, ., see [4] or [7]) that the

of the complete graph Kn
can be 2-colored so that the largest

monochromatic complete bipartite subgraph Kx x has x < c l log n

!for some absolute constant cl > 0 . Define G

	

to be the

subgraph consisting of the edges of one of the colors (so that

G is made up of the edges of the other color) . Thus

y> c l log n => K YlY V G, G

However, K
Y

	

gf G implies b(G) > n - 2y + 1 . (Just consider
~Y

the vertices with labels 1, 2, . . ., y and n, n-1, . . ., n-y+l ;

some edge spanned by a vertex in each class must be in G .)

Taking c' = 2c l , the theorem is proved .

	

∎

With a more careful analysis, it is possible to improve the

values of the constants in (10) and (11) . The exact value would

seem to depend on knowing the asymptotic behavior of Ramsey num-

bers, a problem well known to present difficulties .

∎

edges
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We conclude with the observation that if K
n

in an arbitrary number of edge-disjoint subgraphs

K n = G
1 U G 2 U

. . .U Gk

then k

	

Z
C
G b(Gi ) > n+o(1)n .

í=1

is decomposed

Furthermore it is easy to see (by decomposing Kn into paths)

that this bound can be achieved .
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